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Bayesian parametric modeling 
of time to tuberculosis co‑infection 
of HIV/AIDS patients at Jimma 
Medical Center, Ethiopia
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Tuberculosis is the most common opportunistic infection among HIV/AIDS patients, including those 
following Antiretroviral Therapy treatment. The risk of tuberculosis infection is higher in people 
living with HIV/AIDS than in people who are free from HIV/AIDS. Many studies focused on prevalence 
and determinants of tuberculosis in HIV/AIDS patients without taking into account the censoring 
aspects of the time to event data. Therefore, this study was undertaken with aim to model time to 
tuberculosis co-infection of HIV/AIDS patients under follow-up at Jimma Medical Center, Ethiopia 
using Bayesian parametric survival models. A data of a retrospective cohort of 421 HIV/AIDS patients 
under follow-up from January 2016 to December 2020 until active tuberculosis was diagnosed or 
until the end of the study was collected from Jimma Medical Center, Ethiopia. The analysis of the 
data was performed using R-INLA software package. In order to identify the risk factors which have 
association with tuberculosis co-infection survival time, Bayesian parametric accelerated failure time 
survival models were fitted to the data using Integrated Nested Laplace Approximation methodology. 
About 26.37% of the study subjects had been co-infected with tuberculosis during the study period. 
Among the parametric accelerated failure time models, the Bayesian log-logistic accelerated failure 
time model was found to be the best fitting model for the data. Patients who lived in urban areas had 
shorter tuberculosis co-infection free survival time compared to those who lived in rural areas with 
an acceleration factor of 0.2842. Patients who smoke and drink alcohol had also shorter tuberculosis 
co-infection survival time than those who do not smoke and drink alcohol respectively. Patients with 
advanced WHO clinical stages(Stage III and IV), bedridden functional status, low body mass index and 
severe anemic status had shorter tuberculosis co-infection survival time. Place of residence, smoking, 
drinking alcohol, larger family size, advanced clinical stages(Stage III and Stage IV), bedridden 
functional status, CD4 count ( ≤ 200 cells/mm3 and 200–349 cells/mm3), low body mass index and 
low hemoglobin are the factors that lead to shorter tuberculosis co-infection survival time in HIV/
AIDS patients. The findings of the study suggested us to forward the recommendations to modify 
patients’ life style, early screening and treatment of opportunistic diseases like anemia , as well as 
effective treatment and management of tuberculosis and HIV co-infection are important to prevent 
tuberculosis and HIV co-infection.
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Tuberculosis is one of the infectious diseases that affects the lungs and other sites1. Tuberculosis has been the 
main public health problem affecting millions worldwide and it remains the top infectious killer in the world 
causing close to 4000 lives a day2. Around 10.0 million peoples estimated to have developed TB disease in 2019 
worldwide, and there were around 1.2 million TB deaths among HIV-negative people and an additional 208, 
000 deaths among people living with HIV3.

Tuberculosis is the most common opportunistic infection among HIV positive people including those under 
ART treatment follow-up, and it is the major cause of HIV -related death4. UNAIDS report of 2018 showed that 
Sub-Saharan Africa is the hardest hit region of the world, as it has around 70% of all people living with HIV/
AIDS and TB co-infection in the world5. Global Tuberculosis report of 2020 showed that Ethiopia is one the 
countries with the highest TB/HIV co-infection prevalence3.

The HIV virus infects CD4 cells causing reduction of the number of immune cells which causes the body fail 
to control viral multiplication which increases the chance of opportunistic infection with tuberculosis being the 
most common opportunistic infection at HIV diagnosis6. The treatment outcome of HIV-positive following ART 
treatment has remarkably changed with a a reduction of plasma viral copies and an increase of CD4 counts7. It 
had been reported that the ART treatment has reduced the incidence of TB in HIV patients by about 70–90%8. 
Even with the advantages of ART treatment, still HIV/AIDS patients following ART treatment develop TB with 
about prevalence rate of 2.5–30.16.

Though, Tuberculosis can affect everyone, the risk of Tuberculosis infection is higher in people living with 
HIV than in people who are free from HIV9. Studies revealed that certain HIV-infected people develop TB, 
while others do not. This phenomenon shows that being HIV positive is not the only factor for being infected 
with TB10. There are various factors that increase the chance of TB infection among HIV/AIDS patients includ-
ing CD4 cell count and the number of viral loads11,12, household family size, cigarette smoking, baseline CD4 
cell counts, WHO clinical stages, having a history of diabetics13, and etc. However, these factors have not been 
studied in the context of survival analysis, where association between risk factors and time to TB co-infection 
might be of interest.

Majority of the study focused on prevalence and predictors of TB in HIV patients. In order to determine the 
important determinants of TB co-infection in HIV patients, most of the methodologies in the literature used 
logistic regression with outcome being the TB’s viability through follow up time of HIV/AIDS patients taking 
ART treatment10,14,15. In logistic regression, our interest is to study how risk factors were associated with the pres-
ence or absence of a disease( or an event) without taking into account the effect of time16. These approaches help 
to provide odds ratios for significant variables associated with the risk of TB infection but rejects the censoring 
aspects of time-to-event data. Researchers have also used non-parametric survival methods and Cox regression 
models to identify risk factors associated with TB co-infection in HIV/AIDS patients. Non parametric survival 
methods have two disadvantages. Its first disadvantage is that we cannot incorporate covariates, meaning that it is 
difficult to describe how individuals differ in their survival functions. The other disadvantage of non-parametric 
method is that the survival functions are not smooth17,18. A parametric survival model is a model where the 
survival time is assumed to follow a particular distribution such as exponential (a special case of the Weibull), 
Weibull, log-logistic, log-normal and gamma. Therefore, the aim of this study was to model the predictors of time 
to TB co-infection in HIV/AIDS patients following ART treatment using Bayesian parametric survival analysis 
approach based on INLA methodology. There have been advances in computational and modeling techniques 
using Bayesian approach of survival data19. Due to the complex likelihood functions to accommodate censoring, 
survival models are generally very difficult to fit. Bayesian approach to survival analysis may overcome this by 
using the MCMC techniques and other numerical integration methods like INLA20.

The integrated nested Laplace approximation method for approximate Bayesian inference was developed by 
Rue, Martino, and Chopin as an alternative to the MCMC method21. INLA is an alternative method for Bayesian 
inference on latent Gaussian models when the focus is on posterior marginal distributions. It substitutes MCMC 
methods with accurate, deterministic approximations to posterior marginal distributions. Integrated nested 
Laplace approximation provides a fast and exact approach to fitting latent Gaussian models which include many 
statistical models, including survival models22.

Survival models can be written into a latent Gaussian model which allows us to perform Bayesian inference 
using integrated nested Laplace approximations19. Survival analysis consists of a great body of work using latent 
Gaussian models and it is one of the statistical models on which INLA has been successfully applied23,24. The 
main advantage of INLA over MCMC techniques is its simplicity of computation24. Using INLA results are 
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generated within seconds and minutes even for models with a large dimensional latent field, where as MCMC 
algorithm would take hours or even days. The other advantage of INLA is that INLA treats latent Gaussian 
models in a unified way, thus allowing greater automation of the inference process. Even though Bayesian 
approaches to the analysis of survival data can provide a number of benefits, they are less widely used than the 
classical approaches25.

Even though Bayesian approaches to the analysis of survival data can provide a number of benefits, they are 
less widely used than the classical approaches25. Therefore, the motivation to apply Bayesian Survival Analysis 
for this study stems from the above mentioned advantages of Bayesian survival analysis approach over the clas-
sical survival analysis approach.

Methods
Study area and period.  This study was conducted at Jimma Medical Center, South-west of Ethiopia. 
Jimma Medical Center is one of the oldest hospitals in Ethiopia and it is the only teaching referral hospital in 
South-west Ethiopia with 800 bed capacity and serving the majority of peoples living in Jimma city and its sur-
roundings. The total number of population of the study was 3069. The study was conducted from January 2016 
to December 2020.

Data description.  The nature of the data set used for this study was survival data. In the data set, time until 
active TB infection was clinically diagnosed in HIV/AIDS patients was investigated. This study investigated the 
time at which patients were diagnosed and tested positive with TB.

Inclusion and exclusion criteria.  All adult HIV/AIDS patients following ART treatment and who were 
18 years old and above during the study period and TB free at the inception of the study with at least two follow 
up period were included in the study. Patients whose date of TB co-infection was unknown were excluded from 
the study. Also, patients with insufficient information about one of the variables in the study were not included.

Study design, population and sample size.  A data of a retrospective cohort of adult HIV/AIDS 
patients from January 2016 to December 2020 until active TB was clinically diagnosed or until the end of the 
study was collected from ART clinic of Jimma Medical Center, Ethiopia.This study investigated the time at which 
patients were diagnosed and tested positive with TB). In this study, the source population was all adult HIV/
AIDS patients who were 18 years old and above at Jimma Medical Center. There were a total number of 3069 
HIV/AIDS pateints. Among the total patients 421 of the patients were included in the study based on the inclu-
sion and exclusion criteria.

Study variables.  Dependent variable.  The dependent variable for this study was time to active TB infec-
tion in HIV/AIDS patients at Jimma Medical Center. Time is measured in months and it is the difference be-
tween time of ART initiation and TB infection.

Starting time: Starting Timeis the time at which the patient initiates ART treatment.
End time: is the time at which the event occurred, when the HIV patients patients get infected with TB or was 

lost to follow-up before the completion of the study,or completed the study duration without any events(censored 
observations).

Independent variables.  The independent or the predictor variables which were assumed to have effect on time 
to TB infection in HIV/AIDS patients were age, sex, place of residence, family size, alcohol usage status, smoking 
status, marital status, education level, WHO clinical stages, functional status, CD4 count, body mass index and 
hemoglobin level.

Methods of data analysis.  Survival data analysis.  Survival analysis is a collection of statistical tech-
niques for data analysis for which the outcome variable of interest is the time until an event occurs. By time, 
we mean years, months, weeks, or days from the beginning of follow-up of an individual until an event occurs. 
By event, we mean death, disease incidence, relapse from remission, recovery from disease or any designated 
experience of interest that may happen to an individual. Censoring is one of the common features that makes 
survival analysis unique from another statistical analysis. Censoring is present when we have some information 
about a subject’s event time, but we don’t know the exact event time26. The general reasons why censoring might 
occur are: a subject does not experience the event before the study ends, the patient is lost to follow-up during 
the study period, or the patient withdraws from the study.

Survival function.  Assume that the survival time, T, is a continuous random variable. The distribution of T 
can be described by the usual cumulative distribution function

which is the probability that a subject from the population will die (or a specific event of interest for a subject 
has occurred) before time t27. The corresponding density function of T is

F(t) = P(T ≤ t) =

∫ t

0
f (u)du, where; t ≥ 0
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In survival analysis, it is common to use the survival function

The relationship between f(t) and S(t) is given as follows;

Hazard function.  It is also of interest, in analyzing survival data, to assess which periods having high or low 
chances of the event among those still active at the certain time. A suitable method to characterize such risks is 
the hazard function., h(t), defined by the following equation27.

It is the instantaneous rate of failure (experiencing the event) at the time t given that a subject is alive at the time 
t. The definition of the hazard function implies that

A related quantity is the cumulative hazard function, H(t), defined by

And thus,

The Kaplan‑Meier estimator of survival function.  Kaplan-Meier method also known as product limit 
estimator is widely used tool in survival analysis in dealing with censored data. It is a method for time to event 
data at each time point when a particular event takes place. By using this method, we can make comparisons of 
the survival or failure rates between two or more groups in order to see either the effect of particular treatments 
on the survival time of the patients or to show the survivor function risk groups28. To estimate the survivor func-
tion, S(t), without covariates, we can use the Kaplan Meier estimator. This method does not rely on distributional 
assumptions (distribution free method) and hence categoorized as non-parametric technique.

Let there be n individuals with observed survival times t1, ..., tn and r be death times amongst the individu-
als, where r ≥ n , j = 1,…,r. The r ordered death times are t(1) < t(2) < ... < t(r) . Let nj denotes the number of 
individual who are alive just before time t(j) , including those who are about to die at this time, and let dj denotes 
the number who die at this time. The Kaplan-Meier estimator of the survival function at any time in the kth time 
interval from t(k) to t(k+1) , k = 1,…, r is given by29.

Parametric survival models.  In a parametric survival models, survival time is assumed to follow a known 
distribution30. Parametric models play an important role in Bayesian survival analysis, since many Bayesian 
analyses in practice are carried out using parametric models and parametric modeling offers straightforward 
modeling and analysis techniques20.

Ethics approval and consent to participate.  Letter of ethical clearance was obtained from Department 
of Statistics of Jimma University and submitted to Jimma Medical Center to get permission to undertake the 
research. This study was developed in accordance with established legislation and complies with the norms of 
good clinical practice, and informed consent was being not necessary as personal identifying information was 
kept separate from the research data.

Parametric proportional hazard models
Let h(t/x)) be the hazard function at time t for a subject given the covariate vector x = ( x1, . . . , xp)T . The basic 
model proposed by Cox is as follows:

f (t) =
∂

∂t
F(t)

S(t) = P(T ≥ t) = 1− F(T), t ≥ 0

f (t) =
∂

∂t
F(t) =

∂

∂t
(1− S(t)) =

−∂

∂t
S(t)

h(t) = lim
S→0

P(t ≤ T ≤ t + s/T ≥ t)

S

h(t) =
f (t)

S(t)
= −

∂

∂t
log(S(t))

H(t) =

∫ t

0
h(u)du = −log(S(t))

S(t) = exp(−H(t)) = exp

(

−

∫ t

0
h(u)du

)

Ŝ(t) =

k
∏

j=1

(

nj − dj

nj

)
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where h0(t) is the baseline hazard function and βi ’s are the unknown regression parameters to be estimated. 
In parametric proportional hazard model, the baseline hazard function h0(t) is assumed to follow a specific 
distribution when a fully parametric PH model is fitted to the data. The hazard ratio is hence given by HR = 
exp

(

β1X1 + β2X2 + · · · + βpXp

)

.

Accelarated failre time models.  Although parametric PH models are very useful to analyze survival 
data, there are relatively few probability distributions for the survival time that can be used with these models31. 
In these situations, the accelerated failure time model (AFT) is an alternative to the PH model for the analysis of 
survival time data. Under AFT models we measure the direct effect of the explanatory variables on the survival 
time instead of hazard, as we do in the PH model. This characteristic allows for an easier interpretation of the 
results because the parameters measure the effect of the covariates on the survival time.

In accelerated failure time (AFT) models, the natural logarithm of the survival time, log(t), is expressed as a 
linear function of the covariates, which yields therefore a linear model:

We interpret the effect of the AFT model as the change in the time scale by a factor of exp(xjβ ). Based on 
whether this factor is greater or less than 1, survival time is interpreted to either accelerate or decelerate. Accel-
erated failure time does not imply a positive acceleration of time with the increase of a covariates but rather a 
deceleration, or, in other words, an increase in the expected waiting time until failure. AFT models have the 
opposite sign from similar estimates in proportional hazard models, due to the fact that the PH models predict 
the hazard and the AFT model predicts time.

An advantage of the AFT approach is that the effect of the covariates is described in absolute terms (i.e. num-
ber of months or years) instead of in relative terms (i.e. a hazard ratio). The acceleration factor is the central meas-
ure of association obtained in AFT models and allows you to evaluate the effect of covariates on the survival time.

Bayesian modeling approach for survival data.  The Bayesian paradigm is based on specifying a 
probability model for the observed data D, given a vector of unknown parameters θ , leading to the likelihood 
function L(θ/D). Then we assume that θ is random and has a prior distribution denoted by π(θ) . Inference 
concerning θ is then based on the posterior distribution20 , which is obtained by Bayes’ theorem. The posterior 
distribution of θ is given by

where Θ denotes the parameter space of θ.
The quantity m(D) =

∫

Θ
L(θ/D)π(θ)dθ is the normalizing constant of π(θ/D) , and is often called the 

marginal distribution of the data or the prior predictive distribution. In most models and applications, m(D) 
does not have an analytic closed form, and therefore π(θ/D) does not have a closed form. The Bayesian survival 
analysis approach considers the parameters of the model as random variables and requires that prior distribu-
tions specified for them and data are considered as fixed32.

Likelihood function in Bayesian survival analysis.  Suppose we observe n independent vectors of ( Ti , 
δi ), where Ti is time to the event and δi is indicator variable telling us whether Ti is censored or not, i.e, Ti = 0 for 
censored observation(δi = 0 ) and Ti = 1 for uncensored observation(δi = 1).

The likelihood function of the set of unknown parameters θ in the presence of right censoring is given as

The integrated nested laplace approximation methodology for Bayesian inference.  For long 
time, Bayesian statistical inference has relied on MCMC methods to compute the joint posterior distribution 
of the model parameters which is usually computationally very expensive33. An alternative approach and fast 
estimation methods to MCMC which allows user to easily perform approximate Bayesian inference using Inte-
grated Nested Laplace Approximation was proposed by Havard Rue, Martino, and Chopin19. INLA computes 
posterior marginals for each component in model, from which posterior expectation and standard deviations 
can easily be found.

The integrated nested laplace approximation procedure.  In order to approximate the posterior 
marginals of π(xi/y),π(θ/y) and π(θj/y) the latent Gaussian models is used19. Latent Gaussian models are 
subset of all Bayesian additive models with a structured additive predictor say ηi . In these models, the observed 
variable yi is assumed to belong to an exponential family, where the mean µi is linked to this structured additive 
predictor ηi through a link function g(.), so that g(µi) = ηi . The structured additive predictor ηi accounts for 
effects of various covariates in an additive way:

h(t/x) = h0(t)exp(β1x1 + · · · + βpxp)

log(ti) = µ+ β1x1i + β2x2i + · · · + βpxpi + σεi = Xiβ + zi

π(θ/D) =
L(θ/D)π(θ)

∫

Θ
L(θ/D)π(θ)dθ

L(θ/D) =

n
∏

i=1

f (ti , θ)
I(δi=0) ∗ S(ti , θ)

I(δi=1) ∗ π(θ/D)
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Here, the 
{

f j(.)
}

 are unknown functions of covariates u, the {βk} represent the linear effect of covariates z and 
the εi ’s are unstructured terms. A Gaussion prior is assigned to α,

{

f j(.)
}

, {βk} and εi . We denote π(./.) as the 
conditional density of its arguments, and let x denote the vector of all n Gaussian variables ηi ,α,

{

f j(.)
}

 and 
{βk} , and θ denotes the vector of hyper-parameters, which are not necessarily Gaussian. The density π(x/θ1) is 
Gaussian with(assumed) zero mean and precision matrix Q(θ1) with hyperparameter θ1.

The distribution for the nd observational variables y = 
{

yi : iεI
}

 is denoted by π(y/x, θ2) and we assume that 
{

yi : iεI
}

 are conditionally independent given x and θ2 . For simplicity, we denote by θ = 
(

θT1 , θ
T
2

)T with dim(θ ) 
= m. The posterior then reads( for non singular Q(θ)),

The imposed linear constraints(if any) are denoted by Ax = e for a kxk matrix A of rank k. The main aim is 
to approximate the posterior marginals of the latent field, π(xi/y) and the posterior marginals of the hyperpa-
rameters , π(θ/y) and π(θj/y) . We can write the posterior marginal of interest as

The importance of INLA is to use the above form to construct nested approximations, as this approach makes 
Laplace approximations very accurate when applied to latent Gaussian models.

Here, π̃(./.) is an approximated( conditional) density of its arguments. Approximations to π(xi/y) are com-
puted by π(θ/y) and π(xi/θ , y) and using numerical integration to integrate out θ . The approximation of π(θj/y) 
is computed by integrating out θ−j from π̃(θ/y) . The posterior marginal π(θ) of the hyperparameters θ is approxi-
mated using a Laplace approximation

Prior distributions in INLA.  Bayesian statistical inference depends on the posterior distribution which is 
obtained by updating the prior beliefs by new evidence. Prior distribution can be broadly classified into non-
informative, weakly informative and informative prior distributions. Non-informative prior distributions, also 
known as objective prior distributions, are designed to have minimal impact on the posterior distribution so that 
the data alone can be the source of inference34. The non-informative prior distribution often produce the same 
results as maximum likelihood estimates. On the other hand, the informative prior distributions that aim to 
construct a prior distribution that reflect the current knowledge on the values of the parameters and the uncer-
tainties that surround the knowledge about the parameters in question35. In INLA, it is assumed that fixed effects 
follow Gaussian distribution with mean zero and small number of precision matrix Q(θ1 ) and only the param-
eters in the precision matrix of the random effect need a prior which was considered as a hyper-parameter36. For 
this study, Gaussian prior distribution (non-informative) with mean zero and variance equal to 1000(precision 
equal to 0.001) was used for the fixed effects and the intercept21. And for hyper-parameters a non-informative 
prior of Gamma distribution prior is a common non -informative prior to be assigned22. In INLA, the Latent 
component of the model, ηi = β0 + β1z1 + · · · + βpzp must follow a Gaussion distribution22. In this study, it 
was assumed that fixed effect(coefficients) associated with covariates have a Normal distribution with mean 
0 and variance 102 , i.e, βp , p = 0,…, i.e, βp ∼ N(0, 102)20. Then for this study, to complete the model we have 
assigned a non-informative Gamma prior for for the hyperparameter of the model τi ∼ Ŵ(a, b) and α ∼ Ŵ(a, b) 
with a =1 and b = 0.001 which is similar with prior distribution used by many researchers worked on Bayesian 
survival analysis19–21.

Bayesian parametric survival models.  Exponential model.  The exponential model is the most fun-
damental parametric model in survival analysis20. Suppose we have independent identically distributed (i.i.d.) 
survival times t = ( t1, t2, . . . , tn)’, each having an exponential distribution with parameter � . Denote the censor-
ing indicators by δ = ( δ1, δ2, . . . , δn)’, where δi = 0 if Ti is right censored and δi = 1 if Ti is a failure time. Let 

ηi = α +

nf
∑

j=1

f (j)(uji)+

nβ
∑

k=1

βkZki + ε

π
(

x, θ/y
)

= π(θ)π(x/θ)
∏

iεI

π(yi/xi, θ)

π(xi) =

∫

π(xi/θ , y)π(θ/y)dθ

π(θj) =

∫

π(θ/y)dθ−j

π̃(xi/y) =

∫

π(xi/θ , y)π̃(θ/y)dθ)

π̃(θj/y) =

∫

π̃(θ/y)dθ−j

π̃(θ/y) ∝
π(x, θ , y)

π̃G(x/θ , y)
| x = x∗(θ)
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f (ti/�) = �exp(−�ti) denote the density for ti , S(ti/�) = exp(−�ti) denotes the survival function. We build a 
regression model by introducing covariates through � , and write �i = ϕ(x′iβ) , where xi’is a p x 1 vector of co-
variates, β is a p x 1 vector of regression coefficients, ϕ(.) and is a known functionand D = (n,t,X, δ ) denotes the 
observed data for regression model Using these, we get the likelihood function19.

Suppose we specify a normal prior for β with mean µ0 and variance σ 2
0  . Then the posterior distribution of 

β is given by

where π(β/µ0, σ0) is the normal density with mean µ0 and variance σ 2
0 .

Weibull model.  The Weibull model is perhaps the most widely used parametric survival model20. Suppose we 
have independent identically distributed survival times t = ( t1, t2, ..., tn)’, each having a Weibull distribution, 
denoted by ω(α, γ ) . It is often more convenient to write the model in terms of the parameterization � = log(γ ) , 
leading to f (ti/α, �) = αtα−1

i exp(�− exp(�)tαi ) Let S(ti/α, �) = exp
(

−exp(�)tαi
)

 denote the survival function. 
We can write the likelihood function of ( α, � ) as

Where d = 
∑n

i=1 δi and δ is the indicator variable taking value 1 if ti is failure time and 0 if ti is right censored.
To build the Weibull regression model, we introduce covariates through � and write �i = x′iβ . Where xi is a 

px1 vector of covariates, β is a px1 vector of regression coefficients. Assuming a normal prior with parameters 
(

µ0, σ
2
0

)

 for � and gamma prior with parameters (α0, κ0) , the joint posterior distribution of (α, �) is given by

Where D = (n, t, x, δ) denote the observed data for regression model.

Log‑logistic model.  The log-logistic model possesses a rather supple functional form37. The Log-logistic distri-
bution is among the parametric survival models where the hazard rate initially increases and then decreases. If 
we have independent identically distributed survival times t =(t1, t2, ..., tn)’, each having an log-logistic distribu-
tion, denoted by T ∼ LL(α, �) , with density

for α > 0, � > 0and t ≥ 0.
And, the survival function is given by

for t > 0.
We can write the likelihood function of ( α, � ) as

Where d = 
∑n

i=1 δi and Where δ is the indicator variable taking value 1 if ti is failure time and 0 if ti is right 
censored.

To build the regression model, we introduce covariates through � , and write �i = x′iβ . Where x′i is px1 vector 
of covariates, and β is px1 regression coefficients. If we assume gamma prior with parameters ( α0, κ0 ) for α , we 
will have the following joint posterior

L(β/D) =

n
∏
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Log‑normal model
Another commonly used parametric survival model is the log-normal model20. For this model, we assume that 
the logarithms of the survival times are normally distributed. If ti has a log-normal distribution with parameters 
( µ, σ ) , denoted by ιN(µ, σ) , then

The survival function is given by

We can thus write the likelihood function of ( µ, σ ) as

Then,

To construct the regression model, we introduce covariates through µ , and write µi = x′iβ . Assuming 
β/τ ∼ Np(µ0, τ

−1ς0) , the joint posterior for β , τ is given by

Gamma model.  The gamma model is a generalization of the exponential model20. For this model, 
ti ∼ ζ(α, �) and its density function is given by:

The survival function is given by

We can thus write the likelihood function of ( α, � ) as

To construct the regression model, we introduce covariates through � , and write �i = x′iβ . Assuming 
β ∼ N(µ0, σ

2
0 ) , we are lead to the joint posterior

Where, IG = 1
Ŵ(α)

∫ tiexp(�)
0 uα−1exp(−u)du is the incomplete gamma function.

Model comparison methods.  Integrated Nested Laplace Approximation computes a number of Bayes-
ian criteria for model assessment and model selection38. Model selection criteria will be of help when selecting 
among different models. The following methods of model selection techniques was used in this study.

π(β ,α/D) ∝ αd(nα + α0 − 1)
{

exp(xiβ)+ d(α − 1)exp(ti)− dexp(tαi + �
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}
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Marginal likelihood
The marginal likelihood of a model is the probability of the observed data under a given model39. The marginal 
likelihood approximation provided by INLA is computed as.

Information‑based criteria (DIC and WAIC).  The deviance information criterion (DIC) is a popular 
criterion for model choice40. It takes into account goodness-of-fit and a penalty term that is based on the com-
plexity of the model via the estimated effective number of parameters. The DIC is defined as

where, D(.) is the deviance, x̂ and θ̂ the posterieor expectations of the latent effects and hyperparameters, respec-
tively, and pD is the effective number of parameters. The effective number of parameters pD can be computed as 

The Watanabe-Akaike information criterion, also known as widely applicable Bayesian information criterion, 
is similar to the DIC but the effective number of parameters is computed in a different way. The final formula 
to calculate WAIC is.

Where, 
∑n

i=1 logppost(yi) is the sum of predictive density for each data point and pD is the effective number of 
parameters.

Model diagnosis.  Diagnosis for the accuracy of INLA approximation for the models.  The Kullback-Leibler 
divergence (kld): This value describes the difference between the normal approximation and the simplified 
Laplace approximation. Small values indicate that the posterior distribution is well-approximated by a normal.

Effective number of parameters(pD): The posterior summary results from INLA also contain, effective number 
of parameters which is another measure of the accuracy of approximation. In particular, if the effective number 
of parameters is low compared to the sample size, then one expects the approximation to be good.

Goodness of fit test.  A two types of “Goodness of fit” reported by INLA are:
Conditional predictive ordinates (CPO) Conditional predictive ordinates are a cross-validatory criterion for 

model assessment41. It is computed for each observation as

Unusually small or large values of CPOi indicate a surprising observation.
Predictive integral transform (PIT): The predictive integral transform (PIT) measures the probability of a new 

value to be lower than the actual observed value for each observation42. It is computed as

An unusual large or small value indicates possible outliers.
Due to how π̃(xi/y−1, θ) are computed there may be cases where this computation fails due to inaccurate tail 

behavior of π̃(xi/yi , θj) . To monitor the reliability of the CPO and PIT values computed, failure variable computed 
for each i (or yi) is defined as follows.

•	 If π̃(xi/yi , θj) is monotone increasing or decreasing, then failure is set to 1 and then π̃(xi/yi , θj) is set to the 
0-function. In this case, π̃(xi/yi , θj) is known to be just wrong.

•	 If π̃(xi/yi , θj) is has a (local) maximum either at minxi or at maxx i, then π̃(xi/yi , θj) is set to zero in that part 
where π̃(xi/yi , θj) is decreasing (starting from min(xi ) or increasing (starting from maxxi . When the expected 
failure is 0 then the computed value of CPO and PIT seems to be reliable, and when the expected failure is 1 
then the computed value of CPO and PIT is known to be completely unreliable.

R‑INLA.  The statistical analysis was performed using R-INLA software package. R-INLA which is available at 
http://​www.r-​inla.​org/ the R package through which the Bayesian inference with INLA methodology is imple-
mented.

Results
Summary of descriptive statistics results.  A total of 421 adult HIV/AIDS patients at ART clinic of 
Jimma Medical Center, Ethiopia were included in the analysis. During the follow-up period, 111(26.37%) of the 
study subjects had experienced the event(had been co-infected with TB.

The descriptive results of demographic and clinical characteristics of patients were presented in Table 1. The 
percentage of female patients who had been co-infected with TB was 53.15% which is larger compared to male 

π̃(y) =

∫

π(θ , x, y)

π̃G(x/θ , y)
|x=x∗(θ)dθ

DIC = D(x̂, θ̂ )+ 2pD

pD = E[D(.)] − D(x̂, θ̂ )

WAIC = −2

n
∑

i=1

logppost(yi) + 2pD

CPOi = π(yi/y−i)

PITi = π(ynewi ≤ yi/y−i)

http://www.r-inla.org/
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patients. About 76.58% of the HIV patients with TB cases were urban residents. Among the patients, who had 
TB co-infection, about 36.94% were smokers and 57.67% were alcoholics. Patients with no education accounted 
for 14.41% of experiencing TB , patients with primary education accounted for 22.52%, patients with secondary 
education accounted for 39.63%, patients with Tertiary education accounted for 18.91%, and patients with educa-
tion level of Diploma and above accounted for 4.50% of experiencing TB during follow up time. Among 111 HIV 
patients, who had TB co-infection, 16.22% of them are in WHO clinical I, 19.82% were in WHO clinical stage 
II, 27.02% were in WHO clinical stage III , and 36.94% were in WHO clinical stage IV. About 28.83%, 28.83%, 
and 42.34% co-infection of TB were occurred in working, ambulatory and bedridden HIV patients respectively.

Kaplan‑Meier estimate of survival functions.  From the plot of the overall Kaplan-Meier survival curve 
given in the Fig. 1 below, it can be seen that, a large number of TB co-infection recorded at the earlier time of the 
initiation of ART and there is a decreasing pattern of TB co-infection through the follow up period. In order to 
explore differences between TB co-infection free survival time between or among groups, separate KM survival 
function curves were constructed for categorical covariates and results are given in Figs. 2, 3, 4 and 5. In general, 
if the pattern of one survivor-ship function is above the other, it means the group defined by the upper curve had 
a better survival than the group defined by the lower curve.

Table 1.   Descriptive results of the demographic and clinical characteristics of patients. Significant values are 
in [bold].

Covariates Category

Patient Status

TotalCensored Event

Sex Male 128(71.1%) 52(28.9%) 180

Female 182(75.5%) 59(24.5%) 241

Residence Urban 159(65.2%) 85(34.8%) 244

Rural 151(85.3%) 26(14.7%) 177

Smoking No 256(78.5%) 70(21.5%) 326

Yes 54(56.8%) 95(43.2) 95

Alcohol No 204(81.3%) 47(18.7%) 251

Yes 106(62.4%) 64(37.6%) 170

Education level No formal education 42(72.4%) 16(27.6%) 58

Primary education 71(74.0%) 25(26.0%) 96

Secondary education 105(70.5%)) 44(29.5%) 149

Tertiary education 56(72.7%) 21(27.3%) 77

Other 36(87.8%)) 5(12.2%) 41

Family size ≤ 2 173(83.6%) 34(16.4%) 207

3-4 116(69.5%) 51(31.5%) 167

≥ 5 21(44.7%) 26(55.3%) 47

Marital status Single 43(63.23%) 25(36.77%) 65

Married 152(76.8%) 46(23.2%) 198

Widowed/Divorced 115(74.2%) 40(25.8%) 155

WHo disease stage I 98(84.5%) 18(15.5%) 116

II 80(78.4%) 22(21.6%) 102

III 80(72.7%) 30(27.3%) 101

IV 52(55.9%) 41(54.1%) 93

Functional status Working 148(82.2%) 32(17.8%) 180

Ambulatory 90(73.8%) 32(26.2%) 122

Bedridden 72(60.5%) 47(39.5%) 119

CD4 count < 200 71(61.2%) 45(38.8%) 116

200–349 71(64.5%) 39(35.5%) 110

350–499 70(84.3%) 13(15.7%) 83

≥ 500 98(87.5%) 14(12.5%) 112

BMI Underweight 57(55.3%) 46(44.7%) 103

Normal 190(82.3%) 41(17.7%) 231

Overweight 63(72.4%) 24(17.6%) 87

Hemoglobin level Anemic 18(45.0%) 22(55%) 40

Moderate anemic 59(70.2%) 25(29.8%) 84

Normal 233(78.5%) 64(21.5%) 297

Total 310(78.37%) 111(26.37%) 421(100%)
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Comparison of Bayesian parametric survival models.  Parametric AFT survival models(Exponential, 
Weibull, Log-logistic, Log-normal and Gamma modes) based on Bayesian paradigm considering all covariates 
were fitted for the data. In order to compare and select the best model among different parametric models, DIC, 
WAIC and Marginal likelihood of the models were used. The model with the smallest values of DIC and WAIC, 
and largest value marginal log-likelihood is selected as the best model. The five parametric survival models with 
their corresponding values of DIC, WAIC and Marginal LIkelihood values are displayed in Table 2. The Bayesian 
Log-logistic AFT model was found to be the best fitting model for our data set as it has the smallest values of DIC 
and WAIC, and has the largest values of marginal loglikelihood among the five models .
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Figure 1.   The overall Kaplan-Meier survival curve estimate of TB free co-infection survival time of HIV/AIDS 
patients.
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Assessment of factors associated with time to active TB co‑infection in HIV/AIDS 
patients
Results of Bayesian Log‑logistic AFT model.  Table  3 shows the results of the posterior summary 
results of Bayesian Log-logistic AFT model. The decision about the significance of the variables is based on the 
95% Credible Interval for the posterior mean of the coefficients.

Based on Bayesian Log-logistic AFT model results, it appeared that residence, smoking status, alcohol con-
sumption status, WHO clinical stages, functional status, family size, CD4 count, BMI and hemoglobin level of 
the patients were significant risk factors associated with time to TB co-infection of HIV/AIDS patients at Jimma 
University Medical Center. The interpretation of the estimated posterior mean of parameters of the model was 
done using estimated acceleration factor(γ̂ = exp(βj ). In order to decide the significance of the covariates in the 
model, the 95% credible interval was used. The factors whose credible intervals for posterior mean of parameters 
contained 0, or whose credible intervals for acceleration factor contained 1, implied that these factors were not 
significant. The results of the final model can be written as:

where, T represents time to TB co-infection for each subject. I is an indicator variable for categories of variables 
where I(.=1) is considered as a reference category.

In Log logistic AFT model, the positive estimated posterior β coefficients indicate a longer TB co-infection 
free survival time, where as the negative estimated posterior β coefficients indicate shorter TB co-infection free 
survival time for the patients.

The estimated acceleration factor for patients who reside in urban was estimated to be γ̂ = exp(− 1.258) = 
0.2842 with 95% CI of [0.1571, 0.5035] . This means that, keeping all other factors constant the expected TB co-
infection free survival time of patients who reside in urban area decreases by a factor 0.2842 as compared to 
patients residing in rural area.

The estimated acceleration factor of smoker patients was 0.51237(95% CI: 0.2814, 0.9361]. This indicates 
that patients who smoke had shorter TB co-infection free survival time, compared to patients who were not 
smokers. This is the same with patients who drink alcohol with an estimated acceleration factor of 0.4151(95% 

log(Ti) = 6.460− 1.258I(Residence=2) − 0.667I(Smoking=2) − 0.879I(Alcoholics=2) − 0.472I(Clinstages=3) − 0.849I(Clinstages=4)

− 0.672I(Funstat=3) − 0.980I(Famsize=3−4) − 1.131I(Famsize≥5) − 1.534I(CD4=3) − 0.980I(CD4=4) − 0.950I(BMI=2)

− 1.192I(Hgb=2)
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Figure 3.   Kaplan-Meier survival curves for TB free co-infection free survival time of patients by smoking status 
and alcohol status of patients.
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CI: 0.2324, 0.7408). Accordingly, it can be said that patients who drink alcohol had shorter time to develop(to 
be co-infected) with TB.

It was found that advanced clinical stages(stage III(γ̂ = 0.4278[95% CI: 0.2009, 0.8932]) and stage IV(γ̂ = 
0.3308[0.1556, 0.6900]) led to a decrease in TB co-infection free survival time. Patient with bedridden functional 
status(γ̂ = 0.5107(95% CI of [0.2750, 0.9455]) had also a shorter TB co-infection free survival time, when com-
pared to patients with working functional status at baseline. CD4 counts(≤ 200cells/mm3 with an acceleration 
factor of 0.2156[95% CI:0.0948, 0.4742] and 200− 349cells/mm3 with an acceleration factor of 0.3753[95% 
CI:0.1620, 0.8453] also found to shorten TB co-infection free survival time, as compared to patients with CD4 
counts ≥ 500cells/mm3.

When we look at relationship between family size and time to TB co-infection, those patients with family 
size of 3–4(γ̂ = 0.3933[95% CI:[0.2137, 0.7174] and family size of ≥ 5(γ̂ = 0.3227[95%CI : 0.1518, 0.6845] had 
shorter TB co-infection free survival time than those with family size of ≤ 2.

The estimated acceleration factor for underweight patients was 0.3667[95% CI: 0.2141, 0.6955], and the esti-
mated acceleration factor of severe anemic patients was estimated to be 0.3036[95% CI: 0.1408, 0.6564]. Subjects 
who were underweight and severely anemic had shorter TB co-infection free survival time.

It can also be seen that patients with low body mass index and patients with severe anemic status was found 
to be the significant risk factors for TB co-infection in HIV patients. The estimated acceleration factor for under-
weight patients was 0.3667 with 95% CI of [0.2141, 0.6955], and the estimated acceleration factor of severe anemic 
patients was estimated to be 0.3036 with CI of [0.1408, 0.6564]. Thus, keeping all other factors constant, the 
TB co-infection free survival time of underweight HIV patients decreases by a factor of 0.3667 as compared to 
patients with normal weight,and, the TB co-infection free survival time of severe anemic HIV patients decreases 
by a factor of 0.3036 as compared to patients with normal anemic status.

Model diagnosis results.  The Kullback-Leibler divergence (kld): For the model above the values of kld 
for each coefficient was zero which means the marginal posterior densities of regression coefficients were well 
approximated by the Normal distribution.

Effective number of parameters(pD): In this study, the ratio of sample size (421) and effective number of 
parameters (28.93) was found to be 14.55, suggesting a reasonably good approximation. The ratio can be inter-
preted as the number of equivalent replicates corresponding to the number of observations for each expected 
number of effective parameters.
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Figure 4.   Kaplan-Meier survival curves for TB free co-infection free survival time of patients by disease stages 
and functional status of patients.
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Discussions
Among the study participants who fulfilled the inclusion criteria, about 26.37% of subjects had been co-infected 
with Tuberculosis. The proportion of of TB co-infection in this study cohort is smaller compared to other study 
settings in different parts of Ethiopia in which it was found to be 62.3% and 40.1% in a retrospective study con-
ducted in seven ART clinics located at Addis Ababa and in North-east Ethiopia with respectively.The possible 
reason for finding lower proportion of TB co-infection in this study setting might be due to the fact that there 
are disparities in environmental factors. The discrepancy may also be attributed to TB/HIV co-infection manage-
ment. The proportion of TB co-infection observed in this study is consistent with the findings from Noth-west 
Ethiopia(26.4%)18, Amhara region(27.7%)10.

The findings of this study showed that patients’ residence place were significantly associated with TB co-infec-
tion free survival time of HIV/AIDS patients. Patients who reside in urban areas are more likely to be infected 
with TB as compared to patients residing in rural areas. TB co-infection free survival time for patients who reside 
in urban areas were found to be shorter than those who reside in rural areas. This result is consistent with the 
report of the retrospective study conducted by Beshir et al. at Adama Referral Hospital and Medical College, 
Oromia, Ethiopia43. They reported residence place as one of the significant risk factors of TB co-infection in HIV/
AIDS patients. This may be due to the fact that there is overcrowding of people in urban areas than in the rural 
areas. However, the finding of this study is inconsistent with those of other studies undertaken in Ethiopia13,18,44.
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Figure 5.   Kaplan-Meier survival curves for TB free co-infection survival time of patients by CD4 category, BMI 
and Hemoglobin level of patients.

Table 2.   Parametric survival models with their corresponding DIC, WAIC and Marginal log-likelihood.

Models pD DIC WAIC Marginal loglikelihood

Exponential 32.36 664.26 676.03 − 432.32

Weibull 29.97 659.73 667.72 − 427.32

Log-logistic 27.99 655.65 659.64 − 421.66

Log-normal 25.05 663.06 663.69 − 432.07

Gamma 27.68 664.19 670.29 − 430.14
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It was found that Smoker and alcohol user patients had shorter TB co-infection free survival time than those 
who are not smoker and non-alcohol users. The result of the study agrees with the result reported by Anye et al. 
based on four year retrospective data of 1077 HIV patients in the Bameda regional hospital of Cameroon45. Our 
result also agrees with report of studies undertaken in Ethiopia18,44,46. Their results suggested that being smoker 
is significantly associated with TB co-infection free survival time in HIV/AIDS patients.This similarity might be 
due to the fact that the unhealthy life style, like smoking, alcohol consummations expose the patients to several 
opportunistic infections by facilitating the decline of patients’ immunity and shortening their opportunistic 
infection free survival time.

The result of our study suggested that baseline clinical stages were one of the clinical factors associated with 
TB co-infection free survival time of HIV/AIDS patients.Patients with advanced WHO clinical stages(stage III 
and stage IV) had shorter TB co-infection survival time than those with WHO clinical stage I. According to 
the findings of the study conducted by Patients with WHO clinical stages III and IV are more likely to be co-
infected with TB than those with clinical stage I. This finding supports the findings of the study undertaken by 
Kebdeet al.17 being in advanced clinical stages is associated with higher risk of developing TB compared WHO 
clinical stages I and II17. Our finding also coincides with the study conducted in Amhara region of Ethiopia by 
Aweke et al.10. This might be due to the fact that once patients get into late stages, the immunity of an individual 
declines, making them infected with TB.

Table 3.   Summary results of Bayesian Loglogistic AFT model.

Covariates Categories Mean St. Dev.
Acceleration
factor(γ̂)

95% Credible
Interval

Age Intercept 6.460 0.937 [4.658, 8.333]

Continuous 0.007 0.014 1.0070 [− 0.020, 0.035]

Sex Female − 0.189 0.285 0.8278 [− 0.748, 0.373]

Male(Ref.)

Residence Urban − 1.258 0.297 0.2842 [− 1.851, − 0.686]*

Rural(Ref.)

Smoking Yes − 0.667 0.308 0.5137 [− 1.268,− 0.061]*

No(Ref.)

Alcoholics Yes − 0.879 0.295 0.4151 [− 1.459, − 0.300]*

No(Ref.)

Education levels No education(Ref.)

Primary education 0.033 0.427 1.0335 [− 0.811, 0.866]

Secondary education 0.102 0.398 1.1074 [− 0.688, 0.874]

Tertiary education 0.610 0.469 1.8404 [ − 0.308, 1.531]

Diploma & above 1.055 0.670 2.8720 [− 0.213, 2.417]

WHO clinical stages Stage I(Ref.)

Stage II − 0.472 0.408 0.6238 [− 1.278, 0.323]

Stage III − 0.849 0.380 0.4278 [− 1.605, − 0.113]*

Stage IV − 1.106 0.379 0.3308 [− 1.860, − 0.371]*

Functional status Working(Ref.)

Ambulatory − 0.502 0.345 0.6053 [− 1.181, 0.173 ]

Bedridden − 0.672 0.315 0.5107 [− 1.291, − 0.056]*

Family size ≤ 2(Ref.)

3–4 − 0.933 0.308 0.3933 [− 1.543, − 0.332]*

≥ 5 − 1.131 0.384 0.3227 [− 1.885, − 0.379]*

CD4 count < 200 − 1.534 0.410 0.2156 [− 2.356, − 0.746]*

200–349 − 0.980 0.421 0.3753 [− 1.820, − 0.168]*

350–499 − 0.220 0.479 0.8025 [− 1.157, 0.723]

≥ 500(Ref.)

BMI Underweight − 0.950 0.300 0.3867 [− 1.541, − 0.363]*

Normal(Ref.)

Overweight − 0.427 0.350 0.6525 [− 1.110, 0.264]

Marital Status Married(Ref.)

Single − 0.543 0.389 0.5810 [− 1.300, 0.224]

Widowed/Divorced − 0.120 0.307 0.8869 [− 0.722, 0.482]

Hemoglobin Severe anemic − 1.192 0.392 0.3036 [− 1.960 , − 0.421 ]*

Moderate anemic 0.080 0.354 1.0832 [− 0.604, 0.785]

Normal(Ref.)
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Similarly, in this study, patients’ functional status at baseline was found to be the predictor of TB co-infection 
free survival time of HIV/AIDS patients. This result is consistent with the report of the study conducted by Aemro 
et al. at Debra Markos referral hospital, Northwest Ethiopia47. Accorging to our study, patient with bedridden 
functional status at baseline had shorter TB co-infection free survival time compared to patients with working 
functional status at baseline. This might be due to the fact that lack of physical activity exposes them to many 
opportunistic diseases, including TB.

The findings of this study and the results of other studies conducted in Ethiopia and other countries indicated 
that, HIV patients with a lower CD4 counts at a baseline are at a higher risk of co-infection with TB10,18,45. HIV 
patients with CD4 counts(≤ 200 and 200–349 cell/mm3 had shorter TB free co-infection survival time. This 
might be attributed to the fact that CD4 count is an indicator of an individual immune function in HIV patients.

This study had revealed that HIV/AIDS patients who were underweight were at a risk of shorter TB co-
infection free survival time. This result was consistent with the findings of study done by Ahmed et al. and 
Alemu in Ethiopia18,44. The possible reason for this might be due to the fact that low BMI is an indicator of 
malnutrition which leads HIV patients to increased catabolism, loss of appetite which further increase the risk 
of infection with TB.

The findings of this study also showed that HIV patients with severe anemic status were responsible for 
decreasing TB co-infection free survival time of HIV patients compared to patients with normal anemic status.
This finding is consistent with the result of the study conducted by Alemu et al., Brenan et al., Kebede et al. in 
Adama Hospital43, South Africa48, Benishangul Gumuz region, Northwest of Ethiopia17. This might be due to 
the fact that anemia leads to complications of both TB and HIV infection.

This study employed Bayesian parametric AFT survival models(Exponential, Weibull, Log-logistic, Log-
normal and Gamma) to model time to TB co-infection in HIV/AIDS patients using INLA methodology. The 
main advantage of AFT survival models is that AFT model directly models the time to event data rather than 
hazard ratios, which makes the interpretation of the results clinically relevant. The model selection result of this 
study indicated that the log-logistic model is the best fitting model for the data set. Log-logistic model is more 
convenient survival model when dealing with censored data due to the fact that it has a more manageable shape37.

Conclusion
Bayesian survival analysis approach with INLA methodology was applied to fit the parametric survival models 
to our data set. Among the parametric AFT survival models, Bayesian Log-logistic AFT model was found to be 
the best fitting model for our data set.

Place of residence, smoking, drinking alcohol, larger family size, advanced clinical stages(Stage III and 
Stage IV), bedridden functional status, CD4 count(≤ 200 cells/mm3 and 200–349 cells/mm3 , low BMI and low 
hemogilobin are the factors that lead to shorter TB coinfection survival time in HIV/AIDS patients.

Recommendation.  The findings of the study suggested us to forward the recommendations to modify 
patients’ life style, early screening and treatment of opportunistic diseases like anemia , as well as effective treat-
ment and management of TB/HIV co-infection are important to prevent TB/HIV co-infection.

Limitation of the study.  The limitation of this study is that the results in this study was based Jimma Medi-
cal Center only. We have not considered other hospitals in Jimma town. The other limitations of this study is 
that some important factors like ART adherence status, ART treatment regimen, diabetes mellitus, viral load and 
hypertension that could potentially affect TB and HIV co-infection had not been considered. The study also does 
not take into account the types of tuberculosis. Also, ur results based on data of ART clinic of Jimma Medical 
Center need to be substantiated by similar survival studies from other parts of Ethiopia to give a comprehensive 
picture of TB and HIV co-infection in the country. Regardless of these limitations, our findings have policy 
implications and can be used as reference in future studies.

Data availability
The data sets used during the current study available from the corresponding author on reasonable request.
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