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Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various
neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as
their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived
MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability
and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform
ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC
transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane
fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus,
the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological
disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels.
As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and
machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide
an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and
freshness based on integrated omics after detachment from the culture dish for successful cell therapy.

1. Introduction

Bone marrow-derived mesenchymal stem cells (BM-MSCs)
have many merits as cell therapeutic agents, such as compara-
bly easy in vitro handling, high plasticity, widespread availabil-
ity, and immunosuppressive activity [1–3]. In addition, they
have beneficial characteristics, such as anti-inflammatory,
immunomodulatory, paracrine, and antiapoptotic ability, as
well as homing capacity to the region of brain injury. Particu-
larly, BM-MSCs can suppress inflammatory conditions in the

central nervous system (CNS) and home to inflammatory
brain injury [4–9]. To date, there have beenmany drugs devel-
oped to reduce the symptoms of CNS diseases because of irre-
versible neurological damage and limited regeneration in the
brain, but these are associated with many adverse effects
[10–12]. Therefore, BM-MSCs are a promising approach to
treat neurological diseases, such as ischemia, traumatic brain
injury, and neurodegenerative diseases, owing to their anti-
inflammatory and immunomodulatory effects on such CNS
neurological diseases [3, 13–16].
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Most studies on BM-MSC-based therapies for neurologi-
cal diseases have focused on the paracrine effects, immuno-
modulatory effects, and neuronal replacement through
differentiation [17–19]. In addition, the MSC-based cell thera-
pies have been applied to neurological diseases, which have no
effective alternative treatments. Andrzejewska et al. summa-
rized the application of MSC on the neurological diseases,
including stroke, brain injury, Alzheimer’s disease (AD), Hun-
tington’s disease (HD), Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), multiple sclerosis (MS), and spinal cord
injury, with experimental and clinical aspect [20]. Mukai et al.
focused on clinical trial of theMSC transplantation in the neu-
rological diseases with detailed condition of the clinical trials
[21]. Moreover, Namestnikova et al. reported advantages of
combinatorial methods, which are combination of coadminis-
tration of different stem/progenitor cell types, for the neuro-
logical diseases in animal and clinical study [22]. However,
studies on the characteristics of human (hBM-MSCs) before
transplantation are very limited. Depending on timing, before
hBM-MSC transplantation into patients, after detaching these
cells from the culture dish, cell viability, deformability, cell
size, and membrane fluidity decrease, whereas reactive oxygen
species (ROS) generation, lipid peroxidation, and cytosolic
vacuoles increase, as shown in Figure 1 [9, 23].

hBM-MSC transplantation into patients is associated with
an inevitable time-delay after cell detachment from the culture
dish owing to various factors, including the injection formula-
tion, transportation, and surgery preparation. Thus, an assess-
ment of the quality and freshness of hBM-MSCs is important
for successful hBM-MSC-based cytotherapy outcomes, and
studies have tried to evaluate and preserve the quality and
freshness of hBM-MSCs [23, 25]. However, conventional
cell-based methods for evaluation, such as cell viability assays,
fluorescence-activated cell sorting-based methods, and ultra-
structural analysis, do not reveal the mechanism underlying
changes in the quality and freshness of hBM-MSCs. Thus,
omics, including genomics, transcriptomics, proteomics, and
metabolomics, yield comprehensive information and can be
interpreted using bioinformatic analysis [24, 26–31]. These
technologies have been introduced to analyze the mechanism
of changes in the hBM-MSCs status [9, 23]. Especially, the
integration of transcriptomics and metabolomics with amino
acid profiles is helpful to elucidate the quality and freshness
of hBM-MSCs over time after trypsinizing cells [23]. Recently,
advanced analysis has been used for the integration of omics,
identification and in silico prediction of biological functions,
and screening of upstream regulator molecules [32]. More-
over, discrimination methods, such as machine learning algo-
rithms, have been used for investigations of correlations
among each omics dataset, based on the large amount of data
acquired from multiomic analysis. To evaluate and maintain
the quality and freshness of hBM-MSCs, comprehensive
multiomic analysis (big data) and proper machine learning
algorithms for analyses of correlations within data are highly
recommended rather than target approaches, according to
the complexity of cellular changes after detachment from the
culture dish. Here, we review three topics as follows: (i)
hBM-MSCs, (ii) the application of hBM-MSCs to various neu-
rological diseases, and (iii) the improvement of the quality and

freshness of BM-MSCs after detachment from the culture dish
for successful cell therapy.

2. hBM-MSCs

MSCs were first discovered in the bone marrow by Friedenstein
in the 1970s [33, 34]. These cells are nonhematopoietic multi-
potent adult stem cells that are plastic-adherent with great
capacity for proliferation, self-renewal, and differentiation [35,
36]. MSCs can be obtained not only from bonemarrow but also
from various tissues, such as adipose tissue, placenta, umbilical
cord, and peripheral blood [37–40]. Although MSCs can be of
different tissue origins, theymustmeet theminimal criteria pro-
posed by the Mesenchymal and Tissue Stem Cell Committee of
the International Society for Cellular Therapy (ISCT) as follows:
(1) maintenance of plastic adherence; (2) ≥95% of the MSCs
express surface molecules, such as CD73, CD90, and CD105,
and do not express surface molecules, such as CD19 and HLA
class I or CD11b, CD79a or CD45, CD34, and CD14; (3) capac-
ity of trilineage differentiation in vitro into adipocytes (fat),
osteoblasts (bone), and chondrocytes (cartilage); and (4) immu-
nomodulatory activity [17, 41–46]. Additionally, MSCs can be
differentiated into nonmesodermal-origin cells, including neu-
rons, hepatocytes, cardiomyocytes, hepatocytes, and epithelial
cells, which are of ectodermal and endodermal lineages [47–51].

Among MSCs, BM-MSC-based therapies have been
promising strategy in preclinical and clinical trials based
on tissue regeneration and wound healing attributed to the
cell engraftment and differentiation properties of MSC [45,
52–55]. However, recent approaches for BM-MSC therapies
have focused on paracrine effects in which MSC-derived
vesicles are secreted containing various contents, such as
soluble cytokines, growth factors, hormones, and miRNA,
from immune cells and damaged tissues. This effect finally
improves the efficacy of BM-MSC therapy [56–59]. As many
studies have been reported regarding the efficacy of using
exosomes derived from BM-MSCs on diverse diseases [59,
60], such BM-MSC-based therapies have been continuously
suggesting to be promising strategies for clinical application
to various neurological diseases [16, 20, 61, 62]. In addition,
obtaining hBM-MSCs from adult tissue can avoid contro-
versy regarding the ethical issues associated with the use of
embryonic sources [63, 64]. Owing to these advantages,
hBM-MSCs have strong potential in neurological diseases
as a therapeutic tool.

3. Application of hBM-MSCs in
Neurological Diseases

Neurological diseases, which cause neurological impairment,
are characterized by irreversibility and progressive disorders,
resulting in deterioration of the performance of regular
activities because of the limited regenerative capacity for lost
neurons and glial cells [16, 20, 65]. However, the landscape
of treatment is limited, with restricted treatment options
[16, 65]. Stem cell therapy, from preclinical to clinical trials
based on the fundamental characteristics of stem cells, has
shown promise as a potential treatment or to at least prevent
progressive deterioration with neurological diseases, spinal
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cord injury, and myocardial infarction [65–67]. Several dif-
ferent sources, including neural stem cells, human umbilical
cord blood cells, embryonic stem cells, hematopoietic stem
cells, and MSCs, have been utilized in stem cell therapy
[65]. Neural stem and embryonic stem cells have not been
easy to apply in clinical fields or research because of the eth-
ical issues (procured from aborted fetuses for allogenic
transplantation), allograft rejection, or tumorigenic capacity
[65, 68]. In recent years, more than half of registered stem
cell trials have been conducted using MSCs because they
are easy to acquire from the patients themselves, avoiding
the ethical concerns and the possibility of harmful events
[14, 65, 68]. In this section, we briefly review the neuropro-
tective and anti-inflammatory effects of hBM-MSCs via sys-

temic transplantation, such as intravenous or intraarterial
infusion, as shown in preclinical and clinical studies on
ischemic stroke, traumatic brain hemorrhage, and neurode-
generative diseases, such as AD, HD, and PD.

3.1. Ischemic Stroke. The transplantation of hBM-MSCs could
improve functional recovery and reduce the infarction size via
neuroprotective and immunomodulatory effects after ische-
mic stroke in rats [69–74], a nonhuman primate model [75],
and humans [14, 76–81]. Neuroprotection, nerve regenera-
tion, and angiogenesis result from the paracrine effect of neu-
rotrophic factors, including brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), and vascular endothelial
growth factor (VEGF) [74, 82]. The local activation of
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Figure 1: The quality and freshness of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are decreased over time after
detachment from the culture dish. To evaluate the freshness and quality of hBM-MSCs, the metabolome is analyzed using gas
chromatography–mass spectrometry (GC/MS), the transcriptome is analyzed using microarray, deformability is analyzed using
microfluidics, and membrane fluidity is tested using differential interference contrast- (DIC-) total internal reflection fluorescence
microscopy (TIRFM) in combination based on previous reports [9, 24].
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astrocytes andmicroglia/macrophages and the influx of leuko-
cytes, including T cytotoxic cells, are significantly reduced
[60]. Immunomodulatory effects as suppressors of inflamma-
tion were observed by decreasing the levels of proinflamma-
tory cytokines, namely, interleukin (IL)-1α, IL-1?, IL-6, and
tumor necrosis factor (TNF)-α and by increasing the levels
of anti-inflammatory cytokines, including IL-4, IL-10, and
interferon (INF)-? [60, 83, 84]. Moreover, rat BM-MSCs can
suppress the inflammatory response by decreasing activated
microglia, which are resident immune cells of the brain that
produce proinflammatory cytokines at the cellular network
level [85]. Interestingly, in an ischemic stroke animal model,
hBM-MSCs were found to restore polyamine and free fatty
acid compositions from metabolic disturbance to a near-
normal state and maintain metabolic homeostasis [86, 87].
Migrated leucocytes aggravate neuroinflammation, enhancing
cell death, blood–brain barrier (BBB) disruption, and vasogenic
edema [71, 88, 89]. Leucocyte infiltration is facilitated by an
increase in BBB permeability and endothelial cell adhesion
molecule expression [89]. Leucocytes further enhance inflam-
mation, increase cell death, and lead to BBB disruption and
vasogenic edema [89]. Particularly, hBM-MSCs can decrease
BBB permeability in the damaged neural tissue [71] and pro-
vide BBB integrity and maintenance through interactions with
pericytes, astrocytes, and neurons [88].

An initial clinical trial of hBM-MSCs using autologous
stem cells was conducted in 2005 for five patients with mid-
cerebral artery occlusion, comparing results to those of
twenty-five patients without stem cell therapy [14]. To date,
phase I/II studies, including the first study, have reported the
safety and feasibility of autologous or allogenic hBM-MSCs
with long-lasting or transient neurological improvements
[14, 76–81], functional improvements [80], and a short-
term decrease in circulating T cells and inflammatory cyto-
kines [90].

Although serious complications of hBM-MSCs have not
been reported, there are some concerns about events such as
pulmonary embolism with the intravenous injection of adi-
pose MSCs [91] and allogeneic BM-MSCs [92], as well as
the possibility of microembolism risk due to the closure of
the lumens of small-diameter vessels related to the flow of
cerebral blood, cell dose, infusion velocity [92], and innate
procoagulant activity [67]. In addition, a previous study
revealed that the deformability of hBM-MSCs decreased,
and that the membranes of hBM-MSCs became stiffer via
the peroxidation of plasma membrane lipids over time
owing to the generation of ROS [23]. Cell dose and infusion
velocity are important factors that trigger embolism; how-
ever, changing the decreased deformability of hBM-MSCs
is an important contributing factor to these serious compli-
cations, considering cerebral infarction in patients with
sickle-cell disease, which decreases the deformability of red
blood cells [93]. Therefore, it is necessary to fully consider
the quality and freshness of hBM-MSCs after dissociation
from the cell culture dish.

3.2. hBM-MSCs in Traumatic Brain Injury. Traumatic brain
injury is caused by primary injury facilitated by an initial insult
and secondary injury occurring 1–3 days after the initial trau-

matic event. Primary injury includes a direct response to the
initial insult, such as BBB disruption, cranial hemorrhage,
brain swelling, and an acute reaction mediated by oxidative
stress and excitotoxicity [94, 95]. Secondary injury is associated
with the release of excitatory amino acids, ionic imbalances,
intracellular calcium overload, mitochondrial dysfunction,
and several immunological and inflammatory responses. This
reaction induces ongoing neurodegeneration, diminished neu-
rogenesis, axonal damage, and cell death [96, 97]. Since the
complexity of injury-associated mechanisms has led to the
need for multi-target treatment, several studies have been
conducted using MSCs with various paracrine activities. In an
animal model, subjects treated with rat BM-MSCs showed
attenuated motor and cognitive deficits through the induction
of trophic factors, such as BDNF and NGF, which promoted
neurogenesis, neuroprotection, neural repair, immunomodula-
tory activity, and the secretion of bioactive factors, such as
exosomes [15, 98, 99]. Some other studies using hBM-MSCs
also showed functional improvements with immunomodula-
tory activity and the secretion of bioactive factors, such as
exosomes [100, 101].

Several clinical studies have been conducted based on
preclinical study results [102]. Cox et al. conducted intrave-
nous injections of human BM-mononuclear cells in 25
patients after severe traumatic brain injury. Based on the
results, there were no serious adverse events and the preser-
vation of functionally critical regions, and the downregula-
tion of inflammatory cytokines was observed [103]. Tian
et al. injected autologous hBM-MSCs via lumbar puncture
into 97 patients with subacute-stage traumatic brain injury
and showed the safety and effectiveness of this therapy
[104]. Zhang et al. conducted topical injection to the injured
area using autologous hBM-MSCs and also showed the
safety and feasibility of cell therapy [105].

3.3. hBM-MSCs in Neurodegenerative Disease. Neurodegen-
erative disease initially damages various types of neurons
or glial cells but ultimately specifically causes the loss of
function of certain cells, such as hippocampus and frontal
lobe dysfunction in AD, striatal dopaminergic neurons in
PD, or dysfunction of the striatal structure in HD. Although
there are treatments to relieve symptoms for some neurode-
generative diseases, no treatments have been found that can
modify the disease course [16, 20]. From this point of view,
many studies have been conducted using BM-MSCs, which
have the potential to replace lost cells and functional restora-
tion through various paracrine activities [16, 20, 65].

3.4. AD. AD is a clinical dementia-presenting disease, and neu-
roinflammation mediated by the accumulation of amyloid beta
plaques and neurofibrillary tangles is known as the main path-
ological mechanism [106, 107]. Based on this pathophysiology,
several studies have been conducted using MSCs. In animal
models, mouse or rat BM-MSC infusion improved cognitive
impairment through various mechanisms, such as enhancing
neurogenesis in the hippocampus [108, 109], increasing the
level of acetylcholine [110], stabilizing and regenerating the
synapse [111, 112], and modulating immunomodulatory activ-
ity [113]. Studies using hBM-MSCs have also shown reduced
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amyloid beta deposition [114, 115] and increased amyloid beta
clearance [116] and neurogenesis [117].

Based on animal research, several clinical trials are ongo-
ing [20, 118]. Initial clinical trials using human umbilical cord
or umbilical cord blood-derived MSCs (NCT01547689,
NCT01696591, and NCT02054208) showed safety, but no
positive results have been reported to improve the clinical
status of AD patients. In addition, similar clinical trials are
ongoing in several countries [20]. Although there have not
been many clinical trials using hBM-MSCs, if the major path-
ophysiology of AD is associated with neuroinflammation,
hBM-MSC therapy with paracrine effects might still be a
promising treatment option [118, 119]. In the future, we
expect that research using the replacement potential of BM-
MSCs or that using BM-MSCs for early-stage AD will be
performed.

3.5. PD. PD is a disease characterized by a gradual decrease in
dopamine-producing neuronal cell in the substantia nigra and
is accompanied by alpha synucleinopathy that results in the
formation of Lewi bodies [120]. In PD, there are treatments
to improve symptoms but no treatment options for the disease
itself. For these reasons, therapy using MSCs in a PD animal
model has been attempted. In experimental studies, rat BM-
MSC administration has resulted in improvements in motor
functions in PD animal models [121, 122], and other studies
have shown that these results are associated with elevated
dopamine levels in the striatum, enhanced neurogenesis,
inhibited transmission of alpha-synuclein, and immunomod-
ulatory effects [122–125]. A study has also shown that the
preconditioning of BM-MSCs is more effective [126].

In clinical trials, the safety of hBM-MSC therapy was
established in studies of transplantation through the stereotac-
tic surgical method and intra-arterial administration using the
cerebral artery, and improvements in motor function were
observed in some patients [62, 127]. Currently, a phase II
study is also being conducted for patients with idiopathic PD
(NCT04506073). As results of previous experimental studies
and preliminary data from clinical trials have shown that
hBM-MSC treatment is safe and helpful in improving motor
function, therapy using hBM-MSCs has the potential to com-
prise a disease-modifying treatment for PD patients.

3.6. HD. HD is a rare genetic disorder that causes cognitive
impairment and movement abnormalities due to a mutation
in the gene encoding the protein huntingtin, followed by
damage to the striatal structure secreting gamma aminobu-
tyric acid [128]. Effective treatment for HD has not been
found. In an animal model, BM-MSC injection was mainly
performed intracerebrally due to the selective damage to this
area in HD. Transplanted rat or mouse BM-MSCs has been
shown to activate endogenous neural stem cell proliferation
and reduce apoptotic cell death through increases in BDNF
or NGF levels in the striatal area, and as a result, the motor
and memory function of the HD-model mice treated with
MSCs were improved [129, 130]. Even with intranasal
administration, an HD mouse model treated with mouse
BM-MSCs showed an improved sleep cycle and survival
time mediated by an increase in striatal expression of the

factor associated with dopamine receptor protein and an
immunomodulatory effect [131].

Based on these experimental studies, therapy with MSCs
has been considered a potential disease-modifying treatment
option for patients with HD, like that for other neurodegener-
ative diseases [132], but clinical trials have not yet been
actively conducted. Zuccato et al. have reported low BDNF
levels in HD patients, and that these low levels, considered
one component of disease pathophysiology, are less useful as
a biomarker of disease onset and progression in HD patients
[133]. Owing to the complexity of symptomatology and path-
ophysiology, there have been observational clinical trials per-
formed to clarify the clinical symptoms and detect potential
therapeutic targets before cell therapy (NCT01937923). How-
ever, no positive results in humans have been found to date.
Thus, BM-MSC treatment will be ameaningful potential treat-
ment for HD patients, as previous experimental studies have
shown that this approach improves functional activity and
reduces brain atrophy.

3.7. Improvements in the Quality and Freshness of BM-MSCs
after Detachment from the Culture Dish. Although hBM-
MSCs are considered a potential therapeutic tool for various
neurological diseases, a major bottleneck in the clinical applica-
tion of hBM-MSCs is maintaining individual stem cell proper-
ties during ex vivo expansion, which is essential to achieve a
therapeutically relevant number of cells. This is because only
0.001–0.01% of cells in the bone marrow are mononuclear cells
[134]. After the expansion process, hBM-MSCs are detached
from the culture dish and subjected to a serum-starved condi-
tion, which is largely different than their original environment,
such as the MSC niche, and cells lose their useful properties
[135–138]. Previous reports evaluated the freshness of hBM-
MSCs kept in phosphate-buffered saline (PBS) over time after
trypsinization, which can mimic ex vivo storage conditions
[9, 23]. The cell viability was decreased throughmembrane per-
oxidation, and the number of cytosolic vacuoles was increased,
depending on the PBS storage time, as shown in Figure 2 [9]. In
addition, the expression levels of apoptosis and stress-related
genes were significantly increased in hBM-MSCs after detach-
ment from the culture dish over time [9, 23]. As hBM-MSCs
are sensitive to microenvironmental conditions, stem cells
stored in long holding induced cell aggregation and affected
the differentiation potential of hBM-MSCs [23, 139, 140].
Therefore, hBM-MSCs should be transplanted as soon as pos-
sible after detachment from the culture dish. Even though the
quality and freshness of hBM-MSCs is highly dependent on
the preparation of cells and manufacturing practices, we have
previously shown that the maximum storage time for optimal
transplantation is within 6h because profiles for transmission
electron microscopy (TEM) imaging, gene expression, defor-
mation index, storage time, cell viability, and metabolism are
altered after storing cells for 6h in holding conditions in the
hBM-MSC group compared to the control group (0 holding
stored hBM-MSC group) [9, 23].

The quality and freshness of hBM-MSCs after detachment
from the culture dish were also previously analyzed with respect
to viability, ultrastructure, deformability, cellular size, mem-
brane fluidity, transcriptomics, and metabolomics [9, 23]. Cell
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deformability reflects the physicochemical changes in cellular
components, such as nuclear organization, the cytoskeleton,
and the membrane, in microfluidic devices [141]. For example,
the deformability of red blood cells (RBCs) in diabetes, sickle-
cell disease, and malaria is reduced, compared to that of healthy
RBCs [142]. This is one reason as to why oxidative stress and
lipid peroxidation reduce the deformability of RBCs [143]. It
was reported that hBM-MSC deformability, used to analyze
the quality and freshness of hBM-MSCs based on measure-
ments using microfluidic devices, was slightly decreased after
12h of storage [23] but was significantly reduced after 24h of
storage in PBS [144]. These results also suggested a decrease
in cell deformability and membrane fluidity mediated by ROS
generation and lipid peroxidation over storage time after cell
detachment [23]. Therefore, these data suggest that for hBM-
MSC-based cell therapy for neurological diseases, cell deform-
ability in the brain with developing microvessels is one key
point that should be considered.

An analysis of genes related to the quality and freshness of
starved-hBM-MSCs for 6 and 12h in PBS showed 27 genes that
were changed, when compared to their levels in control hBM-
MSCs (Table 1) based on previous reports [9, 23]. Compared to
that after storage for 6h, the gene expression was highly altered
by storage for 12h. Thus, we analyzed the transcriptomes of
hBM-MSCs after 12h based on three main functions, the gen-
eration of reactive oxygen, lipid peroxidation, and cell viability.
The transcriptomic network related to each function in hBM-
MSCs stored for 12h was connected, and the functions were
algorithmically predicted using Ingenuity Pathway Analysis.
This in silico prediction indicated that ROS generation and
lipid peroxidation were increased, and cell viability was
decreased (Figure 3(a)). These data suggested that regulating
redox homeostasis will be one key point to keep hBM-MSCs
healthy and fresh in the pretransplantation stage.

Antioxidants can be used to eliminate ROS production.
Accumulating studies have found that antioxidants can
decrease the toxicity of ROS, including superoxide dismutase,
glutathione (GSH), peroxidase, and vitamin E [145, 146]. To
evaluate the effect of antioxidants and drug-targeting mole-
cules, transcriptomic networks based on a combination of
N-acetyl-L-cysteine (NAC) and glutathione were analyzed
with predictions (Figures 3(b) and 3(c)). NAC targeted BCL2
apoptosis regulator (BCL2), fibroblast growth factor receptor
2 (FGFR2), and CD36molecule (CD36), which were downreg-
ulated in the transcriptomic network (Figure 3(b)). Moreover,
glutathione targeted BCL2 apoptosis regulator (BCL2), fibro-

blast growth factor receptor 2 (FGFR2), angiotensinogen
(AGT), and albumin (ALB), which were downregulated in
the transcriptomic network (Figure 3(c)). In silico prediction
of the transcriptomic network indicated that NAC is more
effective for the reduction of lipid peroxidation than glutathi-
one. With NAC treatment, the lipid peroxidation level was
suppressed, and the loss of cell viability was also slightly
decreased. For GSH, the increase in the former function was
less than that in the control, and the latter function showed
a similar tendency to that of NAC-treated hBM-MSCs. More-
over, one study showed that antioxidants inhibit ROS produc-
tion and help adipose tissue-derived mesenchymal stem cells
maintain their stemness and ability to differentiate multidirec-
tionally [145]. Taken together, it is highly possible that the
quality and freshness of cells can be enhanced in the presence
of antioxidants. Further studies require wet lab experiments to
verify this in silico prediction.

There have been holistic advancements in the quantifica-
tion of omics, including genomics, transcriptomics, small
RNA-omics, proteomics, metagenomics, phenomics, and
metabolomics [147]. Several layers of investigations, includ-
ing those of the proteome, metabolome, transcriptome,
genome, and epigenome, have resulted in the heterogeneity
and high dimensionality of biological data. Hence, omics
data could be combined in a sequential or simultaneous
way to decipher the interplay of molecules. Recently, several
studies have shown that the combined omics data lead to a
better understanding of the biological system [148–151].
Shin et al. reported that NAC, a ROS scavenger, can protect
hBM-MSCs from lipid peroxidation by integrating tran-
scriptomics and metabolomics with amino acid profiling.
Thus, they emphasized that multiomic analysis, such as the
integration of transcriptomics and metabolomics (metabo-
transcriptomics), can be one strategy to overcome the limita-
tions of conventional analyses of the condition of hBM-
MSCs [23]. Moreover, studies on the application of miRNA
to neurological disease have been reported based on post-
transcriptional gene repression or the degradation properties
of various miRNAs in multiple targets [152, 153]. Metabo-
transcriptomics integrated with small RNA-omic analysis
might provide a clear rationale with respect to the impor-
tance of maintaining the quality and freshness of hBM-
MSCs before clinical use.

Computational approaches, like machine learning, aid in
handling vast amounts of generated data, such as omic big data.
Machine learning can be classified into three types as follows:

0 h 3 h 6 h 12 h

Figure 2: Representative images (×1,000) of starved human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Cells were starved
in phosphate-buffered saline at room temperature for 0–12 h in a previous report [9]. Scale bar = 2μm.
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(i) supervised, (ii) unsupervised, and (iii) semisupervised or
reinforcement. Among them, the unsupervised machine learn-
ing approach learns patterns from the unlabeled dataset and
groups them based on data resemblance [154]. Especially,
unsupervised methods of multivariate statistical analysis
include principal component analysis, self-organizing maps,
hierarchical clustering, and K-means. These methods reduce
the dimensionality of data and can be used to visualize clusters
(classifications) based on data similarity among samples. Par-
ticularly, K-means clustering is a traditional approach in unsu-
pervised machine learning that can handle huge datasets to
generate globular-shaped tight clusters using less computa-
tional time. Therefore, compared to other machine learning
algorithms, K-means clustering is a very useful algorithm for
the integration of omics data.

The integration of omics, advanced machine learning
algorithms, and bioinformatic tools enable researchers to
analyze feasible studies on the quality and freshness of

hBM-MSCs based on the accurate discrimination of changes
in the levels of omics data and the in silico prediction of phe-
nomena using integrated transcriptomics and metabolomics.
Therefore, to improve the efficacy of stem cell therapy with
respect to the quality and freshness of hBM-MSCs, studies
on comprehensive multiomic analysis (big data) and proper
machine learning are required to analyze correlations within
data. Moreover, in silico prediction is highly recommended,
rather than a targeted approach, according to the complexity
of dissociated hBM-MSCs.

In the review, we focused on describing strategies to
improve the quality and freshness of hBM-MSCs for the treat-
ment of neurological diseases. However, these factors are also
affected by additional variables such as elevated temperature,
high ionic strength, and nonoptimal substrate composition of
the storage solution [139]. For example, storage temperature
is an important factor affecting the quality of stored stem cells.
Several temperature conditions were evaluated such as cold

Table 1: Genes related to the transcriptomic network of the quality and freshness of starved human bone marrow-derived mesenchymal
stem cells (hBM-MSCs).

Entrez gene name Symbol Affymetrix ID Location
Signal

(fold change)a

6 h 12 h

Phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit gamma

PIK3CG 206370_at Cytoplasm -11.70 -22.42

erbb2 interacting protein ERBIN 232896_at Cytoplasm -1.10 -19.71

Solute carrier family 25 member 27 SLC25A27 230624_at Cytoplasm -9.20 -12.39

BCL2 apoptosis regulator BCL2 207005_s_at Cytoplasm -7.73 -9.99

Peroxiredoxin 3 PRDX3 209766_at Cytoplasm 1.85 -9.27

NADPH oxidase 5 NOX5 1553023_a_at Cytoplasm 1.70 11.82

Neutrophil cytosolic factor 4 NCF4 205147_x_at Cytoplasm -1.19 12.5

Protein kinase AMP-activated catalytic subunit alpha 2 PRKAA2 238441_at Cytoplasm 12.61 22.26

Phosphatase and tensin homolog PTEN 242622_x_at Cytoplasm 3.62 54.26

Angiotensinogen AGT 202834_at Extracellular Space 1.04 -27.13

TNF superfamily member 14 TNFSF14 233935_at Extracellular Space -1.19 -23.12

Albumin ALB 211298_s_at Extracellular Space 8.07 -20.19

Alpha-microglobulin/bikunin precursor AMBP 214425_at Extracellular Space -4.55 -10.51

Adiponectin, C1Q, and collagen domain containing ADIPOQ 207175_at Extracellular Space -3.15 -10.1

Serpin family B member 5 SERPINB5 1555551_at Extracellular Space 6.58 10.19

Insulin-like growth factor 1 IGF1 209542_x_at Extracellular Space 8.20 17.32

von Hippel-Lindau tumor suppressor VHL 203844_at Nucleus -1.33 -37.9

MacroH2A.1 histone MACROH2A1 1558779_at Nucleus 1.76 12.75

Integrin subunit beta 1 ITGB1 215878_at Plasma Membrane 12.40 -36.23

Fibroblast growth factor receptor 2 FGFR2 211400_at Plasma Membrane 4.66 -15.37

Low-density lipoprotein receptor LDLR 217103_at Plasma Membrane -12.50 -11.9

Glutamate metabotropic receptor 5 GRM5 207235_s_at Plasma Membrane -10.02 -10.17

CD36 molecule CD36 242197_x_at Plasma Membrane 3.27 -9.46

Presenilin 1 PSEN1 1559206_at Plasma Membrane -2.64 9.57

Fc fragment of IgG receptor IIa FCGR2A 203561_at Plasma Membrane 13.11 13.69

Toll-like receptor 7 TLR7 220146_at Plasma Membrane 2.10 24.72

Prostaglandin E receptor 3 PTGER3 210375_at Plasma Membrane -17.22 27.73
aNormalized ratio of fold change of the signal at 6 and 12 h of storage, relative to the corresponding signal of the control group.
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Figure 3: Transcriptomic network related to the quality and freshness of starved human bone marrow-derived mesenchymal stem cells
(hBM-MSCs). (a) Analysis of the transcriptomic network with prediction using Ingenuity Pathway Analysis based on starved hBM-
MSCs in phosphate-buffered saline for 12 h. Analysis of the transcriptomic network based on a combination of (b) N-acetyl-L-cysteine
(NAC) and (c) glutathione (GSH) administered for 12 h. The analysis involved a fold change cut − off value ± 9. Green and red nodes
indicate genes that were up and downregulated, respectively, compared to control levels. Orange and blue arrows indicate in silico
prediction of function as activation and inhibition, respectively. Details of the shape and color, which were created with Ingenuity
Systems (http://www.ingenuity.com), are described in the legends.
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storage (4°C), low temperature (16-20°C), room temperature
(25°C), physiological temperature (37°C), and cryopreservation
[-20°C, -80°C, and -196°C (liquid nitrogen)] [139, 155]. There
were advantages and disadvantages concerning the impact on
storable time, differentiation capacity, viability, and protein
secretion at the various temperatures [155].

Additionally, cryopreservation enables the storage of
MSCs for a comparably longer period (over a month) than
nonfreezing storage (one week). However, cryoprotective
agents such as small (e.g., dimethyl sulfoxide, glycerol, ethyl-
ene glycol, and propylene glycol) and high molecular weight
(e.g., sugars, polyvinylpyrrolidone, and hydroxyethyl starch)
penetrating and nonpenetrating agents, respectively, are
required to preserve the cellular functional and structural
integrity [156]. Cryoprotective agents such as serum and
serum alternatives have been used with dimethyl sulfoxide
[156]. Moreover, the use of cell containers, impact of the
freezing and thawing process, and the elution of cryoprotec-
tive agents should be considered during cryopreservation
[156]. Free radical scavengers, ion chelators, protease inhib-
itors, and Rho-kinase inhibitors (Pinacidil, FDA-approved)
have been used for the prevention of cryopreservation-
induced cell death [157, 158]. However, the duration of
storage time was the same in vitro, with improved therapeu-
tic effects of hBM-MSCs observed using earlier passage
(passage 2) than later passaged cells (passage 6) after intrave-
nous administration of ex vivo cultured hBM-MSCs in a rat
model for ischemic stroke [159]. Therefore, further studies
are required to evaluate the quality and freshness of stored
hBM-MSCs before use in human clinical trials.

4. Conclusion and Future Perspectives

Here, we reviewed hBM-MSCs, their application to neurologi-
cal diseases, and improvements in the quality and freshness of
these cells based on integrated omics after disassociation from
the culture dish for stem cell therapy. As classical approaches
are limited in terms of analyzing the quality and freshness of
dissociated hBM-MSCs, the omics and machine learning
approaches provide indepth and comprehensive information
on the characteristics of the quality and freshness of dissociated
hBM-MSCs. Therefore, further studies are needed regarding
the integrated multiomic analysis, including genomics, tran-
scriptomics, small RNA-omics, proteomics, phenomics, and
metabolomics, in various hBM-MSCs conditions. Since mul-
tiomic is big data, application of machine learning algorithms
for the multiomic analysis of hBM-MSCs will be one of the
approaches for accurate discrimination and in silico prediction
of the biological phenomena. Thus, these approaches will be
helpful to analyze cellular changes of dissociated hBM-MSCs
in the various conditions and improve their quality and fresh-
ness for successful stem cell therapy in neurological diseases.
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