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Single-strain behavior predicts responses to environmental pH
and osmolality in the gut microbiota
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ABSTRACT Changes to gut environmental factors such as pH and osmolality due to
disease or drugs correlate with major shifts in microbiome composition; however, we
currently cannot predict which species can tolerate such changes or how the community
will be affected. Here, we assessed the growth of 92 representative human gut bacterial
strains spanning 28 families across multiple pH values and osmolalities in vitro. The
ability to grow in extreme pH or osmolality conditions correlated with the availability of
known stress response genes in many cases, but not all, indicating that novel pathways
may participate in protecting against acid or osmotic stresses. Machine learning analysis
uncovered genes or subsystems that are predictive of differential tolerance in either
acid or osmotic stress. For osmotic stress, we corroborated the increased abundance of
these genes in vivo during osmotic perturbation. The growth of specific taxa in limiting
conditions in isolation in vitro correlated with survival in complex communities in vitro
and in an in vivo mouse model of diet-induced intestinal acidification. Our data show
that in vitro stress tolerance results are generalizable and that physical parameters may
supersede interspecies interactions in determining the relative abundance of community
members. This study provides insight into the ability of the microbiota to respond to
common perturbations that may be encountered in the gut and provides a list of genes
that correlate with increased ability to survive in these conditions.

IMPORTANCE To achieve greater predictability in microbiota studies, it is crucial to
consider physical environmental factors such as pH and particle concentration, as they
play a pivotal role in influencing bacterial function and survival. For example, pH is
significantly altered in various diseases, including cancers, inflammatory bowel disease,
as well in the case of over-the-counter drug use. Additionally, conditions like malabsorp-
tion can affect particle concentration. In our study, we investigate how changes in
environmental pH and osmolality can serve as predictive indicators of bacterial growth
and abundance. Our research provides a comprehensive resource for anticipating shifts
in microbial composition and gene abundance during complex perturbations. Moreover,
our findings underscore the significance of the physical environment as a major driver
of bacterial composition. Finally, this work emphasizes the necessity of incorporating _ o
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physical measurements into animal and clinical studies to better understand the factors puliorerderesd sEined i el el daEsi
influencing shifts in microbiota abundance. seniority.

Editor Martin J. Blaser, Rutgers University, Piscataway,
New Jersey, USA

Address correspondence to Carolina Tropini,
carolina.tropini@ubc.ca.

Katharine M. Ng and Sagar Pannu contributed

The authors declare no conflict of interest.

KEYWORDS acid stress, machine learning, microbiota, osmolality, single-strain culture,
culturomics See the funding table on p. 21.

Received 23 March 2023
Accepted 23 May 2023

he animal digestive tract naturally consists of numerous distinct environments in
Published 11 July 2023
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microbiota explores in its voyage along the intestinal tract (1-3). Alterations in pH and
particle concentration (osmolality) commonly occur in gut disease or result from
the ingestion of specific compounds. For example, inflammatory bowel disease (IBD),
intestinal cancers, and antacids are associated with abnormal pH values (4, 5). Further-
more, diarrhea and aging are associated with increased oxygen in the intestine, and
conditions such as malabsorption due to intolerances (e.g., celiac disease) or overcon-
sumption of salts, alcohol, and laxatives lead to changes in osmolality (6-8). Additionally,
the microbiota affects physical parameters by consuming luminal oxygen, degrading the
mucosal layer, or acidifying the environment through fermentation and short-chain fatty
acid (SCFA) production (9-11).

Changes in the gut physical environment affect the gut microbiota on a broad
scale, favoring growth only when the biochemical and physical conditions match the
requirements of each taxon (3). The survival of specific taxa is driven by the function
of genes and pathways that regulate metabolism and stress responses over short and
chronic time scales. These genes and pathways play a key role in establishing the
microbiota members that can grow in specific regions of the gut and host states (1-
3). For example, the steep intraluminal oxygen gradient partitions strictly anaerobic
bacteria such as Faecalibacterium away from the more oxygenated epithelium, while
more aerotolerant bacteria such as Enterobacteriaceae can associate with the mucosa
(12). Beyond oxygen sensitivity, pH and osmolality also impact bacterial growth and
survival (4, 13-15). Even small alterations in pH and osmolality can dramatically affect
bacterial growth due to alterations in enzyme activity, energetic favorability of certain
nutrient substrates, and rates of protein synthesis (16-18).

Previous studies have highlighted broad differences among microbial taxa in their
adaptation to pH and osmolality, as evidenced by the differential enrichment of
well-studied taxa in response to pH alterations (13). For example, Lactobacillus species
propagate over wide ranges of pH, whereas acidic environments inhibit some members
of the Bacteroides genus (19). Despite these general trends, certain members within
these taxonomic groups excel in high-stress conditions of changed pH and osmolality,
while others display sensitivity to these parameters, indicating genus- or even strain-spe-
cific differences (4, 20). Even in the absence of limiting cases in which taxa cannot grow,
changing physical conditions can affect bacterial growth rates, resulting in microbiota
composition shifts within the highly competitive and nutrient-depleted environment
of the intestine. For example, mild osmotic diarrhea induced by polyethylene glycol
(PEG) can induce long-term changes in gut microbial membership despite presenting no
change in bacterial density or load (14).

Thus far, the effects of physical parameters on bacterial growth across intestinal
bacterial taxa have not been well documented. Importantly, the taxonomic level at
which growth phenotypes can be generalized remains unclear; moreover, it remains
unknown whether the physical environment is broadly predictive of bacterial response
and abundance. Closing this gap of understanding is particularly critical for identifying
the relationship between the microbiota and disease, as the presence of certain gut
bacterial members may be strongly dictated by the physical environment rather than
disease-specific phenotypes. In addition, identifying the genes that allow particular gut
members to survive varying physical parameters is crucial. This knowledge would also
shed light on the effectiveness of microbiota therapies, as procedures such as fecal
microbiota transplant or probiotic administration may be rendered ineffective by the
transfer of members that cannot survive in the disease-altered environment.

In this work, we examined the growth phenotypes of 92 species from 28 fam-
ilies across a range of pH and osmolality values. We combined high-throughput
growth measurements, environmental measurements, and machine learning (ML)-assis-
ted comparative genomics to systematically identify the capacity of microbial taxa to
survive in pH and osmolality conditions relevant to health and disease. We performed a
thorough in vitro analysis of bacterial growth of individually grown strains and revealed
general trends of tolerance among phylogenetically related microbes, including known
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pathogens and probiotics strains. We corroborated these results by performing human
microbiota community experiments in vitro and in humanized mouse models and
demonstrated the broad predictability of bacterial abundance across multiple donors
and conditions. Importantly, we found that in vitro results of single-strain stress tolerance
can predict bacterial behavior in complex in vivo conditions. We also found that the
presence of genes involved in osmotic stress response is predictive of survival in an
environment with disrupted osmolality. Taken together, our results demonstrate that
the physical environment is broadly predictive of bacterial response and abundance.
This knowledge will aid in determining the effectiveness of microbiota therapies and in
assessing whether treatments may be viable in a given perturbed gut environment.

RESULTS
Collection of 92 strains from 28 families of bacteria

We cultured 92 bacterial strains from 28 common gut bacterial families across seven
phyla, comprising a diverse set of strains with a focus on human isolates (Fig. 1A). We
chose these strains based on their public availability, fully sequenced genomes, and
broad interest due to their prevalence in the gut microbiota. We derived most strains
from the BEI collection of Human Microbiome Project human strains, the American
Type Culture Collection (ATCC), the Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ), and the Collection of Inflammation-Associated Mouse Intestinal
Bacteria (21) (Materials and Methods). Of these strains, 69 were human isolates, 10 were
mouse-derived, and the remaining 13 were either isolated from probiotics or other strain
types. Some characterized probiotic strains (11) were isolated from commercial sources
and were not previously sequenced. For taxa of high interest due to their prevalence,
abundance, or health relevance, we included multiple species or strains within a family
in order to avoid drawing species-specific conclusions (22-30). Specifically, we increased
the coverage of the Bacteroidaceae, Bifidobacteriaceae, Lactobacillaceae, Lachnospir-
aceae, Enterobacteriaceae, and Prevotellaceae families. To facilitate high-throughput
cultivation and comparisons of strains, we grew the majority of the bacteria (83/92)
in anaerobic conditions in Mega Medium, a rich and undefined medium previously
demonstrated to support the growth of a wide variety of strains (Materials and Methods)
(31). The remaining strains required more specialized media for growth (Materials and
Methods; Fig. 1B; Table S1). To measure the impact of bacterial growth on the environ-
mental pH, we supplemented the experimental media with 2,7’-bis-(2-carboxyethyl)-5-
(and-6)-carboxyfluorescein (BCECF), which enabled real-time pH measurements coupled
with optical density (OD) measurements (Fig. 1B). We uncovered no significant trends
in medium acidification with respect to growth in different conditions (Fig. STA). As the
genomes in our strain library have been fully sequenced and assembled, we performed
comparative genomics analyses that combined protein annotations from the Pathosys-
tems Resource Integration Center (PATRIC). To visualize this analysis across all strains,
we created a novel visualization tool to explore PATRIC annotation data and compare
across multiple genomes (https://tropinilab.shinyapps.io/strain_heatmap_app/) (Fig. 1C).
We grew the strains in eight different conditions, spanning four osmolalities (from
unmodified medium osmolalities of 0.23-0.44 Osm/kg to a maximum condition of 1.8
Osm/kg) and four pH values (4-7.4). We selected these ranges to mimic the potential
environmental conditions that intestinal bacteria encounter along the gastrointestinal
tract and during perturbations (14, 32, 33).

Bacterial families display a range of tolerance to increasing osmolality

Increasing osmolality elicited widely divergent effects on the bacterial families assayed in
this study (Fig. 2A). While in vivo measurements of high gut osmolality are usually less
than ~1,700 mOsm/kg (14), we sought to explore a wider range of high osmolalities, as
many bacterial taxa showed strong growth at these values in the current study. Lactoba-
cillaceae and Enterobacteriaceae family members displayed robust growth at moderately
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FIG1 Phylogenetic overview and experimental setup of characterized intestinal bacterial strains. (A) 16S rRNA sequences from each member of the strain library
were acquired from the SILVA database and used to generate a phylogenetic tree. (B) Experimental design and workflow for the characterization of growth of
bacterial strains under different physical conditions. (C) Heatmap of PATRIC annotations of characterized strains within the subcategories of the Stress Response,

Defense, and Virulence gene categories.

high (~1,1776 mOsm/kg) and high (~1,800 mOsm/kg) osmolalities. Interestingly, we
observed modest heterogeneity among genera and species within Lactobacillaceae; the
strains that were more negatively affected in high-osmolality conditions were Lactobacil-
lus murinus strains 1 (NM26) and 2 (NM28), Lactobacillus intestinalis NM61, and Lacticasei-

bacillus  rhamnosus  HA-114.

Conversely,

bacteria in the Bacteroidaceae,

Bifidobacteriaceae, and Lachnospiraceae families displayed a wide range of sensitivities
to increasing osmolality; except for two Bifidobacterium strains, these bacteria were
unable to grow in media with an osmolality of ~1,800 mOsm/kg. Beyond these families,
multiple species were extremely sensitive to osmolality, including the mucin degrader
Akkermansia muciniphila ATCC BAA-835, most Prevotellaceae species tested, and
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Erysipelotrichaceae member Holdemanella biformis VPI C17-5 ATCC 27806. While many
bacterial strains showed decreased growth rates under high osmolality, they still reached
maximum yields similar to those achieved in normal osmolality, indicating the same
ability to leverage nutrients in these limiting conditions (Fig. S1B).

Having created a resource of growth abilities for a broad set of gut bacteria, we
sought to discover the mechanisms that underlie the tolerance of some bacteria to
different osmotic conditions by finding genes or functions that are consistently over-
represented in tolerant bacteria. As the majority of genomes (81/92) in our strain library
have been fully sequenced and assembled, we performed comparative genomics
analyses by combining genomic annotations conducted using tools created by PATRIC
with our quantified growth phenotypes (34).

Next, we employed an ML strategy to determine whether potential annotations
employed by PATRIC were indicative of a strain’s ability to grow in varying environmental
osmolality and pH conditions. Unlike most ML applications, where the goal is to train a
model based on input features and then evaluate and optimize its accuracy and
generalization, our goal was restricted to the task of feature selection from the large set
of available PATRIC annotations. Therefore, we constructed a novel featurization of the
PATRIC annotations and used a simple ML model called a decision stump to fit many
predictive models to the data. For each candidate PATRIC feature, we measured model-
ing error on both a training set and held-out test set. We then used the modeling error to
rank all the PATRIC features according to their ability to predict the phenotype. This ML
analysis efficiently identified PATRIC annotations (ML model features) that correlated
with an increased maximum OD of bacterial growth in the different growth conditions
(Materials and Methods; Table S2).

We found that the presence of several subsystems correlated with a higher maximum
OD at high osmolality (Table S2). A challenge with this type of analysis is that many
functional annotations may be correlated and present in the same strains (Fig. S2), but
not necessarily directly implicated in response to perturbations. Thus, we identified
features that ranked high in distinguishing growth phenotypes and were mechanistically
plausible. Importantly, the held-out data set performed comparably to the training data
set, indicating the identified features generalized across this sampling of strains (Fig.
S3A). To further increase our ability to detect relevant features, we re-analyzed a
previously published and annotated metagenomic data set of in vivo osmotic perturba-
tion in a humanized mouse model (14). Briefly, in this data set, mice were exposed to the
osmotic laxative PEG, which increased the mean intestinal osmolality from 533 to 810
mOsm/kg. The functional pathways present in this community were then quantified for
mice prior to, during, and after osmotic perturbation. We identified features that were
both over-represented in high osmolality in vivo and detected in our ML analysis.

Of particular interest were the subclasses for glutathione biosynthesis/gamma-
glutamyl cycle, choline uptake and conversion to betaine, and osmotic stress (Fig. 2B
through D). Notably, we also identified cold shock proteins as a distinguishing feature for
growth in different osmotic conditions (Fig. S3B and C). Characterized bacterial taxa that
possessed annotated genes within these subsystems or roles demonstrated a higher
maximum OD on average with increasing osmolality and were also significantly over-
represented in vivo in high-osmolality conditions. Confirming the importance of stress
gene annotations, we identified the osmotic stress gene category as the top predictive
feature in this analysis, with a minimum of 10 features in this category being predictive of
growth in high-osmolality conditions (Fig. 2D; Table S2). These analyses reveal candidates
for future transcriptomic/proteomic studies that will be necessary to define the mecha-
nisms by which these features may support osmotolerance.

Bacterial families demonstrate a wide range of phenotypic variation in
growth and yield in response to acidic/alkaline stress

We assessed the growth of the strain library for a pH range of 4-7.4 and revealed a wide
range of tolerances to acidic conditions (Fig. 2A). Because physiological pH within the gut
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FIG 2 Osmotic and pH stress responses lead to phenotype variations. (A) Heatmap displaying normalized growth rate and ODggq of 92 characterized bacterial
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varies with intestinal site, diet, and disease, we chose a range of pH conditions to
encompass physiologically relevant perturbations a bacterial species may face (4, 22, 23,
25). Most strains, except for Lactobacillaceae members, were unable to grow at pH 4;
even at pH 5.5, these strains displayed serious defects in growth rate and maximum yield.
Bacteria within the Lactobacillaceae family displayed the highest tolerance to low pH, as
expected for lactic acid bacteria. However, even within this family, genera differed in
their tolerance, with several members of Lactobacillus and Ligilactobacillus displaying
sharp decreases in growth rate and maximum OD at pH 4 and inhibition of growth at pH
7.4 compared with physiological pH (6.4-7). Interestingly, isolates from commercial
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probiotic sources showed high sensitivity to pH changes. Furthermore, at pH 5.5, many
species, such as Erysipelotrichaceae members, displayed a decreased growth rate and
yield. An exception were members of the Desulfovibrionaceae, Fusobacteriaceae,
Veillonellaceae, and Bifidobacteriaceae families, which contain members that have been
described in acidic environments (e.g., acidic mine tailings, dental caries, vagina, and
fermented foods, respectively) (35-39). Reports have also shown that Bacteroides species,
which belong to the family Bacteroidaceae, are sensitive to low pH (40); however, we
observed a wide range of sensitivities in growth at pH 5.5 in this genus, suggesting that
different species and strains may be better adapted to acidic conditions. Some families
displayed severe deficits in growth rate and yield at pH 5.5, including members of the
Enterobacteriaceae and Streptococcaceae families. An acid-tolerance response has been
described for members of the Enterobacteriaceae family (e.g., Escherichia coli and
Salmonella) (41); however, this response may require priming in mildly acidic conditions
prior to exposure to more acidic conditions. In our experiments, we subcultured bacteria
at neutral pH immediately prior to growth under experimental conditions to simulate the
transfer of a healthy microbiota into a diseased environment, which could potentially
mask acid-stress adaptations in these families. Interestingly, several bacteria displayed
narrow pH tolerances and were inhibited by mildly alkaline conditions, including
Lactobacillaceae members. This sensitivity to alkaline conditions has been documented
for Lactobacillaceae (19). Interestingly, similar to our observations in high-osmolality
conditions, relative deficits in growth rate did not always translate into deficits in final
yield (Fig. 2A), suggesting a path for survival of species in communities experiencing
physical perturbation in the gut, if they are able to withstand washout.

After identifying growth patterns across our strain library, we once again performed
ML analysis on PATRIC features to identify subsystems correlated to bacterial strain
growth in acidic/alkaline stress. Unlike our osmolality analysis, the identified PATRIC
features were sensitive, in that the model’s fit of the held-out data showed poorer
generalization (Table S2; Fig. S4). Furthermore, PATRIC features ranked as highly
predictive strongly correlated with specific bacterial families such as Lactobacillaceae,
and therefore had less broadly predictive power across the identified strains.

Taxon-specific responses to pH and osmolality are predictive of behavior in
naturally derived complex communities

In the intestine, the microbial communities comprising the microbiota are affected by
the physical environment as well as other microbial species that compete for resources
and may produce inhibitory molecules (42). To determine whether the behaviors in
single-strain pure cultures are generalizable to growth phenotypes in communities,
we examined the growth of complex gut microbiota in in vitro cultures subjected to
defined pH and osmolality environments. We cultured feces from six healthy human
donors for 48 h in Mega Medium under the same medium conditions used to assess
the single-strain growth of the individual strains. Selection of fecal microbiota from
multiple unrelated donors enabled us to study different taxa that are naturally coexisting
and adapted to their specific complex community, allowing us to identify generalizable
behaviors independent of specific metabolic interactions. Varying pH and osmolality
resulted in a wide range of community compositions (Fig. 3A). We found that commun-
ity OD at 48 h (Fig. 3B) and DNA concentration (Fig. S5) were generally resilient to
osmolality except at the highest osmolality tested, but showed a much greater pH
dependence. This mirrored the behavior of the most osmotolerant and acid-tolerant
species in single-strain growth (Fig. 2), suggesting that these strains drove the observed
behavior of the communities. We compared abundance changes in different conditions
at the family level, avoiding potential strain-specific behaviors. We observed numerous
and distinct positive and negative correlations between pH and osmolality and the
relative abundance of specific families (Fig. 3C). A negative correlation with pH indicates
that a family is more tolerant of low pH, while a negative correlation with osmolality
indicates that a family is less tolerant of high osmolality. These correlations of human
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taxa for varying pH mirrored our observations in the single-strain growth of individual
species, suggesting that, for specific taxa, the environmental pH is a stronger driver of
bacterial abundance than the specific microbiota composition. For example, the relative
abundance of Bifidobacteriaceae exhibited a highly negative correlation (r = —0.86) with
increasing pH (Fig. 3D), matching the widespread low pH tolerance of Bifidobacteriaceae
species relative to other families (Fig. 2A). In contrast, the Enterobacteriaceae, Tannerella-
ceae, Oscillospiraceae, and Bacteroidaceae families correlated positively with increasing
pH (suggesting acid sensitivity), which is consistent with our single-strain growth data.
Responses of bacterial families to different osmolalities in fecal fermentations also
displayed similarities to single-strain responses. For example, the relative abundance
of Enterococcaceae exhibited a highly positive correlation with osmolality (r= 0.71) (Fig.
3E), in line with the tolerance of Enterococcaceae species to high osmolality in vitro
(Fig. 2A) and in vivo (14). Conversely, members of the Lachnospiraceae and Bacteroida-
ceae families displayed a strong negative correlation with osmolality; the heterogene-
ity of single-strain responses in these families (Fig. 2A) suggests that the populations
within the surveyed communities may be skewed toward relatively osmolality-sensitive
members.

For many strains, the single-strain behavior was predictive of their response in a
community setting; however, we observed a weak correlation with environmental pH or
osmolality for some bacterial families whose members in our strain library displayed
consistent responses in vitro. For example, some correlations for bacterial species that
demonstrated acid tolerance in in vitro single-strain growth (e.g., Lactobacillaceae) were
not as strong as expected. In some instances, we observed heterogeneity in responses
across donors, likely stemming from sparsity of taxa in individual donor samples. For
example, Bifidobacteriaceae were the dominant family at low pH in all samples except for
one [Tropini Lab 6 (TL6)], in which the lactic acid bacterial family Leuconostocaceae
dominated; this family was absent or present at less than 1% in all samples except for
TL6. In the case of the Lactobacillaceae, in communities in which it was detected, the pH
5.5 condition supported the highest relative abundance of this taxon; however, Lactoba-
cillaceae were entirely undetectable in three donors, and even in the other donors it was
undetectable in conditions other than pH 5.5 (Fig. 3A). This sparsity both across donors
and within conditions impacted the calculated correlations. Additionally, other factors,
such as nutritional or resource competition, may contribute to the relative abundance of
bacterial species in the intestine (Fig. 3C). Finally, the Enterobacteriaceae family displayed
increased abundance in increasing osmolality in only some fecal communities (TL1, TL2,
and TL4), which may be due to genus- or species/strain-level variation or, more likely,
out-competition by other osmotically tolerant bacteria present in non-responsive fecal
communities. Because we used 16S ribosomal RNA (rRNA) amplicon sequencing and
measured relative abundances, the survival and proliferation of other osmotically
tolerant bacteria could mask survival or increases in absolute Enterobacteriaceae
abundance.

Single-strain behavior correlates with responses to environmental pH and
osmolality in the gut

Having shown the in vitro generalizability of pH and osmolality resilience in a complex
microbiota for several key taxa, we explored whether these phenotypes would also be
consistent in vivo, where, beyond microbiota interactions, the interplay with host
dynamics plays a significant role in determining bacterial abundance. As other studies
have investigated the response to osmolality in vivo (14, 43), we sought to investigate
how microbiota members are affected by changes in pH in vivo. We reasoned that
changing diet would impact gut pH differentially in the various intestinal compartments
(44, 45). Specifically, microbial fermentation of carbohydrates in the cecum and colon
produces SCFAs, lowering the pH of these intestinal compartments. As with any pertur-
bation in vivo, changing diet will have multiple orthogonal effects (i.e., in this case,
combining differences in nutrient availability for both the host and the microbiota as
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FIG 3 The relative abundance of bacterial families correlates with osmolality and pH across multiple complex microbiota communities in vitro. (A) Bar plot of
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in red. (D) Plot of relative abundance as a function of increasing pH for Bifidobacteriaceae, demonstrating a negative correlation between pH and relative
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well as pH); however, using our in vitro analysis, we reasoned this model might enable us
to identify patterns that are consistent with pH tolerance. Although most monosacchar-
ides and disaccharides are hydrolyzed and absorbed in the small intestine, many dietary
oligosaccharides and polysaccharides cannot be hydrolyzed by host enzymes and pass
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undigested into the large intestine, where they are readily fermented by bacteria. One
such carbohydrate is guar gum (46), a galactomannan polysaccharide comprising a linear
backbone of (-1,4-linked mannose residues with randomly attached {-1,6-linked
galactose residues, a structure that cannot be digested by the mammalian host (47). We
hypothesized that mice on this diet would undergo increased fermentation and
acidification in their large intestines relative to mice on a standard diet. We gavaged
germ-free Swiss Webster (SW) mice with feces from a healthy human donor, colonizing
their intestines with a representative community of human intestinal bacteria (Fig. 4A).
After equilibration for 6 weeks on a standard rodent diet, the mice were divided into two
groups: one group was placed on a diet with 30% guar gum and allowed to adjust to
their diet for an additional 2 weeks, whereas the second group continued on a standard
rodent diet (Fig. 4A). We then sacrificed the mice and performed 16S rRNA sequencing
(Fig. 4B) and pH measurements (Fig. 4C) on different intestinal segments. Measurements
of intestinal content revealed a significant decrease in pH in the jejunum, cecum, and
colon of mice receiving the guar gum diet (Fig. 4C), suggesting that increased fermenta-
tion occurred. Unlike the pH at the other sites, the duodenal and ileal pH values were
unaffected by the diet change. We then investigated whether SCFA production in the
cecum was altered by the diet. Indeed, we found that butyrate levels increased threefold
in mice fed the guar gum diet while other SCFAs were not significantly affected except
valerate, which was mildly decreased (Fig. 4D).

Next, we analyzed the relative abundance of bacteria in the different intestinal
segments and diet conditions by performing 16S rRNA sequencing of communities
isolated from those regions. In mice on the guar gum diet, the average cecal and colonic
pH values were 6.36 and 6.02, respectively, compared with 7.26 and 7.04 for the stand-
ard-diet-fed mice (Fig. 4C). Given the distinct pH tolerance profiles of different bacterial
families (Fig. 2A), we hypothesized that this acidification would change the composition
of the colonic microbiota. We observed an increase in the butyrate producer Blautia
(Lachnospiraceae family) and a loss of the Erysipelotrichaceae family (Fig. 4; Fig. S6). Our
single-strain analyses revealed that Blautia was able to grow at pH 5.5, consistent with its
ability to thrive in these conditions in vivo (Fig. 2A and 4B). Conversely, our in vitro data
suggest that many Bacteroides members are sensitive to low pH (Fig. 2A). Interestingly,
we observed in vivo expansion of Bacteroides within the cecum and colon in experimen-
tal mice despite Bacteroides members displaying a sensitivity to in vitro conditions of pH
5.5 and below (Fig. 2A and 4B). This observation suggests that the expansion of relatively
more acid-tolerant Bacteroides isolates within the same niche may occur upon changes in
the physical environment.

DISCUSSION

In this study, we sought to characterize the pH and osmolality tolerance of a wide range
of publicly available and sequenced gut bacteria and probiotic strains. We characterized
the growth of 92 bacterial representatives of the gut across 28 families under multiple pH
and osmolality conditions in vitro (Fig. TA). Most of these bacterial species were human
isolates, selected to maximize their relevance to the human intestine; however, by
measuring the response to pH and osmolality in both mouse and human isolates from
the same families, we provided a more extensive coverage of the diversity found within
gut bacteria across multiple hosts. We developed high-throughput growth assays to test
bacterial growth in pH and osmolality conditions representative of those found within
the gut in health and disease. Our measurements demonstrate a wide range of tolerance
to perturbation across bacterial families and family specific responses to changes in pH
and osmolality. Within families, individual members across hosts demonstrated a varied
response to in vitro conditions. Using comparative genomics, we uncovered the abun-
dance and prevalence of genes in characterized microbial taxa responding to stress. In
many cases, the abilities to tolerate acidic stress and high osmolality were congruent
with the abundance and presence of identified stress response genes. One limitation of
this study arises from differences in the depth of gene annotations/knowledge of the
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humanized mice on the guar gum or control diet, highlighting the gut microbial composition at the family taxonomic level. (C) Quantification of pH along the

gastrointestinal tract of humanized mice on the guar gum or control diet. (D) SCFA concentrations in cecal contents from humanized mice on the guar gum or

control diet.

more deeply studied families, such as Enterobacteriaceae and Bacteroidaceae, and more
newly discovered and relatively culture-intractable families (Fig. 2A). However, our
analysis provides a framework for identifying strains that may possess novel stress
responses for cases in which an isolate shows growth in limiting pH or osmolality
conditions despite not possessing annotated stress tolerance genes.

We observed widespread pH and osmolality tolerance in representatives of
Lactobacillaceae (including isolates from commercially available probiotic sources)
and Enterococcaceae, respectively. Conversely, Bacteroidaceae and Bifidobacteriaceae
displayed heterogeneity in their responses to osmolality and pH. Despite a broad
diversity of growth phenotypes, we did not observe genomic features that could explain
the phenotypic variation. This may be due to a difference in unannotated genes, or in the
expression of annotated genes, and suggests that transcriptomic analyses or single-gene
knockout libraries may be required to untangle mechanisms underlying the differential
tolerance of these bacteria.

Interestingly, many strains that displayed deficits in maximum growth rate at lower
pH or higher osmolality still produced similar maximum vyields (Fig. S1B). Although
bacteria in the intestine must grow at a sufficient rate to prevent washout, maintaining
a maximum efficiency of biomass yield may also be an effective strategy for survival;
thus, efforts to connect single-strain tolerance to behavior/yield in complex communities
must incorporate both metrics. It is also important to note that while some of these
strains displayed relative deficits in growth rate compared with their maximal growth
rate in ideal conditions, a strain merely needs to survive or efficiently produce biomass
relative to other bacteria to be propagated in the gut. Moreover, some bacterial taxa
spatially inhabit specific niches within the gut, which limits the competition for resources
against other bacteria preventing washout.

Our ML analysis highlighted how the presence of specific genes is strongly predictive
of growth at different osmolalities (Fig. 2B through D). Many of these genes are involved
in stress tolerance (48, 49). For osmotic stress, the subsystem of glutathione biosynthe-
sis/7gamma-glutamyl cycle has previously been shown to provide osmo-adaptation (48).
Tellingly, mutants lacking genes within this subsystem (e.g., gshA and gor) in E. coli
show deficient growth in elevated osmolarity (48). Furthermore, we identified other
genes not traditionally viewed as osmotic-stress response genes (Table S2). For example,
we found that dihydrolipoamide dehydrogenase is predictive of osmotic tolerance.
This protein functions to oxidize dihydrolipoamide in a ping-pong mechanism as an
oxidoreductase (50). Interestingly, the identified dihydrolipoamide dehydrogenase of the
pyruvate dehydrogenase complex has been implicated in the increased osmo-tolerance
of Staphylococcus aureus (51, 52).

The identification of genes and pathways involved in pH tolerance was less obvious
than that for osmolality, indicating that family specific tolerance mechanisms may be
at play, masking potential generalizable features. This finding indicates that community-
based techniques, such as metagenomics, may not shed light on the importance of
specific genes involved in pH tolerance; identified features that may be unrelated to pH
may be over-represented in acid-tolerant bacteria and appear significant. Therefore, we
predict that more traditional genetic screens and transcriptomics assays will be needed
to discover genes involved in pH tolerance in poorly annotated bacteria. For cases in
which there is phenotypic variation within a family, comparative genomic techniques
may be valuable, but for cases in which there is complete penetration of a phenotype
within a taxon, elucidation of such features will prove more challenging. Importantly, we
also found that the most acid- and osmolality-tolerant bacteria generally did not overlap
(Fig. 2), suggesting that there are distinct mechanisms for acid and osmolality tolerance.
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This was also confirmed in our ML analysis, in which the set of features that predicted
osmolality tolerance did not rank highly in pH tolerance (Fig. S4C).

We then explored whether single-taxon phenotypes are generalizable to a complex
microbiota grown in complex media (Fig. 3). Using six distinct human fecal micro-
biota samples, we tested growth across pH and osmolality conditions and found
that growth patterns observed in isolated bacteria were consistent with relative
abundance in complex microbiota communities. Bifidobacteriaceae and Bacteroidaceae
were negatively and positively correlated with pH, respectively, in concordance with
their acid tolerance and sensitivity in single-strain growth (Fig. 2A). Similarly, families
such as Enterococcaceae exhibited positive correlations with osmolality, mirroring their
tolerance to osmolality. Enterobacteriaceae also displayed osmotic tolerance in pure
cultures and in three donor samples (Fig. 3; TL1, TL2, and TL4); this family flourished
in intermediate and high osmolalities as well. The lack of significant correlation across
donors may be due to several reasons, including genetic or phenotypic variation at the
species level and out-competition by highly osmo-tolerant bacteria such as Enterococ-
caceae. Although single-strain response data may highlight tolerance and potential
mechanisms for survival, the relative tolerance and resilience of competing bacteria
may ultimately be the determinant for success. Sparsity of taxa across donors may also
underlie the lack of obvious correlations in some taxa; for example, we observed a bloom
in the lactic acid bacteria family Leuconostocaceae in one donor sample (Fig. 3; TL6) at
pH 5.5; this species, which is found in fermented food products, was absent in three
donors and present at approximately 0.1% or less in TL3 and TL5, where it appeared
that Bifidobacteriaceae dominated in low pH conditions. Similar sparsity between donors
and within conditions underlies the weak correlation between Lactobacillaceae and
pH despite its higher abundance at low pH. This result underscores the importance of
quantifying tolerance across multiple bacterial families to capture the potential diverse
responses in heterogenous human populations.

Finally, we investigated whether our in vitro observations were representative of an
in vivo microbiota responding to changes in gut pH (Fig. 4). We selected an animal
model with a dietary intervention that yielded a decrease in pH in multiple intestinal
segments and a significant increase in butyrate, a SCFA found in cecal contents. These
changes corresponded to a loss of Erysipelotrichaceae, a family that displayed extreme
sensitivity to pH in single-strain growth with member H. biformis (Fig. 2A). Additionally,
our in vitro strain characterizations confirmed the in vivo phenotypes, we previously
observed in an animal model of mild osmotic diarrhea induced by PEG laxatives (14). In
our in vitro strain library, the families Enterobacteriaceae and Enterococcaceae displayed
high osmotic tolerance; these families experienced significant expansions during PEG
treatment in humanized mice (14). Similarly, the family Verrucomicrobiaceae (which
contains the species A. muciniphila) was extremely sensitive to osmolality in our in vitro
characterization; this species decreased 25-fold during osmotic perturbation in vivo (14).

Taken together, these results highlight the importance of the physical parameters
of pH and osmolality and their role in the survivability of bacterial taxa found within
the gut and, therefore, overall gut community composition. By quantifying the pH and
osmolality tolerance across a wide range of representative intestinal bacterial families,
we found that in vitro tolerance to physical parameters in single-strain growth can
predict the effect of changes on complex communities in an in vivo physical environ-
ment. The tolerances we investigated were also consistent in in vivo animal models
for multiple taxa. Thus, quantifying taxon-specific responses of the gut microbiota
to environmental perturbations provides key information regarding the dynamics of
community changes during health and disease.

Beyond the consistency between individual species growth and community relative
abundance patterns in different environmental conditions, a valuable implication of
our studies is the importance of broadly characterizing the physical environment in
microbiota studies. To better understand how to remediate diseases associated with
both dysbiosis and environmental perturbation of the gut such as IBD, it is crucial
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to establish the physical parameter ranges in healthy and perturbed environments,
including the microenvironments along the intestine that are relevant to disease states.
Once these environmental parameters have been quantified, efforts can be made to
predict how the existing pH and osmolality may affect the survival of prospective
communities in the gut. These measurements are also important in microbiota therapies,
where the tolerance of probiotic strains to osmotic and acidic perturbations must be
identified to determine survivability and potential function as a therapeutic within a
perturbed gut environment. Potential probiotic strains must be able to propagate and
compete against resident microbes in an environment to provide therapeutic effects.
Our work has demonstrated that probiotics within a family may differ in their tolerance
to physical parameters; we observed strong heterogeneity among Lactobacillaceae (Fig.
2A), which contains many currently marketed probiotic strains. For a diseased environ-
ment in which physical parameters are altered or misregulated, our results suggest
these probiotics may not fare equally well. Thus, the selection of a particular strain
must consider physical measurements from the disease state of interest as well as the
tolerance of potential therapeutic probiotics.

Overall, these results indicate that the physical environment is a key predictor of
bacterial abundance over a broad range of conditions and across multiple communities.
This predictability across physiological ranges highlights the importance of monitoring
the physical environment in microbiota studies as a key driver of bacterial availability
and the utility of determining the diverse individual responses of bacteria in single-strain
cultures.

MATERIALS AND METHODS
Phylogenetic tree construction

We acquired 16S sequences for most bacterial species from the SILVA database (https://
www.arb-silva.de/search/) and the National Center for Biotechnology Information (NCBI)
(Project ID: PRINA474907). Sequences downloaded from SILVA were at least 1,500 bp
in sequence length. The downloaded FASTA files were compiled into a single file and
imported to MEGA 11.0.10: Molecular Evolutionary Genetics Analysis version 11 for
alignment using the MUSCLE algorithm and for construction of a phylogenetic tree
using the “Construct/Test Neighbor-Joining Tree” option (53, 54). We then uploaded the
Newick file generated by MEGA 11.0.10 to iTOL v6 (https://itol.embl.de/) for modification
and coloring (53).

Bacterial culture

The bacterial strains and corresponding metadata (i.e., taxonomy) used in this study are
reported in Table S1. All bacterial strains were grown and inoculated in a vinyl anaerobic
chamber (Coy Laboratories, Grass Lake, MI, USA) maintained with an atmosphere of 5%
CO5, 5% H, and 90% N, (Linde Canada, Delta, BC, Canada). All strains were incubated at
37°C for growth, and all glycerol stocks were stored at —80°C.

Bacterial media

We prepared Mega Medium using the protocol provided in the Supplementary Methods,
with minimal modifications from a previous publication (31). Each batch of liquid and
solid media was autoclaved and pre-reduced in an anaerobic chamber at least 24 h
before use. To characterize the pH and osmolality tolerance of strains, we aseptically
loaded liquid Mega Medium into two sterile 96-deep-well plates, with media adjusted
to eight different conditions. Medium conditions consisted of Mega Medium adjusted
to pH 4, 5.5, 6.9, or 8 (osmolality normalized to ~600 mOsm/kg, the osmolality of the
pH 4 condition) or to osmolality conditions of ~440, ~890, ~1,176, or ~1,800 mOsm/kg.
We adjusted medium osmolality conditions using sodium chloride. Lowest osmolality
condition of adjusted media was dependent on the basal osmolality of media used to
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characterize strains ranging from ~234 to ~440 mOsm/kg. We adjusted the medium
pH using 10 N HCl and NaOH (33 wt% solution in water). For pH measurements, we
calibrated a micro pH probe (Orion PerpHecT ROSS Combination pH Micro Electrode,
Catalog number: 8220BNWP) for media adjustment. For osmolality measurements, we
injected 20 pL of media into an Advanced Instruments Osmo1 Single-Sample Micro-
Osmometer using an Ease-Eject 20-uL Sampler and clean sampler tips. We filter-steri-
lized the media using 150 mL 0.22 um vacuum filtration tops (VWR: 10040-444) after
adjustment. Due to the relatively high base osmolality of the pH media, some strains
could not grow in any pH conditions and were therefore grayed out in the heatmap
(Fig. 2A). We loaded one plate with media containing 1 pg/mL BCECF (Thermo Fisher
Scientific, Waltham, MA, USA) to measure the environmental pH during growth. BCECF
is a fluorescent pH sensor that detects extracellular changes in medium pH by establish-
ing a pH-dependent ratio of emission intensity at excitation wavelengths of 440 and
490 nm. We loaded another plate without BCECF to accurately determine the BCECF
signal during pH calculations. Both plates were incubated in an anaerobic chamber for
24 h to pre-reduce and equilibrate the media for anaerobic growth. For some strains that
were unable to grow in Mega Medium, we used solid and liquid media of peptone yeast
glucose (PYG) medium, brain heart infusion-supplemented (BHIS) medium+mucin, and
Mega Medium supplemented with either lactate or a combination of sodium citrate and
MgSOy, as noted in Table S1.

Bacterial growth

Bacterial isolates were streaked onto solid media to isolate individual colonies from
glycerol stocks and were grown at 37°C; single colonies were picked after 24-48 h and
cultured in “overnight” pre-reduced liquid media at 37°C for 16-36 h. We primarily used
Mega Medium for strain characterization, with a few exceptions (Table S1). Overnight
cultures were diluted 10-fold in pre-reduced liquid media and incubated at 37°C for 2 h.
We then diluted the cultures fivefold into pre-reduced liquid media in a 96-well plate in
preparation for high-throughput strain loading. Subsequently, we added 5 pL of cultures
to 75 pL of each medium condition in a 384-well plate, resulting in a 16-fold dilution
with an 80-fold dilution in total. Each 384-well plate consisted of eight conditions varying
in pH and osmolality, with each strain grown in quadruplicate in each condition. Three
of these replicates contained BCECF, and one replicate was BCECF-free, which enabled
real-time environmental pH measurements coupled with OD measurements. Cultures
grew at 37°C, and we measured the absorbance at 600 nm and BCECF fluorescence
every 13 min using a Synergy H1 plate reader (BioTek Instruments, Winooski, VT, USA)
for 48-96 h of growth. We measured BCECF fluorescence using excitation wavelengths
of 440 and 490 nm detected at 535 nm for every time point on the growth curve.
To quantify the medium pH, we determined the ratio of emission intensity between
excitation at 490 nm versus 440 nm and calibrated this ratio to a calibration curve
of pH values measured before each experiment, according to Invitrogen’s protocol.
We conducted our analysis using a custom-made MATLAB program (https://github.com/
Tropini-lab/Strain_library_paper).

Growth analysis

Growth curves were run through a custom MATLAB script (https://github.com/Tropini-
lab/Strain_library_paper). Briefly, the program identifies replicates based on assigned
metadata (strain, pH/osmolality, etc.) and automatically selects the three most similar
replicates for each condition for averaging and plotting. The maximum growth rate for
each OD curve is determined after a least-squares fit is performed for the OD curve to the
Gompertz equation (54).

Month XXXX Volume 0 Issue 0

mBio

10.1128/mbio0.00753-23 15


https://github.com/Tropini-lab/Strain_library_paper
https://github.com/Tropini-lab/Strain_library_paper
https://doi.org/10.1128/mbio.00753-23

Research Article

Growth data standards

We selected appropriate growth data for strains grown in each condition by comparing
growth data against control conditions. Controls consisted of sterile Mega Medium
(or BHIS+mucin, PYG, or Mega Medium supplemented with lactate or MgSO4+sodium
citrate); strains that increased in OD at the same time as or after control wells
were discarded and re-run in subsequent experiments. For bacterial strains that were
selected and considered clean, we performed outlier detection on the quadruplicate
OD measurements and selected the best three out of four technical replicates in each
condition for downstream analysis.

Isolation of commercial probiotics for characterization

We dissolved probiotics purchased from local pharmacies in sterile 1x phosphate-buf-
fered saline (PBS; Fisher Bioreagents: BP3991) in the anaerobic chamber. The dissolved
slurry was streaked onto agar plates and incubated anaerobically at 37°C for 24 h.
Both PBS and medium were pre-reduced in an anaerobic chamber for at least 24 h
before use. We isolated Lactobacillaceae using Mega Medium and Bifidobacteriaceae
using Bifidobacterium selective iodoacetate mupirocin medium according to a previously
published method (Table S1) (55).

Stock preparation

We obtained bacterial isolates from multiple culture collections, including BEI, ATCC, and
DSMZ. Source cultures were streaked onto Mega Medium agar or appropriate media as
noted in Table S1, and single colonies were picked and frozen for storage using a 1:1
mixture of culture and a 50% glycerol solution. The solid- and liquid-rich media used
for stock production are listed in Table S1. We confirmed the purity of final cultures
via Sanger sequencing of the 165 rRNA gene using 8F and 1391R primers (8F: 5-AGAGTT-
TGATCCTGGCTCAG-3’, 1391R: 5-GACGGGCGGTGWGTRCA-3").

PATRIC annotations

Genomes of publicly available species were downloaded from NCBI and submitted
to PATRIC (https://www.patricbrc.org/) for annotation (56). The NCBI taxonomy ID and
domain (i.e., bacteria) are required for submission. The abundance of annotated genomic
features was compared across species at subsystem levels using the Shiny library in
RStudio.

In vitro growth and PATRIC subsystem analysis

Analyses and graphing were performed using R v4.1.2 and RStudio v1.4.1717.
We conducted heatmap analyses of RAST (rapid annotation using subsystem tech-
nology) subsystems and growth data through an in-house-developed R library
named “strains_heatmaps” (available for download in the following GitHub reposi-
tory: https://github.com/Tropini-lab/Strain_library_paper) and the ComplexHeatmaps
package v2.10.0 (57, 58). Briefly, our R library assembles all tables downloaded from
RAST into a data frame that compares the number of features present in the different
strains. Then, the R library filters and collapses the data frame based on broad annotation
categories (in our case, subsystems involved in acid/osmolality tolerance) and transforms
the data frame into a format compatible for use with the ComplexHeatmaps library.
The ComplexHeatmaps library is then implemented to make various heatmaps, with
coloring based on feature counts for each subsystem for each strain and the growth data
joined as additional heatmaps or heatmap annotations. For more detailed explanations,
please refer to the scripts and tutorials in the GitHub repositories (https://github.com/
Tropini-lab/Strain_library_paper).

Month XXXX Volume 0 Issue 0

mBio

10.1128/mbio0.00753-23 16


https://www.patricbrc.org/
https://github.com/Tropini-lab/Strain_library_paper
https://github.com/Tropini-lab/Strain_library_paper
https://doi.org/10.1128/mbio.00753-23

Research Article

Machine learning

The goal of our ML model was to determine that PATRIC annotations could predict a
strain’s ability to grow in varying pH and osmolality conditions.

Model input feature preparation

Using Python (version 3.10.5), we constructed a tabular Pandas (version 1.4.3) DataFrame
of features for each strain’s genome starting from the PATRIC subsystem annotation
output (59). PATRIC maps the strain genome name (genome_name in Table S3) to many
PATRIC IDs, each of which is annotated with a Superclass, Class, Subclass, Subsystem name,
and Role ID. Because this is a one-to-many mapping of genome_name to PATRIC ID, each
genome_name appears on multiple rows, with various numbers of PATRIC IDs for each
genome_name.

To efficiently fit the ML model, we used a fixed-length list of numbers represent-
ing each genome_name, that is, a feature vector. To featurize the 81 sequenced
genome_names using the PATRIC annotations, we counted the number of times a
particular value occurs in the PATRIC Superclass, Class, Subclass, Subsystem name, and
Role ID columns for a given genome_name.

For example, if a particular genome_name maps to exactly seven PATRIC IDs for
which the PATRIC Subsystem column’s value is “DNA repair, bacterial,” we create a feature
column named “Subsystem Name = DNA repair, bacterial” whose feature value on the
row for that genome_name is 7.

We further annotated the featurized DataFrame with additional feature columns for
each genome_name with binary indicator variables for its location within the phyloge-
netic tree. For example, there was a column named “Family = Bacteroidaceae” whose
value was 1 for every genome_name in the Bacteroidaceae family and 0 for other
genome names. We added these indicator variables for all observed values in the Phylum,
Class, Order, Family, Genus, and Species columns.

The feature DataFrame is relatively sparse and is thus filled with many cells contain-
ing counts of 0, as many genome_names did not associate with values for the PATRIC
columns whose values we counted, but we did not take advantage of this sparsity.

Model output values

We joined the growth data outputs (maximum OD across pH and osmolality condi-
tions; Table S4) for each strain’s genome with the information obtained based on the
genome_name.

We constructed separate models for predicting pH and osmolality responses. Within
those models, we jointly modeled all observations relevant to each perturbation. For
example, we constructed a single model that jointly predicts the normalized maxi-
mum OD observations across all pH conditions based on the above-described features
representing the genome_name. Thus, our models for predicting pH response have
four real-valued outputs for the observations at pH=4, 5.4, 6.7, and 7.3. Likewise, the
osmolality prediction models have four outputs, for the lowest osmolality, 890, 1,180,
and 1,800 mOsm/kg.

The osmolality measurements for one of the genome_names failed at two osmolality
values; hence, we removed this row from the DataFrame used to fit the osmolality
models, leaving 79 rows. The pH data had only one failed row.

Model architecture, loss function, and training procedure

Our featurized Pandas DataFrame was very short and wide (81x11,514), with a single row
for each of the 81 different genome_names and 11,514 different feature columns. This
shape is atypical for ML applications due to the potential for overfitting, but we were
interested in feature evaluation rather than precise modeling; thus, we used a one-level
decision tree regression model, also known as a decision stump (60). We fit this model
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using sklearn’s default parameter values for regression trees, which minimizes the total
squared error on both sides of the decision stump (60, 61).

Decision stump squared-error equation

A decision stump divides a data set into two groups using a single numerical feature and
a splitting threshold. Rows in which the feature value is smaller than the threshold go
down the left branch of the tree and arrive at the left terminal leaf node, whereas rows
for which the feature value is at least as large as the threshold go to the right terminal
leaf node.

At each of the left and right leaf nodes, the fitting algorithm computes the mean
value for each of the outputs using the rows assigned to that node, which serves as
the model’s prediction for all rows with the same classification. The fitting algorithm
attempts to select a feature and splitting threshold which minimizes the total squared
error of each row’s distance from its associated mean. Pedregosa et al. describe this
algorithm as minimizing the “mean squared error, which is equal to variance reduction
as feature selection criterion and minimizes the L2 loss using the mean of each terminal
node” (61).

Single-feature decision stumps

To identify the quality of each candidate feature, we trained a single-feature decision
stump on all 11,514 individual features. Because the decision tree fitting code is not
required to select between competing features for the root split, the only remaining
task is to identify the splitting threshold that minimizes the total squared error across
the left and right terminal leaf nodes in predicting the maximum OD across all four
responses. Note that this approach places us in the regime of a decision tree regression
multi-output problem (61).

K-fold cross-validation

Even though the single-feature decision stump is a relatively simple model, it is still
possible to overfit the data. The large number of features being evaluated increases the
chance that this will happen for some features. To mitigate this risk, we performed K-fold
cross-validation for all the models we fit, using sklearn’s default parameters settings (K
= 5). K-fold cross-validation works by dividing the shuffled data into five partitions. Each
time a model is fit, one of the partitions is held out of the training set. We then evaluated
the trained model’s squared error on both the training partitions and the held-out test
set partition.

Because we trained K = 5 different models for each feature, we computed five
different estimates for each feature's squared error on both the train and test sets. To
compute an overall estimate of each feature’s quality, we took the mean of those five
estimates.

We note that, particularly in modeling the pH data, some features happen to result
in low squared error on the test set, despite having relatively high error on the train
set (Fig. S4B). To further mitigate this, we computed each feature’s rank among all the
features in the train and test set scores, and ultimately ranked the features according to
its maximum (worst) rank across the train and test set scores.

Finally, since we trained five different models for each feature, each of the models
could have selected a different decision splitting threshold for that feature. For binary
partitions of the data used to make box plots and heatmaps, we took the mean value of
the decision threshold selected for each of the five models.

Colony polymerase chain reaction and confirmation of strains used in
experiments

Here, 1 mL of overnight cultures grown for 24 h at 37°C was spun down for 5 min at
5,000 x g (relative centrifugal force), and the collected pellets were boiled for 5 min.
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We prepared 1:10 and 1:100 dilutions using sterile DNase-free water to prepare for
colony polymerase chain reaction (PCR) [(98°C 2 min) — (98°C 30 s, 57°C 30 s, 72°C
45 s) x 30 cycles = (72°C 10 min) — (4°C o0)] and performed sequencing using 8F and
1391R primers (8F: AGAGTTTGATCCTGGCTCAG, 1391R: GACGGGCGGTGWGTRCA). Some
cultures required DNA extraction prior to PCR, which was performed using the Qiagen
DNeasy Blood and Tissue Kit (Catalog number: 69504).

Human fecal sample collection, fermentation, and DNA extraction

We collected feces from six individuals (TL1, TL2, TL3, TL4, TL5, and TL6), either a day
prior to or on the morning of experimentation. We stored all fecal samples in sterile
conical tubes at —80°C before processing. Fecal samples (1.5 g) were resuspended in
sterile pre-reduced 1 x PBS, and contents were allowed to settle to collect liquid. Liquid
Mega Medium was pre-reduced in an anaerobic chamber environment with 5% CO;, 5%
H,, and 90% N, for at least 24 h. For each sample, 1 L of supernatant was collected and
subsequently inoculated into 200 pL of pre-reduced liquid Mega Medium adjusted to a
pH of 4, 5.5, 6.9, or 7.6 and an osmolality of 472, 670, 862, 1,047, 1,247, 1,437, 1,637, or
1,824 mOsm/kg on two 96-well plates. We measured the OD at a wavelength of 600 nm
(ODggg) using a BioTek Synergy H1 Plate Reader after anaerobic incubation at 37°C for
48 h. We selected the physical conditions based on generated ODgpg measurements
and extracted DNA from the 96-well plates using the DNeasy PowerSoil Pro Kit (Catalog
number: 47016).

Humanized mice supplemented with a guar gum diet

Germ-free SW mice were gavaged with a human gut microbiota (TL1) at 9 weeks and
placed on a standard rodent diet (LabDiet 5k67). Six weeks after colonization, five SW
mice (two males and three females) were switched to a guar gum diet (TestDiet 5BSE) for
2 weeks, while three (three males) remained on the standard diet. In Fig. 4B, M1 and M2,
and M3 were three male mice and were co-housed and given a standard diet. M4 and M5
were males and co-housed, while M6, M7, and M8 were females that were also separately
co-housed. M4-M8 were given a guar gum diet. Two weeks after equilibration on the
diet, the mice were sacrificed using carbon dioxide with secondary cervical dislocation.
We collected contents from the duodenum, jejunum, ileum, cecum, and colon in the
gastrointestinal tract for pH and osmolality measurements. Collected mouse intestinal
contents were stored in 1.5-mL microcentrifuge tubes and kept on ice during prepara-
tion for pH and osmolality measurements. The same micro pH probe (Orion PerpHecT
ROSS Combination pH Micro Electrode, Catalog number: 8220BNWP) and Advanced
Instruments Osmo1 Single-Sample Micro-Osmometer were used to measure intestinal
contents as described above. In addition, we performed DNA extraction as described
above for 16S rRNA sequencing and sent cecal contents for SCFA analysis.

16S sequencing library preparation and sequencing

We quantified the extracted DNA using the Quant-iT 1 x dsDNA HS (High-Sensitivity)
Assay kit (Catalog number: Q33232). We submitted the DNA samples to either Biofac-
torial, a high-throughput biology facility located in the Life Sciences Institute at the
University of British Columbia, or the Gut4Health Microbiome Core Facility at the British
Columbia Children’s Hospital Research Institute and the University of British Columbia for
a paired-end sequencing run using a MiSeqv3-600 instrument with dual-indexed V4V5
primers (Biofactorial) or V4 primers (Gut4Health). For samples sequenced at Biofactorial,
a dual-indexing, one-step 10 pL PCR reaction was performed on a LabCyte Access
Workstation using Quanta repliQa HiFi ToughMix with 0.5 ng input DNA and complete
“fusion primers” that include Illumina Nextera adaptors, indices, and specific regions
targeting the V4/V5 region of the 16S rRNA genes (62). After quantification of amplicons
via a picogreen assay (Quant-iT PicoGreen dsDNA Assay Kit, Thermo Fisher Scientific,
Waltham, MA, USA), 2 ng of each product were pooled for subsequent cleanup using
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the AmpureXP PCR cleanup protocol (Beckman Coulter, Brea, CA, USA). The pooled
library was quantified by a picogreen assay and loaded onto an Illumina MiSeq Reagent
Kit v3 (600-cycle) according to the manufacturer’s recommendations with 15% PhiX.
Samples submitted to Gut4Health were prepared according to a previously published
method (63). Briefly, the V4 region of the 16S rRNA gene was amplified with barcode
primers containing the index sequences using a KAPA HiFi HotStart Real-time PCR
Master Mix (Roche, Grenzach-Wyhlen, Germany). We monitored PCR product amplifica-
tion and concentration on a Bio-Rad CFT Connect Real-Time PCR system. Amplicon
libraries were then purified, normalized, and pooled via a SequalPrep normalization
plate (Applied Biosystems, Foster City, CA, USA). We further purified the pooled library
with the Agencourt AMPure XP system (Beckman Coulter, Brea, CA, USA) according to
the manufacturer’s protocol. Library concentrations were verified by a Qubit dsDNA
high-sensitivity assay kit (Invitrogen, Carlsbad, CA, USA) and the KAPA Library Quantifica-
tion Kit (Roche, Grenzach-Wyhlen, Germany) according to the manufacturer’s instruc-
tions. We submitted the purified pooled libraries to the Bioinformatics+Sequencing
Consortium at the University of British Columbia, which verifies DNA quality and quantity
using a high-sensitivity DNA kit (Agilent) on an Agilent 2100 Bioanalyzer. Sequencing was
performed on the lllumina MiSeq v2 platform with 2x250 paired end-read chemistry.

16S rRNA data analysis

We imported 16S rRNA reads generated through the MiSeq v3-600 run to QIIME 2
2020.11 for analysis (64). The read quality was assessed by FastQC (https://github.com/
s-andrews/FastQC). We processed the sequences using DADA2 (https://github.com/
giime2/g2-dada2). The primers were trimmed, and sequences with a quality score below
30 were truncated. We taxonomically classified the denoised sequences using a SILVA
v138-trained classifier (65).

SCFA analysis of murine cecal samples from the guar gum diet

To prepare SCFA samples for gas chromatography analysis, we extracted SCFAs from 40
to 100 mg of cecal contents. The samples were mixed and homogenized with 800 pL of
25% phosphoric acid. We collected the supernatants via centrifugation at 15,000 x g for
10 min at 4°C. We then added 200 L isocaproic acid and 0.2 mL 25% phosphoric acid
as an internal standard. Supernatants were sent to the AFNS Chromatography Facility
at the University of Alberta for quantification. We ran the samples on a Varian 430 gas
chromatograph with a Stabilwax-DA column (length: 30 m, inner diameter: 0.53 mm, and
film thickness: 0.5 um) and helium carrier gas, using a 250C injector with a split ratio of 5
and a 1 pL injection. We utilized a flame ionization detector with a detector temperature
of 250°C. Retention times were compared with known standards.

Software and algorithms

In this work, we utilized MATLAB 2020a (MathWorks, Natick, MA, USA) to analyze the
bacterial growth, as described above. We used BioTek GEN5 software to collect bacterial
absorbance and fluorescence. We employed RStudio to compare the abundance of
annotated genomic features across species at subsystem levels (Shiny library) in RStudio.
We performed analyses and graphing using R v4.1.2 and RStudio v1.4.1717, as described
above.
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