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Abstract

Synaptic efficacy is subjected to activity-dependent changes on short- and long time scales.
While short-term changes decay over minutes, long-term modifications last from hours up to
a lifetime and are thought to constitute the basis of learning and memory. Both plasticity
mechanisms have been studied extensively but how their interaction shapes synaptic
dynamics is little known. To investigate how both short- and long-term plasticity together
control the induction of synaptic depression and potentiation, we used numerical simulations
and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity
induces calcium transients driving synaptic long-term plasticity. We found that the model
implementing known synaptic short-term dynamics in the calcium transients can be suc-
cessfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex.
Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the
prevalent firing rate range, which is different in both cortical areas considered here. Our find-
ings suggest that short- and long-term plasticity are together tuned to adapt plasticity to
area-specific activity statistics such as firing rates.

Author summary

Synaptic long-term plasticity, the long-lasting change in efficacy of connections between
neurons, is believed to underlie learning and memory. Synapses furthermore change their
efficacy reversibly in an activity-dependent manner on the subsecond time scale, referred
to as short-term plasticity. It is not known how both synaptic plasticity mechanisms—
long- and short-term—interact during activity epochs. To address this question, we used
a biologically-inspired plasticity model in which calcium drives changes in synaptic effi-
cacy. We applied the model to plasticity data from visual- and somatosensory cortex and
found that synaptic changes occur in very different firing rate ranges, which correspond
to the prevalent firing rates in both structures. Our results suggest that short- and long-
term plasticity act in a well concerted fashion.
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Introduction

The impact of presynaptic action potentials on the postsynaptic neuron’s excitability varies on
multiple time-scales; successive presynaptic spikes produce short-term depression or facilita-
tion lasting for a few minutes, while prolonged pre- and postsynaptic stimulation induce long-
term plasticity. How the two interact during activity epochs remains little studied.

Experimental studies have shown that the induction of synaptic long-term potentiation
(LTP) and depression (LTD) depends on (i) the firing rates of pre- and postsynaptic neurons
[1, 2] and on (ii) the precise timing of pre- and postsynaptic action potentials [3-6]. Studies in
different brain regions have revealed marked differences in the dependence of plasticity on
spike-timing and frequency [7]. Furthermore, electrical postsynaptic responses increase and/
or decrease upon presynaptic stimulation in a history-dependent manner known as short-
term plasticity (STP). A dynamic enhancement of the postsynaptic reponse is termed short-
term facilitation and the reduction is called short-term depression (STD). While short-term
facilitation has been attributed to the influx of calcium in the presynaptic terminal, short-term
depression is attributed to the depletion of some pool of presynaptic vesicles [8, 9]. Different
synapses exhibit varied forms of short-term plasticity, being either depression dominated,
faciliation dominated, or a mixture of both [10-12]. Activity-dependent depression dominates
synaptic transmission between neocortical pyramidal neurons [13]. STP has been proposed as
a mechanism serving as dynamic filter for information transmission (see [14]). However, the
role of short-term synaptic changes for long-term plasticity induction has attracted little
attention.

Plasticity models of different complexities and degrees of biological realism have been devel-
oped to capture the link between one or several stimulation protocols that induce long-term
plasticity. The classical spike-timing based models capture pair-based spike-time dependent
plasticity (STDP; [15-17]), but do not account for the firing rate-dependence of plasticity (but
see [18]). To account for the firing-rate dependence and non-linearities of plasticity induction,
more complex models have been proposed following phenomenological and biophysical direc-
tions (see [19] and [20]). We here focus on a biophysically inspired model in which both pre-
and postsynaptic spike-trains induce postsynaptic calcium elevations which in turn drive
plastic changes [21, 22] as this type of model lends itself easily to incorporate STP. Similarly,
short-term plasticity models have been proposed based on the vesicle depletion model ([23];
see [24]). This model was later extended by release probability facilitation to account for the
mixture of both facilitation and depression present at some synapses [10, 25-27].

Short-term synaptic plasticity has been considered in a calcium-dependent model of long-
term plasticity and applied to describe plasticity induced by spike-triplets [28, 29]. In this
model and similar to suppression models [30, 31], multiple spikes originating from the same
neuron are subject to short-term depression reducing both pre- and postsynaptic spike effica-
cies which improves the match with the experimental plasticity data for complex spike patters
[28-31]. In these suppression models, the interplay between spike-timing and firing rate
induction protocols has not been systematically studied. In a different phenomenological
approach, Costa et al. [32] account for the change of short-term plasticity after the induction
of long-term plasticity. However, the induction of long-term changes is not subjected to short-
term dynamics in that model. Furthermore, the combination of short- and long-term plasticity
has been suggested to limit the boundless growth of synapses without weight constraints in a
spike-timing based model [33].

How do short- and long-term plasticity interact during induction protocols of synaptic
long-term changes using combinations of firing rate and spike-timing? Are the brain region
and synapse specific realizations of short- and long-term plasticity mechanisms related? These
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questions are pertinent since long-term changes are driven by calcium and calcium transients
are affected by short- and long-term plasticity dynamics. To address this, we integrate a deter-
ministic model of short-term depression [34-36] in the calcium-based model of long-term
plasticity [21, 22, 28, 29]. The short-term dynamics parameters account for electrical responses
recorded between layer V pyramidal neurons in visual- and somatosensory cortex and are
applied to the calcium transients. We fit the calcium-based model with STP to synaptic long-
term plasticity data obtained in both brain-regions and we quantify the influence of spike-tim-
ing and firing rate changes on the plasticity. To simulate changes in synaptic efficacy under
more natural conditions, we use irregular spike patterns [22]. We find that short- and long-
term plasticity are tuned together such that the sensitive range of synaptic plasticity is located
at firing rate ranges, which match the prevalent firing rates in the respective cortical regions.

Materials and methods
Calcium-based model of synaptic plasticity

We investigate the calcium-based model where the postsynaptic calcium concentration deter-
mines the temporal evolution of the synaptic weight variable, w. The postsynaptic calcium in
turn is as a function of pre- and postsynaptic activity and depends on the current synaptic
weight. The model is studied extensively in [21] and [22].

Shortly, the postsynaptic calcium concentration drives changes in w according to

wib = 7,1~ w)Oe(t) — 6] — 7,wOle(t) — 6. W

7is the time constant of synaptic efficacy changes happening on the order of seconds to min-
utes. The two terms on the right-hand-side of Eq (1) describe in a highly simplified fashion
calcium-dependent signaling cascades leading to synaptic potentiation and depression, respec-
tively. The synaptic efficacy variable tends to increase, or decrease, when the instantaneous
calcium concentration, c(¢), is above the potentiation 6, or the depression threshold 6,5, respec-
tively (® denotes the Heaviside function, ®[c — 8] = 0 for c < 8 and ©[c — 0] = 1 for ¢ > 0).
The parameter y,, (resp. y;) measures the rate of synaptic increase (resp. decrease) when the
potentiation (resp. depression) threshold is exceeded.

Here, we consider the evolution of a population of synapses. w therefore describes the mean
synaptic weight dynamics of a number of synapses forming connections between two neurons.
In turn, an activity-dependent noise term appearing in earlier versions of the model [21, 22] is
not considered. In the absence of activity the synapse has a continuum of stable states in Eq
(1). In other words, w is stable at every value [0, 1] for ¢ < min(6,, 6,).

Calcium dynamics implementing short-term synaptic depression

The postsynaptic calcium dynamics describes the compound calcium trace resulting from pre-
and postsynaptic activity. Calcium increases from presynaptic activity are subject to short-
term depression and long-term plasticity.

The average dynamics of short-term synaptic depression can be captured by assuming finite
presynaptic resources. At the event of a presynaptic action potential, a fraction of the resources
is utilized to evoke a postsynaptic response. If a subsequent presynaptic action potential arrives
before all the utilized resources are recovered, the following postsynaptic response will be
smaller [36].

Calcium transients induced by presynaptic activity depend furthermore on the current syn-
aptic weight. And the calcium dynamics in turn drives long-term synaptic changes. To account
for this coupling between postsynaptic calcium dynamics and the synaptic weight, we assume
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that the current synaptic weight variable w linearly scales the presynaptically induced calcium
amplitude.
Calcium transients evoked by presynaptic spikes, cpy., are described by

dx 1—x

i —UxZé(t—ti—D), (2)
Yo _ S e xS 66—t — D) (3)
R N

where x denotes the fraction of available presynaptic resources. U determines the fraction of
the resources utilized at each presynaptic spike, and 7, is the time constant of resource recov-
ery back to the resting state of x = 1. 7¢, is the calcium decay time constant. C,. is the presyn-
aptically evoked calcium amplitude which is scaled by the current value of the synaptic weight,
w (Eq (1)). Note that an isolated presynaptic spike induces a maximal calcium transient of
amplitude wC,,. U (since all presynaptic resources are available, i.e., x(f) = 1), and subsequent
spikes induce amplitudes of wC,,.Ux. The sums run over all presynaptic spikes occurring at
times ¢;. The time delay, D, between the presynaptic spike and the occurrence of the corre-
sponding postsynaptic calcium transient accounts for the slow rise time of the NMDAR-medi-
ated calcium influx.

The parameters describing short-term depression in somatosensory cortex are U = 0.46 and
Trec = 525 ms [36]. Using the same approach as described in [36], we fitted the short-term
depression model (Eqs (2) and (3)) to voltage traces recorded between L5 neurons of visual
cortex (Fig. 1Cin [37]). Utilizing a least squares fitting routine, we obtained U = 0.385 and
Trec = 149 ms (see Table 1 and Fig 1A).

For comparison, we also study the calcium-based plasticity model without short-term
depression. In this case, the presynaptically evoked calcium amplitude is wC,,,. in response to

Table 1. Parameters for short-term and long-term plasticity in visual- and somatosensory cortex.

plasticity type parameter unit visual cortex somatosensory cortex
short-term U 0.3838 - 0.3838 0.46 - 0.46
Trec ms 148.9192 - 148.9192 525 - 525
long-term TCa ms 38.3492083 32.1900754 36.1126107 48.9774484 34.0495917 85.8919093
Cpre 3.99132241 1.60681037 0.353083257 2.41618557 0.5081618 0.931917611
Cpost 1.12940834 1.1243642 1.46971648 1.38836494 1.43328377 1.24804789
n 1 1 2 1 1 2
04 1 1 1 1 1 1
0, 1.63069609 1.63069609 2.31445884 1.38843434 1.38843434 1.93270668
Yd 111.320539 31.9759883 183.511795 176.541097 105.05417 157.338766
Y 564.392975 161.987985 1000.000 579.578738 406.983648 518.174280
T sec 299.8778 79.9756573 525.924639 143.096290 26.5966635 196.775963
D ms 9.23545841 5.75272377 5.51651933 10.0700540 8.37904652 5.0
fit quality SSD 0.080002 0.0314 0.0857 0.00839 0.000041 0.01246

The short-term plasticity parameters shown in the first two lines are obtained from fitting the STD model to visual cortex voltage traces (Fig. 1C in [37]), and are taken
from [36] for the somatosensory cortex. Long-term plasticity parameters are obtained by fitting the calcium-based model with short-term depression (left columns),
without STD (middle columns), and with nonlinear calcium dynamics (n = 2, right columns) to visual- [2] and somatosensory cortex plasticity data [3]. Values in bold

were not allowed to be optimized by the fitting routine. The last line gives the SSD for all cases providing a measure of the fit quality.

https://doi.org/10.1371/journal.pcbi.1008265.t001
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all presynaptic spikes and the calcium dynamics simplifies to

dc c
e C o(t —t. — D).
dt e v PZ (¢=4-D) @

We examined two variants of the postsynaptic calcium implementation: (1) with linear cal-
cium dynamics (as in [21]) where contributions from presynaptic and postsynaptic spikes add
linearly (this variant is used throughout the manuscript); and (2) a nonlinear version of cal-
cium dynamics that accounts for the nonlinear summation of presynaptically and postsynapti-
cally evoked transients when the post-spike occurs after the pre-spike. It describes the
nonlinear portion of the NMDAR-mediated calcium current, which is triggered by the coinci-
dent occurrence of postsynaptic depolarization from the post-spike and presynaptic activation
from the pre-spike. This version was used in Fig 6 and the corresponding paragraph. Below
we describe the details of postsynaptically evoked calcium dynamics in the two variants of the
implementation.

1. Linear calcium dynamics, calcium transients evoked by postsynaptic spikes, cpos are
described as

dC ost
% = _Cpost/TCu + Cpostzé(t - tj)) (5)
)

where 7, is the calcium decay time constant and C,,. the postsynaptically evoked calcium
amplitude. The sum runs over all postsynaptic spikes occurring at times ¢;.

2. In the nonlinear calcium dynamics, calcium transients evoked by postsynaptic spikes are
described as

dC 0st
# = _Cpost/ICa + Cpostza(t - i}) + 1’[25(1’ - tj)cPre' (6)
j )

n implements the increase of the NMDA mediated current in case of coincident presynaptic
activation and postsynaptic depolarization. 77 determines by which amount the postsynapti-
cally evoked calcium transient is increased in case of preceding presynaptic stimulation, in
which case c,re # 0. 77 is related to the experimentally measured nonlinearity factor, n, ([38];
peak calcium amplitude normalized to the expected linear sum of pre- and postsynaptically
evoked calcium transients) by

n(C

n= post+w()c U)_C

pre post 1
)
w,C ..U

pre

(7)

where wo = w(t = 0) is the initial value of the synaptic weight in all simulations (w, = 0.5, see
Table 1 for the area specific U). We use for the maximal nonlinearity factor n = 2 consistent
with data from [38].

The total calcium concentration is the sum of the pre- and the postsynaptic contributions,
c(t) = cpre(t) + cpost(t). Without loss of generality, we set the resting calcium concentration to
zero, and use dimensionless calcium concentrations.

Fitting the plasticity models to experimental data

In order to compare plasticity between visual- and somatosensory cortex, we fitted three vari-
ants of the calcium-based plasticity model to experimental plasticity data obtained from
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Fig 1. Calcium dynamics with short-term depression in visual and somatosensory cortex. (A) Short-term depression dynamics of EPSP amplitudes in
response to a train of six action potentials at 30 Hz in visual- (blue) and somatosensory cortex (orange). The blue points show data from visual cortex (Fig. 1C in
[37]) and the blue line depicts the fit of the short-term depression model (Egs (2) and (3)). EPSP amplitudes in somatosensory cortex have been fitted using the
same STD model [36] and the orange line shows the short-term depression model with the somatosensory parameters (see Materials and methods and Table 1).
(B) Example simulations of calcium traces with visual cortex STD (blue), somatosensory cortex STD (orange) and no STD (gray line). Traces are generated by six
presynaptic stimuli occurring at 30 Hz. Peak calcium amplitudes upon each stimulation are marked by circles. (C) Peak calcium amplitudes in response to a train
of six stimuli at various frequencies (marked on top of each panel). Peak amplitudes of the calcium trace (see panel B) at the time of the stimulation are shown for
visual cortex STD (blue), somatosensory cortex STD (orange) and no STD (gray line). (D) Final peak calcium amplitude at the sixth presynaptic stimuli as
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function of stimulation frequency for visual cortex STD (blue), somatosensory cortex STD (orange) and no STD (gray line). The plotted peak corresponds to the
last point in panel C. (E) Time spent above threshold by the calcium trace during the train of six presynaptic stimuli as function of stimulation frequency. For
illustration, a threshold of 6 = 0.5 is used. Color code as in panel D. An initial calcium amplitude of 1 is used for all cases and the calcium decay time constant is
taken to be 7¢, = 20 ms in B-E. All simulations of the calcium dynamics (panels B—E) are based on the calcium-based plasticity model with STD dynamics (Eqs

(2) and (3)).
https://doi.org/10.1371/journal.pcbi.1008265.9001

synapses between layer V neurons in the rat visual cortex [2] and between layer V neurons in
the rat somatosensory cortex [3]: (1) model with linear calcium dynamics and with the corre-
sponding short-term depression parameters, (2) model with linear calcium dynamics without
short-term depression, and (3) model with nonlinear calcium dynamics and short-term
depression. Note that the short-term depression parameters were not optimized during the fit
to the long-term plasticity data but kept fixed (see previous paragraph, Table 1).

The stimulation protocols employed in visual- [2] and in somatosensory cortex [3] combine
spike-timing and firing rate components by varying the presentation frequency of spike-pairs
with constant time lag, At. Stimulation patterns are grouped in five pairs of pre- and postsyn-
aptic spikes with long pauses in-between in order to allow for full recovery of short-term
depression processes between each group of five pairs. Specifically, [2] repeated the bursts of
five pre- and postsynaptic spikes 15 times every 10 s, while [3] repeated the bursts 10 times
every 4 s. The time lag between pre- and postsynaptic spikes as well as the presentation fre-
quency of the pairs within the burst were systematically varied in both studies (see experimen-
tal data in Fig 2A and 2B).

We consider the change in synaptic strength as the ratio between the synaptic strength after
and before the stimulation protocol w(T)/wy, where T marks the end of the stimulation proto-
col. wy = 0.5 in all simulations and calculations. As a consequence, the maximally evoked
change remains in the interval [0, 2].

We defined the goodness of fit to the experimental plasticity data by a cost function which
is the sum of all squared differences (SSD) between data points and the analytical solution for
the change in synaptic strength of the calcium-based model. We drew initial parameter values
from a uniform distribution and use a downhill Simplex algorithm to search the minimum of
the cost function. The fit is repeated > 10” times and the parameter set with the lowest cost
function is used (shown in Table 1). Smooth curves describing spike-timing dependent plastic-
ity with respect to stimulation frequency were imposed (see Fig 2A and 2B).

Irregular spike-pair stimulation

To study changes in synaptic efficacy induced by firing rate and spike correlations under
more natural conditions, we use irregular spike-pair stimulation. This stimulation protocol
was proposed and extensively studied in [22]. In short, irregular spike-pairs were generated
using discretely correlated Poisson processes. The presynaptic neuron emitted spikes with
Poisson statistics at rate v,.. Each of these presynaptic spikes induced with probability p a
postsynaptic spike with a fixed time lag At. The postsynaptic neuron in addition emits inde-
pendent spikes with Poisson statistics at a rate vps — pVpre> S0 that the total postsynaptic fir-
ing rate is Vo

We systematically varied the firing rates with vy, = vposs At and p. p effectively controls the
strength of spiking correlation between pre- and postsynaptic neuron, with maximal correla-
tion for p = 1 (each presynaptic spike is followed by a postsynaptic one) and independent Pois-
son firing for p = 0. The stimulation is imposed for a duration of T = 10 s, independently of the
firing rate (so that the total number of emitted spikes varies with the firing rate).
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To quantitatively compare the influence of firing rates and spike correlations on synaptic
changes in irregularly firing neurons, we quantify the sensitivity of synaptic strength to corre-
lations and firing rate changes [22]. These measures give the change in synaptic weight when
adding spike correlations to uncorrelated pre- and postsynaptic neurons, or when increasing
the firing rate by a certain amount. In short, the synaptic efficacy w(T) at the end of a stimula-
tion protocol of duration T'is a random variable, the value of which depends on the precise
realization of the pre- and postsynaptic spike trains, their firing rates and their correlation.
The average synaptic efficacy w(T) can be written as

W(T) = 1/_Vno corr(vpre7 vpast? T) + 1Z/corlr(vprw Vpost’ C(t)7 T)’ (8)

where w_, . is the average synaptic efficacy attained for uncorrelated pre- and postsynaptic
spike trains of rates v,,. and v, The quantity w . represents the additional change in synap-
tic efficacy induced by correlations between the pre- and postsynaptic spike trains. We call
w_,, the sensitivity of synaptic strength to correlations. Note that this sensitivity to correlations
depends both on the correlation function C(t) between the pre- and postsynaptic spike trains
and individual firing rates of the neurons.

We furthermore quantify the sensitivity to firing rates éw_, ., defined as the change
between the synaptic strength attained at a given, baseline pre- and postsynaptic firing rate,
and the synaptic strength attained by increasing the firing rates by a given amount 6v:

51X/ v + 5‘) v no corr(vpn” vpost’ T) (9)

no corr( pre ? " post

Vs Voo, OV) = W

no corr( pre? " post?

+ov,T)—w

Note that this sensitivity depends both on the baseline firing rates v,e, vpos» and the amount of
increase in the firing rates ov.

Event-based implementation

Simulations were performed using an event-based implementation of the calcium-based syn-
aptic plasticity model in an analytically exact way. The synaptic efficacy (Eq (1)), pre- (Egs (3)
or (4)) and postsynaptically evoked calcium transients (Eqs (5) or (6)) are updated only upon
the occurrence of pre- and postsynaptic spikes. See [39] for details of the event-based
implementation.

For the deterministic, regular stimulation protocols used to fit the model (Fig 2), the spike-
pattern of the entire stimulation protocol (see details above) were generated and the synaptic
weight was computed once for a given parameter set. For the irregular, Poisson process-based
stimulation protocols, spike patterns were drawn randomly for a 10 s long stimulation accord-
ing to the pre- and postsynaptic firing rates and correlation structure defined by vy, Vposts At
and p. The synaptic weight was initialized at wy = 0.5 and calculated for T'= 10 s based on this
specific activity pattern. The process was repeated with changing random number seeds and
the change in synaptic strength reported for irregular stimulation patterns are averages over
10,000 repetitions.

Results

To study the interplay between short-term- and long-term plasticity, we used numerical
simulations and mathematical analysis of a calcium-based plasticity model [20, 22]. We first
extracted synaptic short-term depression dynamics for the respective cortical region from volt-
age recordings and used these to describe calcium transient dynamics. We then fitted the plas-
ticity model to plasticity results obtained in the visual cortex [2] and the somatosensory cortex
[3]. Finally, we studied how firing rate and spike-timing shape plasticity in both cortical areas
with irregular activity patterns.
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https://doi.org/10.1371/journal.pchi.1008265.g002
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Short-term depression strongly affects the calcium trace during bursts of
activity

In order to study the interplay between short-term depression (STD) and long-term plasticity,
we first extracted the short-term depression dynamics of postsynaptic responses for visual-
and somatosensory cortex. Assuming that the evoked postsynaptic current is directly propor-
tional to the induced calcium concentration, we applied the same STD dynamics to calcium
amplitudes elicited by bursts of presynaptic activity.

Short-term depression has been measured and described with regard to the dynamics of the
postsynaptic current or voltage response (e.g. [36]). STD can be explained by the depletion of
neurotransmitters in the presynaptic terminal. Here, short-term depression is modeled as a
use-dependent decrease in presynaptic resources [35, 36]. We furthermore assume that evoked
postsynaptic current—controlled by the amount of utilized resources, and typically measured
in electrophysiological studies—is directly proportional to the induced calcium amplitude and
use the description of short-term plasticity dynamics [28, 29, 36] for calcium (Egs (2) and (3)).

We use a deterministic model of STD which describes the average temporal dynamics of
the postsynaptic calcium responses to presynaptic stimulation (see Materials and methods, Eqs
(2) and (3)). STD parameters have been characterized for connections between L5 pyramidal
neurons in the somatosensory cortex [36]. We fitted the deterministic model to EPSP
responses obtained between L5 neurons in visual cortex ([37], Fig 1A, see parameters in
Table 1). Comparing both parameter sets reveals differences in STD betweeen visual and
somatosensory cortex. More presynaptic resources are utilized in somatosensory cortex upon
stimulation (i.e., Usjs cex. < Usomat.ctx)> and the recovery time of these resources is longer in
somatosensory cortex (see Table 1 and Fig 1).

STD dynamics applied to calcium drastically alters the postsynaptic calcium response upon
repeated presynaptic stimulation. While calcium transients build up and reach a plateau of
attained amplitudes without STD (see gray lines in Fig 1C), subsequent calcium transients
decrease with STD and this difference increases with frequency (50 Hz case in Fig 1C). Irre-
spective of responses in visual or somatosensory cortex, the decrease in induced calcium
amplitudes due to STD prevents the calcium trace from exceeding the amplitude of the first
transient up to high stimulation frequencies (f < 46 Hz for visual cortex; f < 62 Hz for somato-
sensory cortex). In turn, no plateau is reached and the transients keep decreasing for consecu-
tive stimulations.

Opverall, postsynaptic responses to repeated presynaptic stimulation are suppressed stronger
in the somatosensory cortex compared to the visual cortex since the fraction of used resources,
U, is larger in the somatosensory cortex (Table 1, Fig 1D and 1E). Moreover, the depression
happens already at low (< 5 Hz) frequencies since the recovery time constant of presynaptic
resources is longer in the somatosensory cortex compared to the visual cortex (Fig 1, Table 1).
As a consequence, the calcium amplitude (Fig 1D) and the time spent by the calcium trace
above a given threshold change drastically in the frequency range up to 5 Hz in the somatosen-
sory cortex, while the change occurs for a larger frequency range in the visual cortex (Fig 1E).

In summary, the differences in STD lead to a strong suppression of postsynaptic responses
at low frequencies in the somatosensory cortex while the same suppression occurs over a larger
frequency range in the visual cortex.

Calcium-based model with STD fitted to experimental plasticity data

Plasticity is driven by postsynaptic calcium elevations which is captured by the calcium-based
plasticity model, where threshold crossings drive long-term depression and potentiation pro-
cesses. In turn, the amplitude of presynaptically evoked calcium transients is influenced by
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the current synaptic weight creating a coupling between weight and calcium (see Materials
and methods). In addition, STD leads to a highly dynamic calcium trace with changing ampli-
tudes upon each stimulation and furthermore prevents considerable build-up of calcium even
at relatively high presynaptic stimulation frequencies (Fig 1). Here we ask whether the cal-
cium-based plasticity model with STD can capture the experimental plasticity data obtained
by combining spike-timing and frequency stimulation.

Pre- and postsynaptic spikes with delay At presented in bursts of five pairs at varying fre-
quencies have been shown to induce LTP for pre-post spike-pairs (At = 10 and 5 ms) for
frequencies > 10 Hz in visual- and somatosensory cortices. Post-pre pairs (At = —10 ms) evoke
LTD at low frequencies in both structures (< 30 Hz) and LTP at high frequencies in the visual
cortex (Fig 2A and 2B).

The postsynaptic calcium response to spike-pairs presented in bursts is subjected to STD
and the change in synaptic weight. We therefore implemented STD dynamics in the calcium
driving plasticity changes in the model, and furthermore assumed that the presynaptically
induced calcium amplitude scales linearly with the current synaptic strength. We then fitted
the long-term plasticity parameters of the coupled model to plasticity data obtained in visual-
and somatosensory cortices. The parameters describing the STD dynamics are specific for
each cortical region considered and are kept constant during that fit (see Table 1).

We find that the calcium-based plasticity model with STD of the calcium dynamics captures
the experimental data of visual- and somatosensory cortex (Fig 2A and 2B). In particular, the
model retains the frequency dependence of plasticity for both, pre-post and post-pre pairs
despite the fact that presynaptically evoked calcium amplitudes are subjected to a strong fre-
quency-dependent suppression and a constant drift due to the scaling with the current synap-
tic weight (which increases—for LTP—or decreases—for LTD—during the stimulation
protocol). The fit of the calcium-based model yields STDP curves which are dominated by
depression for low pair presentation frequencies (Fig 2C and 2D). Intermediate frequencies
yield curves with depression for At < 0 ms and potentiation for At > 0 ms, whereby intermedi-
ate frequencies implies f~ 20 Hz in visual cortex and f ~ 10 Hz in somatosensory cortex.

Due to STD, we find a non-monotonic behavior of LTD and LTP with respect to the stimu-
lation frequency. The model predicts weak LTP for very low presentation frequencies of pre-
post (At = 10, 5 ms) pairs (Fig 2A and 2B). This LTP vanishes at frequencies around 5 Hz and
re-emerges at higher rates, a behavior which is due to STD-induced reduction in presynapti-
cally evoked calcium and not seen in the model variant without STD (compare with Fig 5A
and 5B). Not LTP but no change has been measured in visual cortex at 0.1 Hz where the sparse
data points hint to a monotonic increase of LTP (Fig 2A). Such low stimulation frequencies
were not investigated in somatosensory cortex (Fig 2B).

One particular feature of somatosensory plasticity stand out: the transition from LTD to
LTP for post-pre pairs (At = —10 ms) at low firing rates between 5 and 15 Hz and consequen-
tially the loss of distinction between pre-post and post-pre pair induced plasticity at ~ 15 Hz.
In contrast for the visual cortex, LTD is induced for post-pre (At = —10 ms) stimulation from
0.1 up to about 25 Hz and the difference between pre-post and post-pre stimulation vanishes
at 38 Hz. As a result, the range of different plasticity results for pre-post vs. post-pre stimula-
tion is restricted to lower frequencies in the somatosensory- compared to the visual cortex.

The calcium traces for 10 and 22 Hz regular spike-pair stimulation in both structures (Fig
2E and 2F) demonstrate the two factors responsible for the transition from LTD to LTP at low
firing rates in somatosensory cortex: (i) The difference between depression and potentiation
threshold is small such that the LTP threshold is crossed and LTP is induced as soon as the cal-
cium trace starts to accumulate for increasing frequencies (8, = 1, 6, = 1.388 in somatosensory
ctx; 0= 1, 8, = 1.631 in visual ctx.). (ii) The calcium decay time constant, 7c,, is such that
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consecutive calcium transients start to accumulate between 10 and 20 Hz stimulation (7, =
49.0 ms for somatosensory and 38.3 ms for visual cortex; see Table 1). In the visual cortex, the
difference between both thresholds is larger and the calcium decay time constant is faster (see
Table 1). As a result, 10 and 22 Hz stimulation dominantly activate depression leading to LTD
for both cases.

Calcium responses to presynaptic stimulation suppress stronger in the somatosensory cor-
tex (see Fig 1). In turn, any difference in the calcium trace between pre-post and post-pre stim-
ulation disappears at lower stimulation frequencies in the somatosensory- compared to the
visual cortex. This fact explains why the distinction in induced plasticity between pre-post and
post-pre stimulation disappears at low stimulation frequencies in the somatosensory cortex. In
other words, if the calcium traces for At = —10 ms and +10, 5 ms are alike, the times spent
above potentiation and depression thresholds and therefore the induced plasticity are identi-
cal. This becomes furthermore apparent in the fit of the model variant without STD to the
somatosensory plasticity data. Here, the difference in induced plasticity for pre-post vs. post-
pre pairs is retained for frequencies up to ~ 25 Hz (see Fig 5B).

In summary, the spike-timing- and frequency dependence of synaptic plasticity can be cap-
tured by the calcium-based model endowed with STD dynamics in the calcium. In particular,
the model resolves the experimentally measured difference between pre-post and post-pre
spike-pair stimulation.

Irregular spike-pair presentations strongly reduces the impact of spike-
timing on synaptic plasticity

Spike-pairs in the plasticity experiments considered above were presented in a regular fashion,
that is, with fixed inter-pair intervals. In a step towards more natural, irregular firing patterns,
we use the previously suggested protocol of Poisson-distributed spike-pairs [22], where the
presynaptic neuron fires spikes according to a Poisson process and each spike is followed by a
postsynaptic spike at time lag At with probability p. p effectively controls the strength of spik-
ing correlation between pre- and postsynaptic neuron, with maximal correlation for p = 1 and
independent Poisson firing for p = 0 (see Materials and methods).

A simple shift from regular pre- and postsynaptic spike-pairs to spike-pairs with the same
timing constraints but irregular distribution has a strong impact on STDP curves (Fig 3). At all
frequencies, the change in synaptic strength is dominated by LTP, while the LTD part of the
curves is strongly reduced or even disappears for plasticity in the visual cortex (Fig 3A). Strik-
ingly, the range of plasticity values obtained when varying the time lag between pre- and post-
synaptic spikes, At, is much reduced for irregular spike pairs.

Irregular presentation of spike-pairs strongly reduced the impact of spike-timing on synap-
tic changes, which has been previously found for calcium- and triplet-based plasticity models
[22]. This effect still holds true when STD is present in the calcium dynamics. Note that up to
this point the reduction of the impact of spike-timing on plasticity for irregular spike-pairs is a
prediction based on modeling work and remains to be tested experimentally.

Synaptic changes occur at very different firing rate ranges across cortices

Next, we studied how synaptic changes in response to firing rate increases compare with
changes from correlations and ask in particular in which firing rate range plasticity is most
sensitive to both changes.

In visual- and somatosensory cortex, when increasing the uncorrelated firing rate in pre-
and postsynaptic neurons, the change in synaptic strength follows a BCM-type of curve [40]:
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Fig 3. Change in synaptic strength in response to irregular and regular spike-pairs at different firing rates. (A, B) Change in synaptic strength as a
function of the time lag between pre- and postsynaptic spikes for irregular (orange) and regular spike-pairs (blue) at different firing rates for the
calcium-based plasticity model with STD dynamics of the calcium. The STDP curves for the visual cortex parameter-set is shown in A while
somatosensory examples are shown in B. Note that all synaptic changes are shown from a 10 s stimulation and with p = 1, i.e., the number of spikes
occurring during a stimulation protocol varies with the firing rate and each presynaptic spike is followed or preceded by a postsynaptic one at time lag
At. Note that the curves for regular spike-pairs are shown for the interval At € [-1/(2v), 1/(2v)] only as the same curve is repeated for larger values of At.

https://doi.org/10.1371/journal.pchi.1008265.g003

no change when both neurons are inactive, depression at low rates and potentiation at inter-
mediate to high firing rates (Fig 4A and 4B).

Adding pre-post correlations (At > 0 ms) increases the change in synaptic strength at low fir-
ing rates (i.e. < 25 spk/s in visual cortex and < 8 spk/s in somatosensory cortex; Fig 4C and 4D).
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synaptic strength as a function of the firing rate for several values of the correlation coefficient p and time lag At in visual- (A) and somatosensory cortex
(B). Five cases are shown: (i) uncorrelated Poisson spike trains (p = 0, black), (ii) pre-post pairs with A = 10 ms for visual cortex (A) and A = 5 ms for
somatosensory cortex (B) at p = 0.2 (light red) and p = 0.4 (dark red); and (iii) post-pre pairs with A = —~10 ms at p = 0.2 (light blue) and p = 0.4 (dark
blue). p = 0.2 (0.4) implies that only 20% (40%) of presynaptic spikes are followed by a postsynaptic spike at delay At. (C, D) Sensitivity of synaptic
changes to spike-pair correlations (see Materials and methods, Eq (8)) in visual- (C) and somatosensory cortex (D). The change in synaptic strength due
to spike-timing correlations is shown as a function of the firing rate. (E, F) Sensitivity of synaptic changes to firing rate changes (see Materials and
methods, Eq (9)) in visual- (C) and somatosensory cortex (D). Color plots represent the synaptic change as a function of the baseline firing rate (x-axis)
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and the increase in firing rate (y-axis). Light and dark red lines indicate the firing rate increase evoking the same synaptic change as spike-pair
correlations at At = 10 ms in E and At = 5 ms in F with p = 0.2 and p = 0.4, respectively. Prevalent firing rate ranges in visual (< 25 spk/s; [41]) and
somatosensory cortex (< 8 spk/s; [42]) are marked by gray shaded regions in panels A-D and by a gray, dashed line in panels E,F. Note the different
firing rate ranges shown on the x-axis between the left and the right column. All changes are in response to a stimulation for 10s.

https://doi.org/10.1371/journal.pchi.1008265.9004

Post-pre correlations entail little change compared to uncorrelated pre- and postsynaptic activity
in visual cortex and a decrease of the change in synaptic strength in somatosensory cortex (see
blue lines in Fig 4C and 4D).

Even though the qualitative plasticity behavior is very similar between visual- and somato-
sensory cortex, that is, the sensitivity to firing rate and correlations exhibits the same overall
behavior, the synaptic changes occur in very different firing rate ranges (note the different x-
axis scales between the left and the right column in Fig 4). Synaptic plasticity is most sensitive
to changes in firing rate and correlations for rates up to ~ 15 spk/s in the visual cortex, while
the same amplitudes of sensitivities extends only up to ~ 5 spk/s in the somatosensory cortex
(Fig 4). In other words, changes due to activity alterations are induced at much lower firing
rates in the somatosensory cortex compared to the visual cortex. Similar to the difference in
the sensitive ranges of plasticity, the prevalent firing rates in the visual- and somatosensory
cortex are very different: while neurons in the visual cortex in vivo reach activities up to 25
spk/s [41], they fire up to 8 spk/s in the somatosensory cortex in vivo [42] (see gray shaded
regions in Fig 4).

Where does this difference in sensitive ranges between somatosensory- and visual cortex
come from? As discussed above, the transition from LTD to LTP at low firing rates in the
somatosensory cortex emerges from the short extend of the LTD region, that is, the small dif-
ference between depression and potentiation thresholds (see Table 1). This difference is larger
in the visual cortex which in turn gives rise to a transition to maximal LTP at higher firing
rates. The dissimilar sensitivities to firing rate changes between visual- and somatosensory cor-
tex are the result of this difference in potentiation thresholds.

Comparing model variants with and without STD fitted to the experimental data (Fig 5)
illustrates that STD in the somatosensory cortex is responsible for restricting the correlation
sensitivity to low firing rates < 5 spk/s. The somatosensory model variant without STD exhib-
its sensitivity to correlations up to ~ 20 spk/s which goes well beyond the prevalent firing rates
in that region (see Fig 5F). With STD, the stronger suppression of presynaptically evoked cal-
cium traces in the somatosensory cortex as compared to the visual cortex explains the disap-
pearance of correlation sensitivity at low firing rates (see explanation above).

In summary, there is a perfect match between the predominant firing rates and the sensitive
ranges of the synaptic plasticity in visual- and somatosensory cortex. Synaptic long- and short-
term plasticity are tuned such that LTD and LTP occur at realistic firing rate ranges in both
cortices. Fitting the calcium-based plasticity model to experimental plasticity data leads us to
predict that the potentiation threshold—the calcium sensitivity of signaling cascades leading to
LTP—is higher in the visual cortex compared to the somatosensory cortex. This difference is a
crucial component creating the area specific sensitivity ranges.

Calcium-based model with nonlinear calcium dynamics

In the calcium-based model, synaptic changes are driven by presynaptically and postsynapti-
cally evoked calcium influx. Up to this point, we considered a simplified model of the calcium
dynamics in which calcium transients elicited by presynaptic and postsynaptic spikes sum line-
arly. Could a more realistic, nonlinear calcium dynamics, mediated by the pre- and postsynap-
tic coincidence-dependent NMDAR current, change the sensitivity range of plasticity to spike
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Fig 5. Comparison between model versions with and without short-term depression. (A, B) Model fit (solid lines) to the experimental plasticity data
obtained in visual cortex (A, mean + SEM, [2]) and somatosensory cortex slices (B, mean + SEM, [3]). Same depiction as in Fig 2. The purple and brown lines
show the model without STD fitted to the data, while the gray lines are a reproduction from Fig 2A and 2B of the model with STD. (C, D) Change in synaptic
strength in response to irregular pre- and post activity as a function of the firing rate for several values of the correlation coefficient p and one time lag At in
visual- (C) and somatosensory cortex (D). Two cases are shown for the model without STD: (i) uncorrelated Poisson spike trains (p = 0, dark red) and (ii) pre-
post pairs with A = 10 ms in C (A = 5 ms in D) at p = 0.4 (red). These two cases are also shown for the model with STD: (i) uncorrelated Poisson spike trains
shown in black, and (ii) pre-post pairs with A = 10 ms in C (A = 5 ms in D) at p = 0.4 shown in gray. (E, F) Sensitivity of synaptic changes to spike-pair
correlations in visual- (E) and somatosensory cortex (F). The change in synaptic strength due to spike-timing correlations is shown as a function of the firing
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rate for the model without STD (red) and with STD (gray; same line as in Fig 4C and 4D). Prevalent firing rate ranges in visual (< 25 spk/s; [41]) and
somatosensory cortex (< 8 spk/s; [42]) are marked by gray shaded regions in panels C-F. Note the different firing rate ranges shown on the x-axis between the
left and the right column of panels C-F. All changes in panels C-F are in response to a stimulation for 10 s.

https://doi.org/10.1371/journal.pchi.1008265.g005

correlations and firing rate changes? To answer this question, we examined a nonlinear cal-
cium dynamics implementation that includes a coincidence-dependent NMDAR component
(Eq (6)). Here we show that our main results do not depend on the implementation of the cal-
cium dynamics.

In the nonlinear calcium implementation, the calcium transient elicited by a postsynaptic
spike consists of two components (see Materials and methods, Eq (6)): (1) a voltage-dependent
calcium channel-mediated part; and (2) a nonlinear NMDA part controlled by a parameter
that characterizes the increase of the NMDA mediated current in case of coincident presynap-
tic activation and postsynaptic depolarization, the nonlinearity factor # (see Eqs (6) and (7)).
The calcium transient elicited by a presynaptic spike remains unchanged and implements STD
dynamics (Eq (3)).

To compare the results of the calcium-based model from the “nonlinear calcium dynamics”
with the “linear calcium dynamics”, we first fit the calcium-based model to visual- and somato-
sensory cortex plasticity data using the nonlinear calcium dynamics (Fig 6A and 6B). The cal-
cium-based model with the nonlinear calcium implementation provides a good fit of the
regular spike-pairs presented at different frequencies compared with the calcium-based model
with linear calcium dynamics (compare colored and black/gray lines in Fig 6A and 6B).

We then compared the STDP curves for regular- and irregular spike-pairs at an intermedi-
ate rate varying the time lag between pre- and postsynaptic spikes (Fig 6 C,D). Note that the
STDP curves exhibit a large jump with the nonlinear calcium model at the point at which the
order between pre- and postsynaptic spike changes, i.e. at the point at which the nonlinear
term (Eq (6)) is activated due to the pre-before-post order of spikes. When comparing synaptic
changes induced by irregular spike-pairs with those induced by regular spike-pairs: (1) irregu-
lar spike-pairs induce less depression and more potentiation than regular spike-pairs; and (2)
the influence of spike timing is reduced for irregular spike-pairs compared with regular spike-
pairs. These differences between regular and irregular spike-pairs already observed with the
linear calcium model seem to be further enhanced with nonlinear calcium dynamics (compare
Fig 6C and 6D and Fig 3). Note also the large LTD magnitude for post-pre pairs (At < 0 ms)
and regular spike-pair stimulation, which is a result of the permanently decreasing presynapti-
cally induced calcium amplitudes due to STD and the scaling with the diminishing synaptic
weight during the 10 s stimulation.

Lastly, we investigated synaptic changes in response to correlations for the nonlinear cal-
cium model Fig 6E-6H. We asked in particular in which firing rate ranges plasticity is most
sensitive in visual- and somatosensory cortex. The sensitivity to correlations reaches a peak at
low firing rates (~10 spk/s in visual cortex; 4 spk/s in somatosensory cortex) and vanishes as
the firing rates are increased further (Fig 6G and 6H). The results for the nonlinear calcium
model are therefore qualitatively similar to the calcium-based model with linear calcium
dynamics (compare red and gray lines in Fig 6G and 6H). In particular, the peak of correlation
sensitivity falls in the range of prevalent firing rates in both structures. Quantitatively, the mag-
nitude of the sensitivity to correlations is larger in the nonlinear calcium model compared to
the linear version in visual cortex further enhancing the effect of selective sensitivity.

In summary, the extension of the model by a nonlinear version of the calcium dynamics
demonstrates that the conclusions drawn on the cortex-specific sensitivity range to spike tim-
ing correlations does not depend on the calcium implementation.
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Fig 6. Comparison of synaptic changes in linear- and nonlinear calcium dynamics model versions. (A, B) Model fit (solid
lines) to the experimental plasticity data obtained in visual cortex (A, mean + SEM, [2]) and somatosensory cortex (B,

mean + SEM, [3]). Same depiction as in Fig 2. The purple and brown lines show the model with nonlinear calcium dynamics
fitted to the data, while the gray lines are a reproduction from Fig 2A amd 2B of the model with linear calcium dynamics (see
Materials and methods). Both model variants implement STD. (C, D) Change in synaptic strength as a function of the time lag
between pre- and postsynaptic spikes for irregular (orange) and regular spike-pairs (blue) at an intermediate firing rate for the
nonlinear calcium model. The STDP curve for the visual cortex parameter-set is shown in C while a somatosensory example is
shown in D. (E, F) Change in synaptic strength in response to irregular pre- and post activity as a function of the firing rate for
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several values of the correlation coefficient p and one time lag At in visual- (E) and somatosensory cortex (F). Two cases are
shown for the model with nonlinear calcium dynamics: (i) uncorrelated Poisson spike trains (p = 0, dark red) and (ii) pre-post
pairs with A =10 ms in E (A = 5 ms in F) at p = 0.4 (red). These two cases are also shown for the linear calcium model: (i)
uncorrelated Poisson spike trains shown in black, and (ii) pre-post pairs with A = 10 ms in E (A = 5 ms in F) at p = 0.4 shown
in gray. (G, H) Sensitivity of synaptic changes to spike-pair correlations in visual- (G) and somatosensory cortex (H). The
change in synaptic strength due to spike-timing correlations is shown as a function of the firing rate for the nonlinear calcium
model (red) and for the linear model variant (gray; same line as in Fig 4C and 4D). Prevalent firing rate ranges in visual- (< 25
spk/s; [41]) and somatosensory cortex (< 8 spk/s; [42]) are marked by gray shaded regions in panels E-H. Note the different
firing rate ranges shown on the x-axis between the left and the right column of panels E-H. All changes in panels C-H are in
response to a stimulation for 10s.

https://doi.org/10.1371/journal.pchi.1008265.g006

Discussion

Using numerical simulations, we have explored the impact of short-term depression on long-
term plasticity induction in visual- and somatosensory cortices. We fitted the calcium-based
plasticity model to spike-pair- and frequency plasticity data in both structures and showed that
the experimental data can be captured despite the activity-dependent reduction in presynapti-
cally induced calcium transients during the burst stimulation and the scaling of evoked cal-
cium transients with the dynamically changing synaptic weight. When examining plasticity in
response to more in vivo-like, irregular stimulation patterns, we show that short-term and
long-term plasticity parameters ensure that synaptic changes are susceptible to rate and corre-
lation changes within the prevalent firing rates in both cortical areas, which are markedly dif-
ferent. Our findings suggest that long- and short-term synaptic plasticity are together tuned to
account in combination for the activity properties of the synapse’s location.

Long-term plasticity alters short-term plasticity dynamics

The induction of long-term plasticity is known to alter short-term plasticity when long-term
changes are expressed presynaptically [37, 43]. LTD induction, for example, reduces short-
term depression due to a reduction in transmitter release. As a first universal approach, we use
constant short-term plasticity parameters fitted to baseline responses between layer V pyrami-
dal cells, that is, before long-term plasticity induction. At the same time, long-term changes
affect presynaptically induced calcium amplitudes through an assumed linear scaling reflecting
increases and decreases in synaptic strength in the evoked calcium response. See [32] for a
phenomenological model which accounts for the change in short-term synaptic plasticity
through long-term plasticity induction.

Stochastic vesicle release

The deterministic short-term plasticity model utilized here is fitted to average postsynaptic
responses. However, transmitter release is a stochastic process and as a consequence the mag-
nitude of the postsynaptic response evoked by each presynaptic action potential fluctuates,
even for the same preceding activity pattern. The quantal nature of synaptic transmission is
described by binomial statistics [8, 36]. In turn, stochastic synaptic short-term plasticity
parameters not only describe the change in the average response, but also the magnitude of
fluctuations of individual responses. The variability of calcium responses impacts the induc-
tion of long-term plasticity in protocols repeating the same stimulation pattern multiple times
(10 to 15 times as used here). It has been shown that a calcium-dependent plasticity model
incorporating stochastic vesicle release better approximates experimental plasticity data of
spike-triplets and is less sensitive to precise parameter values [29]. Whether experimental plas-
ticity data considered here can be captured under such conditions and how stochasticity affects
firing rate and correlation sensitivities is the subject of future research.
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Experimental predictions

To our knowledge, no experimental studies have explored how short-term plasticity shapes
long-term plasticity during the induction phase. A likely reason for that is the interlinkage
between both platicity processes which makes it experimentally difficult to alter one without
affecting the other. Our study suggests that the strength of short-term depression controls the
discrimination between pre-post and post-pre long-term plasticity when increasing the stimu-
lation frequency (see Fig 5), i.e., both stimulation patterns induce the same magnitude of LTP
when pre-synaptic responses are strongly suppressed as it is the case in the somatosensory cor-
tex. As a consequence, reducing experimentally short-term depression should reveal different
long-term plasticity outcomes for post-pre and pre-post stimulation at elevated stimulation
frequencies, as seen in the visual cortex at intermediate frequencies (~ 20 Hz) which exhibits
weaker short-term depression compared to the somatosensory cortex. A possible way to
reduced short-term depression experimentally is the depletion of the pool of release-ready ves-
icles with trains of presynaptic stimuli right before the long-term induction activity patterns,
or by reducing the pause (10 s in [2] and 4 s in [3]) between the burst of spike-pairs, or by
using genetic manipulations partly turning short-term depression into facilitation [44]. Our
results predict a larger separation between pre-post and post-pre long-term plasticity in such
cases. Another way to test our conclusions is to apply the same plasticity induction protocol in
another system with markedly different short-term dynamics. The Schaffer collateral to hippo-
campal CA1 pyramidal neuron synapse would be an ideal candidate as it shows little short-
term depression even at high stimulation frequencies [45]. A further prediction from our
modeling study is the non-monotonic induction of LTP for pre-post (At > 0 ms) pairs. Due to
short-term depression, the amount of induced LTP is reduced when increasing the stimulation
frequency from 1 Hz to 5 Hz in both cortical areas considered (Fig 2A and 2B).

Recent theoretical studies highlighted the fact that Hebbian long-term plasticity alone can
lead to unstable feedback loops in which correlations or high firing rates of pre- and postsyn-
aptic neurons drive potentiation of synapses that further increase postsynaptic rates and corre-
lations (see [46] for a review). Fast compensatory/homeostatic forms of synaptic plasticity
such as fast heterosynaptic plasticity [47] or fast BCM-like metaplasticity [48] have been sug-
gested to stabilize firing rates and Hebbian plasticity. The here proposed model combining
short- and long-term plasticity effectively implements a fast compensatory mechanism for pre-
synaptic stimulation through the reduction of presynaptically induced calcium transients due
to STD dynamics. This is equivalent to an increase in the potentiation threshold—reminiscent
of a sliding threshold—and can prevent runaway potentation. Equivalently, LTD magnitude
can be limited if calcium transients fall below the LTD threshold due to continued decrease of
presynaptically evoked calcium transients. Whether these mechanisms are sufficient to assure
stability and learning in neural circuits remains to be studied for the calcium-based model (see
[33]), also since plasticity induced through postsynaptic activity is not compensated in the
model.

Validity of the results in vivo

Long-term plasticity in slices has been induced with elevated extracellular calcium concentra-
tions while in vivo calcium levels are estimated to be around 1.5 mM [49]. Considering realistic
calcium levels will most likely change the plasticity rules observed in vitro under elevated extra-
cellular calcium [39] and has to be considered when applying our results to in vivo data. Most
of the data on short-term plasticity stems from brain slices but a recent study established STD
to be involved in the adaptation to sensory responses in the somatosensory cortex in vivo [50].
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Generality of model results

The deterministic short-term depression model utilized here has been fitted to evoked voltage
responses between layer V neurons in somatosensory- and visual cortex. The two parameter
sets describing STD dynamics are well constrained by these traces and provide a reliable
account of the mean postsynaptic response, which is used for the calcium dynamics descrip-
tion here. Conversely, the calcium-based long-term plasticity model (with 8 free parameters) is
insufficiently constrained by the 10 and 7 LTP/LTD data-points from visual- and somatosen-
sory cortex (Fig 2A and 2B). The particular shape of the STDP curves is subject to this uncer-
tainty. However, the frequency dependence of the plasticity is dominantly dictated by the
calcium time constant, T¢,, which describes the interaction time scale between consecutive
spikes. This parameter is well constrained by the regular plasticity data, and in turn, the main
conclusions drawn here which concern the behavior of the model for interactions between
consecutive stimuli are robust. Short-term depression models describing the use and recovery
of presynaptic resources are typically applied to postsynaptic current responses [28, 29, 36].
Using them to directly model evoked calcium transients neglects the integration of current
into concentration. How this simplification affects the conclusions in particular at high fre-
quencies is the subject of future research.

Numerous experimental studies revealed a large diversity of long-term plasticity induction
and expression mechanisms across different synapses. These studies have identified two key
elements for the induction of long-term synaptic plasticity in hippocampus and neocortex.
First, postsynaptic calcium entry mediated by N-methyl-D-aspartate receptors (NMDARs)
[51] and voltage-dependent Ca" channels (VDCCs) [38, 52, 53] has been shown in many
cases to be a necessary [38, 54, 55] and sufficient [56-58] signal for the induction of synaptic
plasticity. Second, calcium in turn triggers downstream signaling cascades involving protein
kinases (mediating LTP) and phosphatases (mediating LTD) (see e.g. [59-62]). Another G-
protein coupled LTD induction pathway, identified in visual- and somatosensory cortex,
involves retrograde signaling by endocannabinoids which requires postsynaptic calcium eleva-
tions [37, 38, 63]. The highly simplified model used here retains the postsynaptic calcium sig-
nal as a crucial trigger of plasticity. The behavior of the model in response to spike-timing-
and rate dependence during regular and irregular stimulation patterns arises from the inter-
play between postsynaptic calcium dynamics and the depression and potentation thresholds
which implement in a highly simplified fashion calcium-dependent signaling cascades leading
to synaptic potentiation and depression, respectively. How other plasticity induction pathways
act in conjunction with calcium has been investigated for example in [64], but in what way this
shapes plasticity with irregular stimulation remains to be studied.

Conclusion

By including short-term plasticity effects in a calcium-based model of long-term plasticity, we
aimed here to link the different time scales at which synapses modify their strength. Both,
short-term and long-term plasticity influence each other and we suggest that this interaction
might be region and synapse specific. Cortical cells have a large repertoire to adapt their
responses to activity- or stimulus statistics on a range of time scales such as spike-frequency
adaption on the millisecond scale [65], or homeostatic plasticity on the scale of hours [66].
Our results lend support to the idea that these mechanisms might act in a concerted fashion
and that their dynamic ranges are well adjusted.
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