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Abstract: Introduction: Bacteremia is a common but life-threatening infectious disease. However, a
well-defined rule to assess patient risk of bacteremia and the urgency of blood culture is lacking. The
aim of this study is to establish a predictive model for bacteremia in septic patients using available
big data in the emergency department (ED) through logistic regression and other machine learning
(ML) methods. Material and Methods: We conducted a retrospective cohort study at the ED of
National Cheng Kung University Hospital in Taiwan from January 2015 to December 2019. ED
adults (≥18 years old) with systemic inflammatory response syndrome and receiving blood cultures
during the ED stay were included. Models I and II were established based on logistic regression,
both of which were derived from support vector machine (SVM) and random forest (RF). Net
reclassification index was used to determine which model was superior. Results: During the study
period, 437,969 patients visited the study ED, and 40,395 patients were enrolled. Patients diagnosed
with bacteremia accounted for 7.7% of the cohort. The area under the receiver operating curve
(AUROC) in models I and II was 0.729 (95% CI, 0.718–0.740) and 0.731 (95% CI, 0.721–0.742), with
Akaike information criterion (AIC) of 16,840 and 16,803, respectively. The performance of model II
was superior to that of model I. The AUROC values of models III and IV in the validation dataset were
0.730 (95% CI, 0.713–0.747) and 0.705 (0.688–0.722), respectively. There is no statistical evidence to
support that the performance of the model created with logistic regression is superior to those created
by SVM and RF. Discussion: The advantage of the SVM or RF model is that the prediction model is
more elastic and not limited to a linear relationship. The advantage of the LR model is that it is easy to
explain the influence of the independent variable on the response variable. These models could help
medical staff identify high-risk patients and prevent unnecessary antibiotic use. The performance of
SVM and RF was not inferior to that of logistic regression. Conclusions: We established models that
provide discrimination in predicting bacteremia among patients with sepsis. The reported results
could inspire researchers to adopt ML in their development of prediction algorithms.

Keywords: bacteremia; blood culture; machine learning; logistic regression; net reclassification index

1. Introduction

Bacteremia is a common healthcare problem encountered by clinicians, with a com-
munity incidence of approximately 0.82% [1]. Despite the development of therapeutic
strategies and antimicrobial therapy, bacteremia is usually considered a life-threatening
infectious disease if organ dysfunction occurs [2]. Therefore, prompt administration of
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appropriate antimicrobials remains the cornerstone of bacteremia treatment to achieve fa-
vorable prognoses [3]. Generally, the gold standard for diagnosis of bloodstream infections
is microbial growth on blood cultures [4]. However, microbial growth is time-consuming,
and the result cannot be recognized immediately by first-line physicians in the emergency
department (ED) [5]. Therefore, ED physicians usually need to decide whether to order a
blood culture and prescribe empirical antibiotics to patients when they suspect bacteremia
based on their experience and intuition without microbiologic support [6,7].

The clinical presentation of bacteremia varies and largely depends on the infection
site, host immune status or comorbidities, causative microorganisms, and severity of illness
at onset [8]. However, because a well-defined rule to assess patient risk of bacteremia and
the urgency of blood culture is lacking for ED physicians [9], the incidence of bacteremia is
often underestimated, and excessive culture examinations are conducted [5]. We believe
the underestimation of bacteremia in patients could result in the delayed administration
of appropriate antibiotics, and excessive culture examination could result in a waste of
medical resources [10] and expose patients to unnecessary risks [5].

To prevent unnecessary blood culture examination, numerous studies aiming to iden-
tify populations with a high risk of bacteremia have been reported [11]. However, the
utilization and validation of these studies are often limited [11]. The majority of models
can only be applied to specific populations [12] or specific infectious foci [13,14], and some
models achieve poor discrimination in bacteremic patients [15]. To date, numerous reports
have addressed ED patients to predict the occurrence of bacteremia, but their targeted pop-
ulations were patients with infections suspected by ED physicians [16,17]. Investigations
detailing septic population to establish a valuable model for prediction of bacteremia are
lacking in clinical ED practice.

The disposition of large-scale information has been realized through the introduction
of information technologies and electronic medical records (EMRs) at modern medical
institutes. Patient physiologic and laboratory parameters are often extracted to build
predictive models using machine learning (ML) [18]. Several studies have proposed the
prediction of bacteremia using multilayer perceptron, random forest (RF), and gradient
boosting algorithms [19] or logistic regression (LR) and support vector machines (SVM)
via machine learning techniques [20]. However, few analyses have compared machine
learning methods. Based on the advantage of ML in managing big data [21], the aim of
this study is to establish a predictive model for bacteremia in septic patients using big data
available in the ED through LR, SVM, and RF.

2. Material and Methods
2.1. Study Design and Data Collection

We conducted a cohort study consisting of retrospectively captured target patients
in the ED of National Cheng Kung University Hospital (a university-affiliated medical
center with 1400 beds) from January 2015 to December 2019. The inclusion criteria were
ED adults (≥18 years) presenting with systemic inflammatory response syndrome (SIRS)
who had blood cultures during their ED stay. Exclusion criteria included patients with
incomplete information detailing our measurements and outcomes. The layer sampling
method was used to divide all the targeted patients into a 70% derivation dataset and a
30% validation dataset.

2.2. Measurements and Outcomes

All variables available in the ED were captured for analyses regarding patient de-
mographics, previously identified comorbidities, vital signs upon ED triage, and labora-
tory data. Past comorbidities were retrieved from EMRs at the hospital and were deter-
mined by the international statistical classification of diseases and related health problems
10th revision codes [22]. Vital signs included body temperature, heart rate, respiratory
rate, blood pressure, oxygen saturation, and Glasgow coma scale. Similarly to a previous
investigation [5], laboratory information was collected within 12 h after ED arrival. Lab-
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oratory parameters included white blood cell count and platelet count. Each parameter
of vital signs and laboratory measurements was transferred to the categorical variable for
further analysis. The primary outcome was the occurrence of bacteremia diagnosed in the
ED. Two investigators, one board-certified emergency medicine physician and an infec-
tious disease clinician, independently reviewed the computerized records. Any reviewing
discrepancy was resolved by discussion between the investigators in periodic meetings.

2.3. Definition

True bacteremia is defined as the causative pathogen yielded in at least one blood culture
after excluding contaminated sampling [23]. The growth of potentially contaminated pathogens
on blood cultures includes coagulase-negative staphylococci, Clostridium perfringens,
Micrococcus spp., Bacillus spp., Propionibacterium spp., and Gram-positive bacilli according
to previously published criteria [16]. Patients with contamination were regarded as having
no bacteremia episodes and needing further analysis. Patients with SIRS were recognized
based on the Sepsis-2 criteria [24]; information about patients’ comorbidity was retrieved
from EMRs and recorded with specific International Classification of Diseases 10 (ICD-10)
codes [22] (shown in Supplemental Table S1).

2.4. Ethical Considerations

This study was approved by the Institutional Review Board of National Cheng Kung
University Hospital (B-ER-111-064). The requirement for informed consent was waived
because the captured information was deidentified prior to analysis.

2.5. Statistical Analysis

The Statistical Package for the Social Sciences for Windows version 23.0 (Chicago, IL, USA)
was used for descriptive statistical analyses; R version 4.1.2 packages were used for LR,
SVM, and RF methods; and the significance level in this study was set to 0.01. Continuous
variables were described as the median (interquartile range, IQR) or mean (standard devia-
tion, SD), and categorical variables were expressed as numbers (percentages). Categorical
variables were compared using the Pearson chi-square test, and continuous variables were
adopted for independent t-tests. For the assessed models, the area under the receiver oper-
ating characteristic curve (AUROC) was applied to assess performance in differentiating
bacteremic patients from non-bacteremic populations. The model with the highest AUROC
value was chosen for further comparison with the ML algorithms.

2.6. Logistic Regression

The LR model is a linear regression with the primary purpose of establishing the
relationship between the binary response variable, such as whether the event occurred, and
the explanatory variables [25]. The mathematical equation of LR is expressed as follows.

log
(

p
1 − p

)
= β0 + β1X1 + β2X2 + · · · . . . + βmXm

where p is the probability of an event occurring, p
1−p is the odds or risk for very low

p values, Xi is the ith explanatory variable, and βi is the coefficient of Xi. Before model
building, screening and selection of adequate explanatory variables were necessary for LR.
Excessive variables would calculate the regression coefficient complex [26]. The methods
of forwarding selection and increasing interaction terms were applied to separately select
the adequate variables.

The forward selection method was used to build model I as a stepwise regression.
First, variables were added to the model one by one. In each forward step, the variable that
best improved the model was picked up and added to the model. Next, the interaction
term was applied to establish model II. The method was used to create new variables
representing the interactions between the existing variables. The interactions between the
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variables were subjectively judged based on the operator’s experience and knowledge in
an attempt to improve the performance of the model.

ROC-AUC and Akaike information criterion (AIC) were adopted for these two LR-
built models to determine which model was superior. The AIC was used to measure the
models’ complexity and the goodness of fit; the lower the AIC, the better the model [27].

2.7. Support Vector Machine and Random Forest

SVM is a machine learning model commonly used to deal with classification problems.
SVM is a linear classifier that can be used to solve issues such as small samples, nonlinearity,
and high dimensionality. The main concept is to construct a hyperplane to separate and
classify sample data. This hyperplane correctly separates the two types of samples and
maximizes the distance between the two groups. When encountering nonlinear problems,
the data that cannot be linearly classified in low dimensions can be projected into high-
dimensional space using kernel function transformation. Then, the data can be organized
by establishing a hyperplane. SVM has a positive effect on classification problems, so it has
been widely used in classification problems in various fields in recent years [28].

RF is a machine learning model that consists of multiple decision trees. The decision
tree includes the root, parent, child, and leaf nodes. It is an analysis method of tree
structure used to deal with classification problems. A general decision tree starts from the
root, branches with features, is divided into two or more child nodes, and continues to
branch until the self-defined stopping condition, that is, to the leaf. Each internal node
uses a feature branch, each branch represents a possible field output outcome, and each
endpoint represents the final predicted or decided result of a given classification. RF can
handle classification and regression tasks, and used features can be discrete or continuous
data. Furthermore, because RF uses random sampling and the selection of features to
construct multiple decision trees in the operation process, it can reduce the occurrence of
overfitting [29].

Because the true positivity rate of bacteremia in the original data was 7.7%, they
was imbalanced data. Imbalanced data can significantly compromise the distributive
characteristics of most standard learning algorithms and ultimately result in unfavorable
predictive accuracy [30]. Therefore, data processing was necessary before model building.
First, we dealt with the training dataset using the methods of oversampling, undersampling,
and random oversampling (ROSE). Then, the adjusted datasets were used to build model
III with the SVM algorithm and model IV with the RF algorithm. A total of 500 trees were
generated, and their depth was 5 in model built with RF.

2.8. Net Reclassification Index

These models were compared with the net reclassification index (NRI) to determine
which model was superior [31]. If the value of NRI was more than 0 and the result was
statistically significant, the comparison model was better than the original model.

The null hypothesis of this test is that “NRI 5 0” because the equation of the test
statistic (z) is:

z =
ˆNRI√

P̂p,up+P̂p,down

N2
bacteremia

+
P̂n,up+P̂n,down
N2

non−bacteremia

P̂p,up is the possibility that patients with bacteremia were predicted as nonbacteremic
in the original model and as bacteremia in the comparison model.

P̂p,down is the possibility that patients with bacteremia were predicted to have bac-
teremia in the original model and non-bacteremia in the comparison model.

P̂n,up is the possibility that patients without bacteremia were predicted to have bac-
teremia in the original model and non-bacteremia in the comparison model.

P̂n,down is the possibility that patients without bacteremia were predicted as nonbac-
teremic in the original model and as bacteremia in the comparison model.
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Nbacteremia is the number of patients with bacteremia, and Nnon−bacteremia is the number
of patients without bacteremia.

The level of significance was 0.01. If the value of z was above 2.326, then the null
hypothesis was rejected. This result suggests that the comparison model was superior to
the original model.

3. Results
3.1. Study Population

During the study period, 437,969 patients visited the study ED. Blood cultures indi-
cated that 41,416 of these adults had SIRS; 40,395 were enrolled as the targeted cohort after
excluding 312,836 SIRS < 2, 69,338 not receiving blood culture, 14,379 patients younger
than 18 years old, and 1021 with incomplete information (Figure 1). Patients with bac-
teremia episodes in the ED accounted for 7.7% (4197 patients) of the targeted cohort. The
demographic and clinical characteristics of the bacteremic and non-bacteremic patients
are shown in Table 1. Compared to patients without bacteremia episodes, those with bac-
teremia were older and more frequently had specific comorbidities, namely diabetes, liver
disease, chronic kidney disease, and malignancy. There were also significant differences in
white blood cell count, platelet count, body temperature, heart rate, respiratory rate, blood
pressure, and consciousness level. The patient demographics and clinical characteristics
were similar between the derivative and validation patients (Figure 2).
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Table 1. Differences in patient demographics and laboratory data between bacteremic and non-
bacteremic patients.

Variables

Patient Number (%)
p ValueAll

(n = 40,395)
Bacteremia
(n = 4058)

Non-Bacteremia
(n = 36,337)

Age, mean ± SD 63.5 ± 19.4 69.2 ± 15.4 62.9 ± 19.7 <0.001

Gender, male 21,272 (53) 2032 (50) 19,240 (53) <0.001
Comorbidities

Myocardial infarction 289 (0.7) 23 (0.6) 266 (0.7) 0.277
Congestive heart failure 2502 (6.2) 231 (5.7) 2271 (6.3) 0.173

Peripheral vascular disease 231 (0.6) 25 (0.6) 206 (0.6) 0.776
Old stroke or TIA 440 (1.1) 53 (1.3) 387 (1.1) 0.186

Dementia 130 (0.3) 19 (0.5) 111 (0.3) 0.112
COPD 3220 (8) 130 (3.2) 3090 (8.5) <0.001

Connective tissue disease 697 (1.7) 54 (1.3) 643 (1.8) 0.049
Peptic ulcer disease 521 (1.3) 57 (1.4) 464 (1.3) 0.542
Mild liver disease 1190 (3) 217 (5.4) 973 (2.7) <0.001

Uncomplicated diabetes 10,078 (25) 1289 (32) 8789 (24) <0.001
Moderate to severe CKD 2552 (6.3) 345 (8.5) 2207 (6.1) <0.001

Hemato-oncology 8131 (20) 979 (24) 7152 (20) <0.001
Metastatic solid tumor 108 (0.3) 8 (0.2) 100 (0.3) 0.451

HIV infections 206 (0.5) 16 (0.4) 190 (0.5) 0.330
Laboratory data in the ED

White blood cell > 12,000/µL 17,812 (44) 2054 (51) 15,758 (43) <0.001
White blood cell < 4000/µL 2900 (7.2) 389 (9.6) 2511 (6.9) <0.001

Band cells > 10% 6884 (17) 1437 (35) 5447 (15) <0.001
Platelet < 140,000/µL 9458 (23) 1588 (39) 7870 (22) <0.001

Vital signs upon ED triage
Body temperature, ◦C <0.001

36–38 14,493 (36) 1108 (27) 13,385 (37)
<36 ◦C or >38 ◦C 25,902 (64) 2950 (73) 22,952 (63)

Heart rate, beats/minute <0.0001
70–109 19,089 (47) 1735 (43) 17,354 (48)

55–69 or 110–139 18,681 (46) 1903 (47) 16,778 (46)
40–54 or 140–179 2550 (6.3) 405 (10) 2145 (5.9)

<40 or >179 75 0.2 15 (0.4) 60 (0.2)
Mean arterial pressure, mmHg <0.001

70–109 26,962 (67) 2697 (66) 24,265 (67)
50–69 or 110–129 10,547 (26) 1103 (27) 9444 (26)

130–159 2444 (6.1) 188 (4.6) 2256 (6.2)
<50 or >159 442 (1.1) 70 (1.7) 372 (1)

Respiratory rate per minute
12–24 32,496 (80) 3311 (82) 29,185 (80) 0.091

10–11 or 25–34 6357 (16) 585 (14) 5772 (16)
6–9 or 35–49 1364 (3.4) 141 (3.5) 1223 (3.4)

<6 or >49 178 (0.4) 21 (0.5) 157 (0.4)
Peripheral oxygenation, % 0.006

>89 34,359 (88) 3405 (87) 30,954 (88)
86–89 2026 (5.2) 205 (5.2) 1821 (5.2)
75–85 1899 (4.9) 223 (5.7) 1676 (4.8)
>75% 716 (1.8) 91 (2.3) 625 (1.8)

Glasgow coma scale <0.0001
>13 33,069 (82) 3097 (76) 29,972 (82)

11–13 2150 (5.3) 278 (6.9) 1872 (5.2)
8–10 2936 (7.3) 388 (9.6) 2548 (7)
5–7 1450 (3.6) 176 (4.3) 1274 (3.5)
<5 790 (2) 119 (2.9) 671 (1.9)

CKD = chronic kidney disease; COPD = chronic obstructive pulmonary disease; HIV = human immunodeficiency
virus; SD = standard deviation; TIA = transient ischemic accident. Data are expressed as numbers (%) unless
indicated specifically, and boldface indicates statistical significance.
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Figure 2. Patient demographics and laboratory data were similar between the derivation
and validation cohorts. The p value of each variable was 0.999. CKD = chronic kidney
disease; COPD = chronic obstructive pulmonary disease; HIV = human immunodeficiency virus;
TIA = transient ischemic accident.

3.2. Model Training with Logistic Regression

For the derivation dataset, the significant variables of patients enrolled in the logistic re-
gression model (i.e., models I and II) are shown in Table 2. The AUC in models I and II were
0.729 (95% CI, 0.718–0.740) and 0.731 (95% CI, 0.721–0.742), with AICs of 16,840 and 16,803
(Table 3), respectively. Owing to the correlation between patient age and uncomplicated dia-



Diagnostics 2022, 12, 2498 8 of 15

betes, the interaction term of age and diabetes mellitus was added in model II. Consequently,
regardless of which dataset (derivation or validation) was used, the performance of model
II was superior to that of model I. Figure 3 shows a diagram of the interaction between age
and uncomplicated DM. When uncomplicated DM = 1, log(odds) = −3.505 + 0.004 × age.
The amount of increased risk is 0.004 as the age of the patient increases by one year. When
uncomplicated DM = 0, log(odds) = −5.12 + 0.024 × age. The amount of increased risk is
0.024 as the age of the patient increases by one year. Risk increased more rapidly in patients
without uncomplicated DM than in patients with uncomplicated DM.

Table 2. The logistic regression method in the derivation dataset established significant variables in
models I and II.

Variables
Model I Model II

Odds Ratio 95% CI p Value Odds Ratio 95% CI p Value

Age, years 1.021 1.018–1.023 <0.001 1.024 1.022–1.027 <0.001
Sex, male 0.902 0.832–0.978 0.012 0.887 0.818–0.962 0.003

Comorbidities
Chronic obstructive
pulmonary disease 0.407 0.327–0.506 <0.001 0.407 0.327–0.507 <0.001

Mild liver disease 1.624 1.34–1.967 <0.001 1.604 1.324–1.944 <0.001
Uncomplicated diabetes 1.253 1.146–1.37 <0.001 5.21 3.331–8.148 <0.001
Moderate to severe CKD 1.34 1.154–1.555 <0.001 1.32 1.137–1.532 <0.001

Hemato-oncology 1.155 1.048–1.272 0.004 1.152 1.046–1.27 0.004
Laboratory data in the ED

White blood cell > 12,000/µL 1.598 1.464–1.745 <0.001 1.598 1.464–1.745 <0.001
White blood cell < 4000/µL 1.298 1.114–1.511 <0.001 1.299 1.115–1.513 <0.001

Band cell > 10% 2.847 2.607–3.109 <0.001 2.843 2.603–3.106 <0.001
Platelet < 140,000/µL 2.161 1.973–2.367 <0.001 2.151 1.964–2.357 <0.001

Vital signs upon ED triage
Body temperature < 36 ◦C or > 38 ◦C 1.835 1.674–2.012 <0.001 1.85 1.688–2.028 <0.001

Heart rate, beats/minute
55–69 or 110–139 1.279 1.174–1.394 <0.001 1.28 1.175–1.395 <0.001
40–54 or 140–179 2.025 1.748–2.346 <0.001 2.026 1.749–2.348 <0.001

<40 or >179 2.406 1.187–4.878 0.015 2.465 1.213–5.012 0.013
Age plus uncomplicated diabetes - - - 0.98 0.974–0.986 <0.001

CKD = chronic kidney disease; CI = confidence interval; ED = emergency department.

Table 3. AUROC, AIC, and 95% confidence interval in the derivation and validation datasets.

Model Algorithm
Derivation Dataset Validation Dataset

AUROC AIC 95% CI AUROC AIC 95% CI

I Logistic regression 0.729 16,840 0.718–0.740 0.722 - 0.705–0.739
II Logistic regression 0.731 16,803 0.721–0.742 0.725 - 0.708–0.742
III Support vector machine 0.751 - 0.740–0.761 0.730 - 0.713–0.747
IV Random forest 0.835 - 0.825–0.844 0.705 - 0.688–0.722

AUROC = area under the operating characteristic curve; AIC = Akaike information criterion.

3.3. Model Training with Support Vector Machine and Random Forest

The performance of models III and IV in the derivation and validation of patients is
shown in Figure 4 and Table 3, respectively. The AUC values of models III and IV in the
derivation group were 0.751 (95% CI, 0.740–0.761) and 0.835 (95% CI, 0.825–0.844), and
those in the validation dataset were 0.730 (95% CI, 0.713–0.747) and 0.705 (0.688–0.722),
respectively. The performance of model III in predicting bacteremia patients was inferior to
that of model IV in the derivation patients, but the superiority of model III was exhibited
in validation patients. Notably, the performance of the SVM and RF models was discrepant
in the derivation and validation datasets.
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3.4. Comparison of Support Vector Machine, Random Forest, and Logistic Regression

We used the ROC curve and the tangent of slope 1 to solve the sensitivity, specificity,
and confusion matrix. The sensitivity, specificity, and positive likelihood ratio each of the
models were 0.660, 0.653, and 1.902 for LR; 0.698, 0.631, and 1.892 for SVM; and 0.661, 0.639,
and 1.831 for RF. The LR model with the best performance (model II) was tested with SVM
and RF models. However, as shown in Table 4, irrespective of the SVM or RF model, there
was no statistical evidence to support that the performance of the model created with LR
was superior to that of the models created with SVM and RF.
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Table 4. Comparison of the model II and machine learning models in the discrimination of bacteremia
in the validation dataset.

Comparing Model Net Reclassification Index p Value

Model III (support vector machine) −0.02 >0.01
Model IV (random forest) 0.01 >0.01

LR and RF models have similar significant variables, including age, gender, chronic
obstructive pulmonary disease, uncomplicated diabetes, hemato-oncology,
white blood cell > 12,000/µL, band cells > 10%, platelet < 140,000/µL, body temperature,
and heart rate. Mean arterial pressure, respiratory rate, and Glasgow coma scale were
considered significant in the RF model but not in the LR model (Table 5).

Table 5. Comparison of significant variables in the logistic regression and random forest models.

Model Logistic Regression Random Forest

Variables

Age Age
Gender Gender
COPD COPD

Uncomplicated DM Uncomplicated DM
Hemato-oncology Hemato-oncology
WBC > 12,000/µL WBC > 12,000/µL

Band cell > 10% Band cell > 10%
Platelet < 140,000/µL Platelet < 140,000/µL

Body temperature Body temperature
Heart rate Heart rate

Mild liver disease Mean arterial pressure
Moderate to severe CKD Respiratory rate

WBC < 4000/µL Glasgow coma scale
Age plus uncomplicated DM

COPD = chronic obstructive pulmonary disease; DM = diabetes mellitus; WBC = white blood cell;
CKD = chronic kidney disease.

4. Discussion

Based on clinical information available in the ED, we established algorithms with
proper discrimination in predicting bacteremia episodes among septic patients. We hope
that the reported results will inspire ED physicians to develop a prediction model to
manage the clinical problems they face daily. Furthermore, the SVM and RF models
predicted bacteremia with similar effectiveness as those established by LR. The advantage
of the SVM and RF models is that the prediction model is more elastic and not limited to a
linear relationship. The advantage of the LR model is that it is easy to explain the influence
of the independent variable on the response variable. Each method has its advantages.
Because the performance of the SVM and RF models is equal to that of the traditional LR
model, medical researchers should be open-minded about adopting SVM or RF for the
development of prediction algorithms.

Based on patient demographics and laboratory data available in the ED, the algorithms
with proper discriminations in predicting bacteremia episodes among septic patients were
evident. Similar to previous studies indicating that the performance of SVM and RF models
was not inferior to that of traditional LR models [32–34], the prediction performance of the
SVM and RF models was not inferior to that of the LR-based model in our study.

Sepsis is a life-threatening infectious disease resulting in organ dysfunction caused
by dysregulated host immunity [35]. Sepsis is a common healthcare problem encountered
by clinicians because it is a heterogeneous syndrome with varying clinical presentations
and characteristics [36]. In addition, the therapeutic outcomes of septic patients differ
depending on socioeconomic status, location of episodes, host immune status or comor-
bidities, causative microorganisms, sites of infection, the severity of illness at onset, and
quality of care [37–39]. In 2016, the Sepsis-3 criteria proposed the quick Sequential (sepsis-
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related) Organ Failure Assessment (qSOFA) as a replacement for the SIRS score, issued by
previous Sepsis-2 measures [40] for the early screening of sepsis outside of intensive care
units because SIRS scores were deemed to have unsatisfactory specificity and sensitivity in
detecting septic patients [41]. According to the Sepsis-3 criteria, bacteremia patients with
initial qSOFA scores of ≥2 at ED arrival were identified early as septic candidates, and
those with organ dysfunction (i.e., an increase in SOFA scores of ≥2 from the baseline score
within three days of ED arrival) during hospitalization were identified as septic patients.
However, this revised definition of sepsis syndrome is unsuitable for ED physicians. In
addition, a previous bacteremia investigation indicated that the contemporary definition is
unsafe in EDs before culture information on bacteremia is recognized [42]. Accordingly, in
the present study, we included patients with sepsis who met the aforementioned Sepsis-2
criteria as the target population.

Although blood culture study is considered the gold standard for diagnosis of bac-
teremia, false-positive results might be misinterpreted and result in patient harm. The
probability of true positive blood culture, which means that the causative pathogen is
identified, is low. The rate ranges from 4.1% to 7% [8,9,43]. The low yield rate of blood
culture study represents a financial burden for hospital laboratories [44]. On the other hand,
false-positives influenced by contamination occur at a similar or even higher rate [9,10,45].
A general blood culture study without patient selection might not be beneficial and could
be harmful to the patients and medical staff. False positives could subject patients to unnec-
essary antibiotic treatment and hospitalization, harming patients and increasing the burden
on healthcare workers. Our model may help medical staff identify high-risk patients,
decrease the amount of unnecessary blood culture studies, and reduce the incidence of
false-positive results. Both patients and the hospitals can benefit from our proposed model.

The medical community has widely used the method of logistic regression for the
development of prediction models [46]. LR was first proposed in 1958. It is a kind of linear
regression helpful for the analysis of the correlation between explanatory and response
variables [25]. However, LR is based on theory and linear assumptions. It is usually limited
by human intervention and subjective knowledge and results in a lack of flexibility [47].
Benefiting from the development of EMRs, SVM and RF have been gradually adopted as
tools to exploit clinical risk prediction models [21,48,49]. Compared to LR models, SVM
and RF models have higher flexibility as a result of including nonlinear association and
interaction terms [50]. In addition, SVM and RF models perform exceptionally well when
dealing with multiple variables [48,51].

On the other hand, the modelling of SVM or RF is sometimes so complex that humans
cannot straightforwardly interpret it. This condition is the so-called “black box” [52]. The
black box is a significant concern for many clinicians in adopting an algorithm-based aspect
in their research [53–55]. Notably, some studies have suggested that the critical variables of
SVM and RF models are usually consistent with clinical intuition and significant predictors
found in prior studies in the field [32–34]. Accordingly, the essential variables chosen in
the RF model are primarily compatible with the variables from the LR model presented
in our study. However, variables that are distinct from those of LR models (e.g., mean
arterial pressure, respiratory rate, and Glasgow coma scale) have previously been found to
be relevant to bacteremia [5,16,56]. Therefore, the variables inside the black box may not
be too ambiguous to be interpreted. Consistent with previous studies indicating that the
performance of SVM and RF models is not inferior to that of traditional LR models [32–34],
our findings reveal that SVM or RF should not be a barrier for clinicians in predicting
bacteremia episodes in septic ED patients. Recent worldwide advances in EMR have
created a suitable environment to leverage SVM and RF to improve the quality of patient
care. Therefore, we believe that now is a good time to integrate disparate data sources
through SVM or RF to achieve real-time decisions. Beside SVM and RF, deep learning
is a subset of machine learning that completely relies on artificial neural networks. This
learning machine is input with raw data and establishes its own representation required
for pattern recognition. The revolution of deep learning can aid in optimizing pathways of



Diagnostics 2022, 12, 2498 12 of 15

diagnosis and prognosis to develop individualized treatment plans. This field had achieved
promising results in the image and language sector since the digitization of medical records.
In this manner, machine learning systems could represent an opportunity for medical
providers to benefit from studies that require large datasets, such as multicohort studies or
object classification in future studies.

In the current study, the performances of SVM and RF models in predicting bacteremia
patients were dissimilar between the derivation and validation datasets. We believe the
following were the leading reasons contributing to this finding. First, the derivation dataset
was imbalanced, and data processing was needed prior to model training. Therefore,
oversampling, undersampling, and ROSE were adopted to deal with the data before model
establishment. Thus, there were three subgroups of the derivation dataset with different
methods of prior data processing. Consequently, all these subgroup datasets were used
to develop models in the derivation dataset and then examined in the validation dataset.
In our opinion, the methods for establishing model IV are reasonably appropriate for
management of clinical information.

5. Limitations

Our study is subject to several limitations. First, this is a single-center retrospective
study; unfortunately, we do not have complete data on patients with no prior visits, except
for age and sex. Therefore, diagnosing sepsis or bacteremia mainly depends on coding
by ED physicians, leading to information bias when analyzing the outcome. Second,
confined to the dataset of a single medical center, external validation with a dataset from
other medical institutes is required to improve the predictive power and accuracy of the
proposed model and for potential broader utilization. Third, to reduce categorization bias,
all clinical information was randomly retrieved by two physicians, who inspected medical
records together to solve discrepancies. Finally, the model was limited to laboratory
analysis. Further integration and connection with existing information systems in the
hospital are needed to develop the model as an automated decision support tool for ED
practice. Balancing the model’s certainty and financial factors during development would
be challenging.

6. Conclusions

Bacteremia is substantially associated with high morbidity and mortality, and prompt
identification and intervention can vastly improve the survival of patients with bacteremia.
Through clinical information captured in the ED, we established algorithms with useful
discrimination in predicting bacteremia episodes among septic patients. Furthermore,
the similar performance of the ML model and traditional logistic regression models in
predicting bacteremia was established herein. Accordingly, medical researchers should be
open-minded about adopting ML for the development of prediction algorithms to solve
their clinical problems. We believe that our reported results will inspire ED physicians to
develop a useful prediction model to manage the clinical problems they face daily.
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