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The host and its symbiotic bacteria form a biological entity, holobiont, in which they share
a dynamic connection characterized by symbiosis, co-metabolism, and coevolution.
However, how these collaborative relationships were maintained over evolutionary time
remains unclear. In this research, the small non-coding RNA (sncRNA) profiles of cecum
and their bacteria contents were measured from lines of chickens that have undergone
long-term selection for high (HWS) or low (LWS) 56-day body weight. The results from
these lines that originated from a common founder population and maintained under the
same husbandry showed an association between host intestinal sncRNA expression
profile (miRNA, lncRNA fragment, mRNA fragment, snoRNA, and snRNA) and intestinal
microbiota. Correlation analyses suggested that some central miRNAs and mRNA
fragments had interactions with the abundance of intestinal microbial species and
microbiota functions. miR-6622-3p, a significantly differentially expressed (DE) miRNA
was correlated with a body weight gain related bacterium, Alistipes putredinis. Our
results showed that host sncRNAs may be mediators of interaction between the host
and its intestinal microbiome. This provides additional clue for holobiont concepts.

Keywords: small non-coding RNA, intestinal bacteria, co-evolution, host-microbiota interactions, cecum, chicken

INTRODUCTION

The host and its symbiotic intestinal microbes share complex relationships in which they interact
with each other and affect traits associated with growth, development, and health of the host
(McFall-Ngai et al., 2013; Selosse et al., 2014; Foster et al., 2017). Together, they form one distinct
biological entity (Rosenberg and Zilber-Rosenberg, 2014, 2018), defined as a “holobiont.” In recent
years, this concept has earned considerable support in a variety of studies (Fraune and Bosch, 2010;
Gilbert et al., 2012; Bordenstein and Theis, 2015). In a holobiont, there are complex symbiotic
interactions, co-metabolism, and coevolution between a host and its microbiome (Rosenberg and
Zilber-Rosenberg, 2014, 2018; Zhou et al., 2022). However, the way hosts and microbes engage
in cooperative dialog to maintain these reciprocal interactions during development and evolution
remains unknown.
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Small non-coding RNAs (sncRNAs) in eukaryotes are a
large family of endogenously expressed transcripts, 18–200
nucleotides long, that play an important role in regulating cell
function. They include miRNA, transfer RNA (tRNA), small
nucleolar RNA (snoRNA), small nuclear RNA (snRNA), and piwi
protein-associated RNA (piRNA), lncRNA fragment, and mRNA
fragment, which are considerably more diverse than those found
in prokaryotes (Bloch et al., 2017). Among all classes of sncRNAs,
miRNAs are the most studied. Emerging findings have shown that
miRNAs play important roles in communication of the host and
its intestinal microbiome (Liu et al., 2016). They stated that fecal
miRNAs secreted by the intestine may enter intestinal bacteria
and thereby control bacterial gene expression and growth. Fecal
miRNAs can also be used as markers for microbial fluctuations
along with intestinal pathology in the intestine (Moloney et al.,
2018). Moreover, the bi-directional host-microbiome interaction
was mediated by miRNAs in colorectal cancer (Yuan et al., 2018).
These findings imply potential roles that sncRNAs may have
in mediating the host and intestinal microbe’s interactions to
preserve their coevolution and co-metabolism relationships.

Here, we used the Virginia body weight chicken lines as
a model to investigate mechanisms behind host-microbiota
communication during evolution. The lines were divergently
selected for a single trait, 56-day body weight, for 56 generations,
resulting in an approximately 15-fold difference between high
weight selected (HWS) and low weight selected (LWS) lines
(Siegel, 1962; Dunnington and Siegel, 1996; Márquez et al., 2010;
Zhou et al., 2022). We combined molecular data of small non-
coding RNA sequencing and metagenomic sequencing based on
this model. Questions addressed were: (1) Will the expression of
intestinal sncRNAs and the abundance of intestinal microbiota
adaptably change during long-term artificial selection? (2) Is
it possible that different kinds of intestinal sncRNAs mediate
in interactions between the host, and its intestinal microbiota
during evolution?

MATERIALS AND METHODS

Animals and Sample Collections
Protocols used for this experiment were approved by the
Institutional Animal Care and Use Committee at Virginia Tech.
The chickens used in this experiment were from generation 56
of the Virginia HWS and LWS lines (Siegel, 1962; Dunnington
and Siegel, 1996; Márquez et al., 2010). These lines, which
originated from a common founder population of White
Plymouth Rock chickens, have been subjected to divergent
selection for either high or low 56-day body weight. Husbandry
was consistent through all generations. Chicks from each line
were penned individually in the same building. They were
moved to individual cages with gently sloping wire floors
at 19 weeks of age. They were fed starter (0–8 weeks),
development (8–19 weeks), and breeder (thereafter) antibiotic-
free corn-soybean mash diets. At generation 56, The 56-
day body weights (mean ± SD) were 1,848 ± 160 g and
130 ± 23 g for HWS and LWS males, respectively. The 56-day
body weights (mean ± SD) for females were 1,510 ± 160 g

and 92 ± 26 g. Cecal tissues and their content samples were
collected from 10 HWS (5 males and 5 females) and 10
LWS (5 males and 5 females) chosen at random at 245 days
of age. All cecal tissues were harvested and put into liquid
nitrogen. The cecal contents were temporarily stored at 4◦C
before DNA extraction.

Metagenomic Sequencing
Microbial genomic DNAs were isolated from the cecal contents
following a previously reported protocol (Li et al., 2017).
Metagenomic DNA paired-end libraries were prepared with an
insert size of 350 base pairs (bp). Sequencing was performed on
Illumina HiSeq 2500 platform.

Metagenomic Data Analyses
Metagenome assembly and construction of the raw reads were
cleaned by Kneaddata to exclude adapter sequences, low-quality
sequences, and contaminated DNA, including host genomic
DNA1. The average error rate of the clean reads was less than
0.001. Short reads (length <75 bp) and unpaired reads were
also excluded to form clean reads. For each sample, the clean
reads were assembled by Megahit (v1.0.6) under pair-end mode
(Li et al., 2016), and gene prediction was performed on contigs
larger than 500 bp by Prodigal (v2.6.3)2 with the parameter “–
metagenome –kingdom Bacteria,” and gene models with CDS
length less than 102 bp were filtered out. Then, assembly and
gene prediction were performed on the 20 samples individually,
using the same methods for each sample. A non-redundant
gene catalog was constructed using the gene models predicted
from each sample and each group by cd-hit-est (v4.8.1) (Li and
Godzik, 2006). Finally, we obtained a total of 2,227,868 non-
redundant genes.

To calculate relative gene abundance, the clean reads
from each sample were aligned against the gene catalog
by salmon (v0.14.1) (Patro et al., 2017), with the default
parameters. Sequence-based abundance profiling was performed
as previously described (Qin et al., 2012). Carbohydrate-
active Enzyme (CAzy), Clusters of Orthologous Groups (COG),
Enzyme code (EC), Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes ortholog database (KEGG ko), and KEGG
pathway analyses were carried out by emapper (v2.0.0) (Huerta-
Cepas et al., 2016). Their relative abundances were calculated by
summing the abundance of the respective genes belonging to each
category per sample, based on each annotation, respectively.

To identify prokaryotic species and estimate their relative
abundance, we used the Metagenomic Phylogenetic Analysis
(MetaPhlAn) toolbox (v2.0) (Segata et al., 2012) to provide
a picture of the complex bacteria and archaea community.
Next, alpha diversities of microbial community were measured
using species richness and abundance-based coverage estimator
(ACE) index. The overall differences in the bacterial community
structures were evaluated by non-metric multidimensional
scaling (NMDS) based on Bray-Curtis dissimilarity values

1http://huttenhower.sph.harvard.edu/kneaddata
2https://github.com/hyattpd/Prodigal
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and performed with the “Phyloseq” (v1.30.0) (McMurdie and
Holmes, 2013) package in R.

Small Non-coding RNA Sequencing
Total RNA from cecal tissues was extracted using TRIzol reagent
(Invitrogen Life Technologies, Carlsbad, CA, United States)
according to the manufacturer’s protocol. The RNA integrity
was determined using a 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, United States).

Small non-coding RNA sequencing libraries were prepared
directly from the validated cecal total RNA using TruSeq
Small RNA Library Preparation Kit as per the manufacturer’s
instruction (Illumina, San Diego, CA, United States). Samples
were sequenced with the Illumina HiSeq 2000 platform using the
1× 50 bp single-end read method of Illumina sequencing.

Small Non-coding RNA Data Analysis
After sequencing, raw data were obtained from the 20 samples.
We initially cut the adapter off the raw sequencing data and
trimmed the low-quality bases of each sequence as the clean
data using Trimmomatic (Bolger et al., 2014). The following
options were used for trimming: MAXINFO 15:0.8, MINLEN 15.
SncRNA data analysis was carried out by Unitas, using software
default parameters (Gebert et al., 2017), to classify and annotate
chicken miRNA (known miRNA annotated in chicken), other
species miRNA (known miRNA annotated in other species),
piRNA, rRNA, tRNA, mRNA fragments, lncRNA fragments,
snoRNA, snRNA, miscellaneous RNA (miscRNA), low complex
RNA, and non-annotated RNA.

Then, the abundance of each sncRNA annotated was
calculated using transcript per million reads [RPM = (the number
of reads that can be matched to each RNA)/(the number of
total RNA reads) × 106]. We utilized the DEseq2 R package
(Love et al., 2014) to perform sncRNA differential expression
analysis on HWS vs. LWS. The p-value < 0.05 was considered
as significantly differentially expressed (DE).

To investigate the function of the DE chicken miRNAs of
HWS and LWS, we performed the analysis of gene target
prediction for DE chicken miRNAs using miranda (v3.3a)
with the parameters of “-en –20 -strict.” The 3′UTR sequence
of the protein coding genes in chicken GRCg6a genome
(GCA_000002315.5)3 was used as the input target dataset. KEGG
pathway and GO enrichment analysis of target genes were
implemented by DAVID using human database (v6.8)4. For both
GO and KEGG pathway, a p-value < 0.05 was considered as
statistically significant.

Weighted Gene Co-expression Analysis
of Small Non-coding RNAs
Weighted gene co-expression analysis (WGCNA, v1.68)
(Langfelder and Horvath, 2008) was performed under the
subgroup-specific signatures to identify potential sncRNA
modules or hub sncRNAs associated with body weight. Each
type of sncRNA (see above) was analyzed separately but was

3https://www.ncbi.nlm.nih.gov/grc/chicken
4https://david.ncifcrf.gov/

collectively referred to as sncRNAs. The soft thresholding
power was set as 5, 24, 24, and 10 for chicken miRNA, other
species miRNA, mRNA fragments, and snoRNA, respectively,
to ensure scales-free R2 = 0.85 for correlations. The snRNA and
lncRNA fragments whose soft thresholding power did not fit
the criteria of R2 = 0.85 were excluded for the next analysis.
Then the miRNA, other species miRNA, mRNA fragments,
and snoRNA were clustered hierarchically and classified into
modules based on their measured network distance, known as
topological overlap. Module-trait associations were estimated
using the correlation between the module eigengene and the
phenotype (body weight), which allows easy identification of
expression set (module) highly correlated to the phenotype.
Modules whose module eigengene (ME) exhibited the highest
positive or negative correlation with body weight were selected
as candidate modules to be studied. In this study, hub genes,
highly interconnected with nodes in a module, were defined
by module connectivity, measured by the absolute value of the
Pearson’s correlation (cor.geneModuleMembership >0.8) and
clinical trait relationship, measured by the absolute value of
the Pearson’s correlation (cor.geneTraitSignificance >0.2). We
identified hub genes in the module that were highly correlated
with body weight.

Correlation Analyses of Hub Small
Non-coding RNAs and Microbiome
We performed correlation analyses using Spearman’s correlation
for bacteria at the species level and the hub sncRNAs as
well as for microbial involved pathways and hub sncRNAs,
respectively. R functions of cor() and corr.test() were used to
calculate Spearman’s correlation coefficient and corresponding
p-value, respectively. Significance was defined as a correlation
coefficient (r) of over | 0.5| with a p-value of 0.05 for species-
sncRNA correlations, and r of over | 0.6| with a p-value of
0.01 for microbial pathway-sncRNA correlations. The network
constructed for them is visualized with Cytoscape (v3.6.1)
(Shannon et al., 2003).

RESULTS

Composition of Intestinal Microbiota of
High Weight Selected and Low Weight
Selected
Metagenomic data were used to calculate the Beta and Alpha
diversity of the intestinal microbiota in each line. After
sequencing, the raw metagenomic data underwent a series
of preprocessing steps before analysis, which is described
in Supplementary Material. The Beta diversity analysis of
microbial communities in HWS and LWS showed clear
dissimilarities between them (Figure 1A). Alpha diversity, the
microbial diversity in each sample, was evaluated based on
species richness and ACE index. Species richness (Student’s
t-test, p = 0.01, Figure 1B) was higher in HWS than LWS.
Also, the ACE index revealed significantly greater diversity
for the community of HWS than LWS (Student’s t-test,
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FIGURE 1 | The composition and structure of intestinal microbiota in HWS and LWS. (A) The NMDS plot of intestine bacterial profiles. (B) Intestinal bacteria species
richness. (C) Composition of intestinal microbiota at the phyla level, (D) genus level, and (E) species level. Some low abundant intestinal bacteria were classified as
“others” in (D,E), detailed information of these intestinal bacteria was shown in Supplementary Table 2E (D) and Supplementary Table 2F (E). (F) Comparisons
of intestinal microbiota abundance at the species level in HWS and LWS. Blue and orange bars are HWS and LWS, respectively.

p = 0.019). These observations demonstrate more microbial
diversity in HWS than LWS.

Taxonomic Changes in High Weight
Selected and Low Weight Selected
Microbiomes
To further investigate the intestinal microbe community features
of HWS and LWS, we carried out the taxonomic assignment
for the metagenomic data using MetaPhlAn2. The relative

abundance of each taxon between the two groups were compared.
In total, 25 bacterial taxa were differentially abundant between
the groups, including 1 phyla, 1 class, 1 order, 2 families,
4 genera, 9 species, and 4 strains (Welch’s test, p < 0.05,
Supplementary Table 2). At the phyla level, the bacterial
composition was dominated by Bacteroidetes (51% in HWS
and 47% in LWS) and Firmicutes (27% in HWS and 32%
in LWS), followed by Proteobacteria (16% in HWS and 13%
in LWS) (Figure 1C and Supplementary Table 2A). Only
Actinobacteria were significantly different between the two lines,
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being enriched in HWS. At the genus level, the bacterial
composition was dominated by Bacteroides in both lines (47%
in HWS and 43% in LWS) (Figure 1D and Supplementary
Table 2E). All the significantly different abundant genera,
Olsenella, Parabacteroides, and Faecalibacterium, were enriched
in HWS. The two most abundant species were Bacteroides
barnesiae (28% in HWS and 27% in LWS) and Bacteroides
salanitronis (18% in HWS and 17% in LWS), both from the
Bacteroides genus (Figure 1E and Supplementary Table 2F).
Of the 9 species that were significantly different in abundance
between HWS and LWS, none was significantly increased in
abundance in LWS (Figure 1F and Supplementary Table 2F).
Of the species that increased significantly in abundance in HWS,
Alistipes putredinis was most abundant in HWS (p = 0.0016).
Lactobacillus crispatus, Lactobacillus ingluviei, and Lactobacillus
salivarius belong to genera of Lactobacillus, suggesting that
Lactobacillus plays an important role in HWS intestines. Taken
together, these data show that intestinal microbiota changed in
chickens selected long-term for high or low body weight.

Differences in Small Non-coding RNAs
Profiles in High Weight Selected and Low
Weight Selected Intestines
The 20 raw data sets of sncRNAs generated by deep sequencing
are detailed in Supplementary Table 1A. Eleven types of
sncRNAs were expressed in intestines of HWS and LWS
(Figure 2A and Supplementary Table 4). Chicken miRNAs
accounted for approximately half of the abundance of small RNAs
(49% in HWS and 47% in LWS). A large proportion of reads
failed to map any database (36% in HWS and 40% in LWS).
Genomic rRNA were the third most enriched sncRNAs and
accounted for 6% in both lines.

To identify specific sncRNAs differentially expressed between
the two lines, five common studied sncRNAs were investigated.

We detected 1,417 chicken miRNAs, 15,808 other species
miRNAs, 1,635 lncRNA fragments, 10,111 mRNA fragments,
200 snoRNAs, and 40 snRNAs (Supplementary Table 5).
After the comparison, we found that all of these types of
sncRNAs in the intestine seem to be affected by the long-
term divergent selection for body weight. There were 208
chicken miRNAs, 762 other species miRNAs, 1,189 mRNA
fragments, 32 lncRNA fragments, 17 snoRNAs, and 5 snRNAs
differentially expressed between HWS and LWS (p-value < 0.05,
Supplementary Table 6). Of the 208 DE chicken miRNAs, 126
and 82 were upregulated and downregulated in HWS ceca,
respectively, compared to LWS (Supplementary Table 6C).
Among them, 21 reliable DE chicken miRNAs were filtered
with | fold change| > 2 and adjusted p-value < 0.05
(Figure 2B). The most significantly upregulated miRNAs in
the intestine of LWS were miR-1673-5p and miR-1640-5p,
while miR-7458-2-5p and miR-3540-5p were most significantly
upregulated in the intestine of HWS (p < 0.005, Figure 2B).
In addition, for the comparison in mRNA fragments, 694
downregulated DE mRNAs fragments and 495 upregulated
DE mRNA fragments were identified in HWS (p < 0.05,
Supplementary Table 6D). The detailed results of differential
expression analysis for other sncRNAs are presented in
Supplementary Table 6.

Functional Analysis of Differentially
Expressed Small Non-coding RNAs
We predicted the target genes of 21 reliable DE chicken
miRNAs between HWS and LWS on the chicken genome (|
fold change| > 2 and adjusted p-value < 0.05) and found
3,518 targeted chicken genes. Further GO analysis showed
that there were 7,242 GO terms significantly enriched with
target genes, of which 392 GO terms were significantly
related, including terms related to biological processes, cellular

FIGURE 2 | (A) The bar chart of the proportion of total abundance of different types of sncRNAs in HWS and LWS. (B) Heatmap of the expression level of 25
significantly differentially expressed chicken miRNAs (|fold change| > 2 and adjusted p-value < 0.05) in HWS and LWS (n = 10). The color in the heatmap represents
the log 2 of expression values (RPM). The orange color represents a higher expression value than average expression across samples, while the blue color
represents the opposite.
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components, and molecular functions. Biological process
analyses showed that the large groupings of target genes
were significantly related to functions, such as regulation
of lipid metabolism (GO:0019216), response to nutrients
(GO:0007584), response to nutrient levels (GO:0031667),
digestive tract development (GO:0048565), and digestive system
development (GO:0055123). Similarly, the KEGG pathways
of the target genes are shown in Supplementary Table 7B.
Fifty-one pathways were significantly enriched, of which
including several pathways involved in cecal functions of
digestion, absorption, and metabolism, including biosynthesis
of unsaturated fatty acids, glycolysis/gluconeogenesis, fatty
acid metabolism, and fat digestion and absorption. These four
pathways involve 19 genes, PGK1, ACSS2, HK1, PLA2G1B,
DGAT2, PKM, PGAM1, FASN, LDHA, PLA2G2A, PLA2G12B,
ACOX1, ALDH1A3, SCD, ACSL5, PFKL, SCD5, ACOT7,
and HACD2.

Consistently, functional analysis of 1,189 DE mRNA
fragments revealed that 202 GO functions (173 biological
processes, 13 cellular components, 16 molecular functions) and
9 KEGG pathways were significantly enriched (Supplementary
Table 7C). Biological Process (BP) GO terms, including lipid
digestion, negative regulation of muscle hypertrophy, and
adipose tissue development, were observed. Similar results
were obtained in the KEGG pathway assigned, including
protein digestion and absorption, fat digestion and absorption,
and carbohydrate digestion and absorption. These findings
suggest that the miRNAs and mRNA fragments altered in
the intestines of HWS and LWS may regulate target genes to
influence cecal function.

Co-expression Analyses of Small
Non-coding RNAs
To identify co-expressed sncRNA modules that are important
for phenotypic variation of body weight in HWS and LWS,
clusters of co-abundant sncRNAs were identified using the
R package WGCNA (Langfelder and Horvath, 2008). The
modules closely related to high and low body weight were
of particular interest. Each type of sncRNA (chicken miRNAs,
miRNAs annotated in other species, lncRNA fragments, mRNA
fragments, snoRNAs, and snRNAs) was analyzed separately.

The number of co-expressed modules and modules significantly
related to body weight are shown in Table 1. Only miRNA
and mRNA fragment profiles were significantly related to
body weight (p < 0.05). Of the modules identified in the
chicken miRNA profiles (Figure 3A), miRNA profiles in
other species, and mRNA fragment profiles, the 1, 2, and
1 modules were significantly associated with body weight,
respectively (p < 0.05, Table 1). Subsequently, we set out
to identify the central nodes (hub chicken miRNAs) in the
significantly associated chicken miRNA co-expression module,
MEbrown module, (Figure 3A) by selecting chicken miRNAs
with the highest module membership scores. These miRNAs
could have important roles in the ceca of HWS. The 12
hub miRNAs identified in the MEbrown module were miR-
6622-3p, miR-1669-3p, miR-1666-3p, miR-203b-5p, miR-1640-
5p, miR-1709-5p, miR-1757-3p, miR-1673-5p, miR-12248-3p,
miR-6621-3p, miR-2984-5p, and miR-1629-5p (Supplementary
Table 8A). In addition, 36 annotated in other species,
and 20 mRNA fragments were identified as hub sncRNAs
(Supplementary Table 8).

Correlation Analyses of Hub Small
Non-coding RNAs With the Intestinal
Microbiome
To investigate the relationships between hub sncRNAs and
the intestinal microbiome, 12 hub miRNAs and 75 microbial
species were analyzed together. Of the 27 edges generated
between them (| r| < 0.5, p < 0.05) (Figure 3B and
Supplementary Table 9A), miR-6622-3p, a DE miRNA with
lower expression levels in HWS, was negatively correlated with
Alistipes putredinis, which was the species with higher abundance
in HWS than LWS. Additionally, Alistipes putredinis was
negatively correlated with 8 miRNAs. Seven of them (miR-6622-
3p, miR-6621-3p, miR-2984-5p, miR-1757-3p, miR-1673-5p,
miR-1640-5p, miR-12248-3p), had significantly downregulated
expression in HWS (Supplementary Tables 6C, 9A). A total of
351 pathways were used to correlate the functional composition
of the microbiome data with 12 hub miRNAs (| r| < 0.6,
p < 0.06). Eleven hub miRNAs were significantly correlated
with 57 pathways (Figure 3C and Supplementary Table 9B).
Carbohydrate digestion and absorption, a pathway significantly

TABLE 1 | Summary of the quantitative information obtained from 5 types of sncRNA analyses.

Type of sncRNA Expressionsa DEsb Modulesc Significant modulesd Hub genese

miRNA (chicken) 1,417 208 5 1 12

miRNA (other species) 15,808 762 16 2 36

mRNA fragments 1,635 1,189 6 1 20

lncRNA fragments 10,111 17 0 0 0

snoRNA 200 5 2 0 0

snRNA 40 32 0 0 0

Expressionsa, sncRNAs expressed.
DEsb, Significantly differentially expressed sncRNAs (p < 0.05).
Modulesc, Co-expressed modules identified.
Significant modulesd , Co-expressed modules identified (p < 0.05).
Hub genese, Hub miRNAs in co-expressed modules identified.
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FIGURE 3 | (A) Chicken miRNA co-expression module and body weight correlations with corresponding p values (in parentheses). The left panel shows five
modules with different colors. The color scale on the right shows module-trait correlation from –1 (blue) to 1 (red). (B) The complex interactive relationships between
hub chicken miRNAs and intestinal microbiota. Blue solid circles represent significantly differentially expressed (DE) hub miRNAs between HWS and LWS. Yellow
solid circles represent non-DE hub miRNAs. Red squares represent significantly differentially abundant (DA) microbial species. Red and blue lines represent the
respective positive and negative correlations between miRNAs and microbial species. The interactions between DE hub miRNAs and DA species are represented by
solid lines, with other interactions shown as dashed lines. (C) KEGG pathway. Blue solid circles represent significantly differentially expressed (DE) hub miRNAs
between HWS and LWS. Yellow solid circles represent non-DE hub miRNAs. Red squares represent significantly differentially abundant (DA) pathways. Red and blue
lines, respectively, represent the positive and negative correlations between miRNAs and microbial pathways. The interactions between DE hub miRNAs and DA
pathways are shown as solid lines, with other interactions by dashed lines.

enriched in HWS, was negatively correlated with 5 hub miRNAs
(Supplementary Table 9B). Among them, miR-1640-5p, miR-
2984-5p, and miR-6622-3p had lower expression in HWS than
LWS. miR-12248-3p was downregulated in HWS and connected
to lipoic acid metabolism that had high abundance in HWS.
Based on these findings, miRNAs may selectively affect the
growth of certain bacteria. Thus, bacteria correlated with DE
miRNAs are likely to be related to body weight of HWS
and LWS chickens.

We then investigated correlations of microbial
species and pathways with hub mRNA fragments

(Supplementary Tables 9C,D). Similar to the results of miRNAs,
several hub mRNA fragments were significantly correlated with
differentially enriched microbial species in HWS and LWS.
These included Alistipes putredinis, Lactobacillus salivarius, and
Lactobacillus ingluviei, which were highly enriched in HWS
(Supplementary Table 9C). In the analysis of mRNA fragments
correlated with microbial pathways (Supplementary Table 9D)
pyruvate metabolism, lipoic acid metabolism, and carbon
metabolism were more abundant in HWS than LWS. They were
negatively correlated with five genes, CPA5, CPA1, CTRL, CTRC,
and AMY2A, which were downregulated in HWS.
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DISCUSSION

The Virginia body weight lines of chickens provide an ideal
model to investigate the holobiont, a distinct biological entity
formed by the host and its symbiotic microbes, as well as their
complex relationships (Rosenberg and Zilber-Rosenberg, 2014,
2018). These chickens were raised under the same conditions
and originated from a common founder population (Siegel,
1962). The difference is that HWS and LWS chickens have
developed different genotypes under the pressure of long-term
artificial selection, and their body weight in the generation
studied (S56) differed by 15-fold. The genetics underlying the
response to selection within these lines are well documented
and demonstrate that many loci contribute to the observable
differences in body weight (Wahlberg et al., 2009; Sheng et al.,
2015; Lillie et al., 2018). Lillie et al. (2018) applied genome
resequencing to several generations from the HWS and LWS
and found 14.2% of the genome showed extreme differentiation
between them, within 395 genomic regions. Host genetics
have been reported to influence the structure of intestinal
microbiome communities, which in turn affects host metabolism
(Goodrich et al., 2014). We also found that the abundance of
intestinal microbiota was significantly altered between HWS and
LWS. For example, Alistipes putredinis, Lactobacillus crispatus,
Lactobacillus ingluviei, and Lactobacillus salivarius were highly
enriched in the intestine of HWS compared to LWS. In
humans, a significantly higher level of Lactobacillus species was
also observed in obese than lean patients (Armougom et al.,
2009). Alistipes putredinis is a producer of short-chain fatty
acids (SCFAs) and can be associated with body weight in the
chickens, piglets, rabbits, and calves (Du et al., 2018; Yu et al.,
2019; Fang et al., 2020; Wang et al., 2020). In addition, the
pathways related to energy metabolism involved with intestinal
microbiota were different in HWS and LWS, including carbon
metabolism, carbon fixation pathways in prokaryotes, pyruvate
metabolism, fatty acid degradation, and carbohydrate digestion
and absorption. These findings were consistent with our previous
study that artificial selection can also induce adaptive changes
in intestinal microbiota (Zhao et al., 2013; Meng et al., 2014),
and most of the changed intestinal microbes were associated
with body weight (Zhao et al., 2013). Taken together, it appears
that the host and its intestinal microbes are closely related
during evolution, and they form a holobiont that adapts to its
encountered selection.

Small non-coding RNAs are a key mode of molecular
communication that have an important role in interactions
and symbiosis of the host and its intestinal microbiome (Liu
et al., 2016; Zhao et al., 2017; Johnston et al., 2018). To
investigate the roles of sncRNAs between the host and its
intestinal symbiotic microorganisms throughout the evolution
process, we first examined the sncRNA profiles expressed in
the intestines of HWS and LWS and found major changes
in the expression of all five types of sncRNAs between the
two lines. Further co-expression analyses of these sncRNA
forms revealed the presence of co-expressed modules of 3
miRNA and 1 mRNA fragment modules substantially related to
body weight. These findings suggest that the sncRNA profiles,

especially in miRNAs and mRNA fragments expressed in the
intestine, could be affected by long-term artificial selection
for body weight. One of the hub miRNAs in the module
associated with body weight, miR-203b, has been reported to
be growth-related in fish (Yan et al., 2013; Tu et al., 2017).
It could inhibit muscle development in tilapia (Yan et al.,
2013) and impede cell growth in Chinese perch (Tu et al.,
2017) by controlling body weight-related gene expression. In
our study, miR-203b was significantly downregulated in HWS,
suggesting that it may have a role in the growth of chickens.
The single nucleotide polymorphism of precursor of another hub
miRNA, miR-1757, was associated with semi-evisceration weight,
evisceration weight, carcass weight, and body weight in chickens
(Li et al., 2015). Functional analysis of DE miRNAs also revealed
that they were involved in regulating the metabolism-related
functions and pathways such as response to nutrient levels,
digestive tract development, and digestive system development,
suggesting their crucial roles in body weight. Unlike miRNA, the
functions of mRNA fragments are not well known. Recent studies
reported that mRNA fragments were wrapped into exosomes
for functions in cells to cells communication (Mercer et al.,
2011; Batagov and Kurochkin, 2013). In our study, the DE
mRNA fragments were involved in several digestion-related
pathways such as digestion and absorption of proteins and fats,
thus suggesting that these degraded mRNAs have functions in
digestion. Nevertheless, the specific mechanism still needs further
research and remains to be explored.

Correlation analyses between hub miRNAs and intestinal
microbiota revealed that miRNA expression in the intestine
and intestinal microbiota were significantly associated. Inter-
kingdom crosstalk was demonstrated between humans and
bacteria by miRNAs contained in extracellular vehicles
(EVs), when miRNAs generated by intestinal epithelial cells
modulated bacterial gene expression to promote the growth
of Fusobacterium nucleatum and Escherichia coli, which
have been identified to drive colorectal cancer (Liu et al.,
2016). Fecal miRNA expressions in inflammatory bowel
disease (IBD) patients influenced the development of IBD by
regulating of the growth of certain bacteria (Ji et al., 2018).
Also, knockout of a specific miRNA, miR-21, in the mouse
influence the intestinal microbiota to aggravate colitis (Johnston
et al., 2018). Collectively, these altered miRNAs may play
important roles in communication between the host and its
intestinal bacteria and may function in genetic exchanges
among cells (Valadi et al., 2007; Batagov and Kurochkin,
2013). In our study, miR-6622-3p, a DE miRNA had lower
expression levels in HWS and was negatively correlated
with Alistipes putredinis, which is energy metabolism related
and had a higher abundance in HWS than LWS. Moreover,
miR-6622-3p is also negatively correlated with microbial
function, carbohydrate digestion and absorption, suggesting
miR-6622-3p has essential roles in interactions between the
host and its intestinal microbes, in the context of body weight
phenotypes during evolution. miR-6622-3p also interacted
with Helicobacter pullorum, which belongs to the family
Helicobacteraceae whose heritability was moderate in the
Virginia body weight lines (Meng et al., 2014), suggesting
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modification of its relationship was influenced by long-term
selection for body weight.

In conclusion, sncRNA-mediated host regulation of intestinal
microbiota can be an effective strategy for ensuring that hosts and
intestinal bacteria are structured in symbiotic, co-evolutionary,
and co-metabolic partnerships to build a holobiont for better
adaptability to a dynamic and variable environment. Our research
offers additional clues for the holobiont theory that sncRNAs
have an essential role between the host and its intestinal microbes
to establish a holobiont.
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