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Single-strain behavior predicts responses to environmental pH 
and osmolality in the gut microbiota
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ABSTRACT Changes to gut environmental factors such as pH and osmolality due to 
disease or drugs correlate with major shifts in microbiome composition; however, we 
currently cannot predict which species can tolerate such changes or how the community 
will be affected. Here, we assessed the growth of 92 representative human gut bacterial 
strains spanning 28 families across multiple pH values and osmolalities in vitro. The 
ability to grow in extreme pH or osmolality conditions correlated with the availability of 
known stress response genes in many cases, but not all, indicating that novel pathways 
may participate in protecting against acid or osmotic stresses. Machine learning analysis 
uncovered genes or subsystems that are predictive of differential tolerance in either 
acid or osmotic stress. For osmotic stress, we corroborated the increased abundance of 
these genes in vivo during osmotic perturbation. The growth of specific taxa in limiting 
conditions in isolation in vitro correlated with survival in complex communities in vitro 
and in an in vivo mouse model of diet-induced intestinal acidification. Our data show 
that in vitro stress tolerance results are generalizable and that physical parameters may 
supersede interspecies interactions in determining the relative abundance of community 
members. This study provides insight into the ability of the microbiota to respond to 
common perturbations that may be encountered in the gut and provides a list of genes 
that correlate with increased ability to survive in these conditions.

IMPORTANCE To achieve greater predictability in microbiota studies, it is crucial to 
consider physical environmental factors such as pH and particle concentration, as they 
play a pivotal role in influencing bacterial function and survival. For example, pH is 
significantly altered in various diseases, including cancers, inflammatory bowel disease, 
as well in the case of over-the-counter drug use. Additionally, conditions like malabsorp­
tion can affect particle concentration. In our study, we investigate how changes in 
environmental pH and osmolality can serve as predictive indicators of bacterial growth 
and abundance. Our research provides a comprehensive resource for anticipating shifts 
in microbial composition and gene abundance during complex perturbations. Moreover, 
our findings underscore the significance of the physical environment as a major driver 
of bacterial composition. Finally, this work emphasizes the necessity of incorporating 
physical measurements into animal and clinical studies to better understand the factors 
influencing shifts in microbiota abundance.

KEYWORDS acid stress, machine learning, microbiota, osmolality, single-strain culture, 
culturomics

T he animal digestive tract naturally consists of numerous distinct environments in 
which physical and chemical conditions such as oxygen concentration, acidity, 

mucosal stiffness, and temperature are tightly regulated by host–microbial interactions. 
Environmental gradients along the intestine create a continuum of habitats that the 
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microbiota explores in its voyage along the intestinal tract (1–3). Alterations in pH and 
particle concentration (osmolality) commonly occur in gut disease or result from 
the ingestion of specific compounds. For example, inflammatory bowel disease (IBD), 
intestinal cancers, and antacids are associated with abnormal pH values (4, 5). Further­
more, diarrhea and aging are associated with increased oxygen in the intestine, and 
conditions such as malabsorption due to intolerances (e.g., celiac disease) or overcon­
sumption of salts, alcohol, and laxatives lead to changes in osmolality (6–8). Additionally, 
the microbiota affects physical parameters by consuming luminal oxygen, degrading the 
mucosal layer, or acidifying the environment through fermentation and short-chain fatty 
acid (SCFA) production (9–11).

Changes in the gut physical environment affect the gut microbiota on a broad 
scale, favoring growth only when the biochemical and physical conditions match the 
requirements of each taxon (3). The survival of specific taxa is driven by the function 
of genes and pathways that regulate metabolism and stress responses over short and 
chronic time scales. These genes and pathways play a key role in establishing the 
microbiota members that can grow in specific regions of the gut and host states (1–
3). For example, the steep intraluminal oxygen gradient partitions strictly anaerobic 
bacteria such as Faecalibacterium away from the more oxygenated epithelium, while 
more aerotolerant bacteria such as Enterobacteriaceae can associate with the mucosa 
(12). Beyond oxygen sensitivity, pH and osmolality also impact bacterial growth and 
survival (4, 13–15). Even small alterations in pH and osmolality can dramatically affect 
bacterial growth due to alterations in enzyme activity, energetic favorability of certain 
nutrient substrates, and rates of protein synthesis (16–18).

Previous studies have highlighted broad differences among microbial taxa in their 
adaptation to pH and osmolality, as evidenced by the differential enrichment of 
well-studied taxa in response to pH alterations (13). For example, Lactobacillus species 
propagate over wide ranges of pH, whereas acidic environments inhibit some members 
of the Bacteroides genus (19). Despite these general trends, certain members within 
these taxonomic groups excel in high-stress conditions of changed pH and osmolality, 
while others display sensitivity to these parameters, indicating genus- or even strain-spe­
cific differences (4, 20). Even in the absence of limiting cases in which taxa cannot grow, 
changing physical conditions can affect bacterial growth rates, resulting in microbiota 
composition shifts within the highly competitive and nutrient-depleted environment 
of the intestine. For example, mild osmotic diarrhea induced by polyethylene glycol 
(PEG) can induce long-term changes in gut microbial membership despite presenting no 
change in bacterial density or load (14).

Thus far, the effects of physical parameters on bacterial growth across intestinal 
bacterial taxa have not been well documented. Importantly, the taxonomic level at 
which growth phenotypes can be generalized remains unclear; moreover, it remains 
unknown whether the physical environment is broadly predictive of bacterial response 
and abundance. Closing this gap of understanding is particularly critical for identifying 
the relationship between the microbiota and disease, as the presence of certain gut 
bacterial members may be strongly dictated by the physical environment rather than 
disease-specific phenotypes. In addition, identifying the genes that allow particular gut 
members to survive varying physical parameters is crucial. This knowledge would also 
shed light on the effectiveness of microbiota therapies, as procedures such as fecal 
microbiota transplant or probiotic administration may be rendered ineffective by the 
transfer of members that cannot survive in the disease-altered environment.

In this work, we examined the growth phenotypes of 92 species from 28 fam­
ilies across a range of pH and osmolality values. We combined high-throughput 
growth measurements, environmental measurements, and machine learning (ML)-assis­
ted comparative genomics to systematically identify the capacity of microbial taxa to 
survive in pH and osmolality conditions relevant to health and disease. We performed a 
thorough in vitro analysis of bacterial growth of individually grown strains and revealed 
general trends of tolerance among phylogenetically related microbes, including known 
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pathogens and probiotics strains. We corroborated these results by performing human 
microbiota community experiments in vitro and in humanized mouse models and 
demonstrated the broad predictability of bacterial abundance across multiple donors 
and conditions. Importantly, we found that in vitro results of single-strain stress tolerance 
can predict bacterial behavior in complex in vivo conditions. We also found that the 
presence of genes involved in osmotic stress response is predictive of survival in an 
environment with disrupted osmolality. Taken together, our results demonstrate that 
the physical environment is broadly predictive of bacterial response and abundance. 
This knowledge will aid in determining the effectiveness of microbiota therapies and in 
assessing whether treatments may be viable in a given perturbed gut environment.

RESULTS

Collection of 92 strains from 28 families of bacteria

We cultured 92 bacterial strains from 28 common gut bacterial families across seven 
phyla, comprising a diverse set of strains with a focus on human isolates (Fig. 1A). We 
chose these strains based on their public availability, fully sequenced genomes, and 
broad interest due to their prevalence in the gut microbiota. We derived most strains 
from the BEI collection of Human Microbiome Project human strains, the American 
Type Culture Collection (ATCC), the Deutsche Sammlung von Mikroorganismen und 
Zellkulturen (DSMZ), and the Collection of Inflammation-Associated Mouse Intestinal 
Bacteria (21) (Materials and Methods). Of these strains, 69 were human isolates, 10 were 
mouse-derived, and the remaining 13 were either isolated from probiotics or other strain 
types. Some characterized probiotic strains (11) were isolated from commercial sources 
and were not previously sequenced. For taxa of high interest due to their prevalence, 
abundance, or health relevance, we included multiple species or strains within a family 
in order to avoid drawing species-specific conclusions (22–30). Specifically, we increased 
the coverage of the Bacteroidaceae, Bifidobacteriaceae, Lactobacillaceae, Lachnospir­
aceae, Enterobacteriaceae, and Prevotellaceae families. To facilitate high-throughput 
cultivation and comparisons of strains, we grew the majority of the bacteria (83/92) 
in anaerobic conditions in Mega Medium, a rich and undefined medium previously 
demonstrated to support the growth of a wide variety of strains (Materials and Methods) 
(31). The remaining strains required more specialized media for growth (Materials and 
Methods; Fig. 1B; Table S1). To measure the impact of bacterial growth on the environ­
mental pH, we supplemented the experimental media with 2'′,7′-bis-(2-carboxyethyl)-5-
(and-6)-carboxyfluorescein (BCECF), which enabled real-time pH measurements coupled 
with optical density (OD) measurements (Fig. 1B). We uncovered no significant trends 
in medium acidification with respect to growth in different conditions (Fig. S1A). As the 
genomes in our strain library have been fully sequenced and assembled, we performed 
comparative genomics analyses that combined protein annotations from the Pathosys­
tems Resource Integration Center (PATRIC). To visualize this analysis across all strains, 
we created a novel visualization tool to explore PATRIC annotation data and compare 
across multiple genomes (https://tropinilab.shinyapps.io/strain_heatmap_app/) (Fig. 1C). 
We grew the strains in eight different conditions, spanning four osmolalities (from 
unmodified medium osmolalities of 0.23–0.44 Osm/kg to a maximum condition of 1.8 
Osm/kg) and four pH values (4–7.4). We selected these ranges to mimic the potential 
environmental conditions that intestinal bacteria encounter along the gastrointestinal 
tract and during perturbations (14, 32, 33).

Bacterial families display a range of tolerance to increasing osmolality

Increasing osmolality elicited widely divergent effects on the bacterial families assayed in 
this study (Fig. 2A). While in vivo measurements of high gut osmolality are usually less 
than ~1,100 mOsm/kg (14), we sought to explore a wider range of high osmolalities, as 
many bacterial taxa showed strong growth at these values in the current study. Lactoba­
cillaceae and Enterobacteriaceae family members displayed robust growth at moderately 
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high (~1,176 mOsm/kg) and high (~1,800 mOsm/kg) osmolalities. Interestingly, we 
observed modest heterogeneity among genera and species within Lactobacillaceae; the 
strains that were more negatively affected in high-osmolality conditions were Lactobacil­
lus murinus strains 1 (NM26) and 2 (NM28), Lactobacillus intestinalis NM61, and Lacticasei­
bacillus rhamnosus HA-114. Conversely, bacteria in the Bacteroidaceae, 
Bifidobacteriaceae, and Lachnospiraceae families displayed a wide range of sensitivities 
to increasing osmolality; except for two Bifidobacterium strains, these bacteria were 
unable to grow in media with an osmolality of ~1,800 mOsm/kg. Beyond these families, 
multiple species were extremely sensitive to osmolality, including the mucin degrader 
Akkermansia muciniphila ATCC BAA-835, most Prevotellaceae species tested, and 
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FIG 1 Phylogenetic overview and experimental setup of characterized intestinal bacterial strains. (A) 16S rRNA sequences from each member of the strain library 

were acquired from the SILVA database and used to generate a phylogenetic tree. (B) Experimental design and workflow for the characterization of growth of 

bacterial strains under different physical conditions. (C) Heatmap of PATRIC annotations of characterized strains within the subcategories of the Stress Response, 

Defense, and Virulence gene categories.
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Erysipelotrichaceae member Holdemanella biformis VPI C17-5 ATCC 27806. While many 
bacterial strains showed decreased growth rates under high osmolality, they still reached 
maximum yields similar to those achieved in normal osmolality, indicating the same 
ability to leverage nutrients in these limiting conditions (Fig. S1B).

Having created a resource of growth abilities for a broad set of gut bacteria, we 
sought to discover the mechanisms that underlie the tolerance of some bacteria to 
different osmotic conditions by finding genes or functions that are consistently over-
represented in tolerant bacteria. As the majority of genomes (81/92) in our strain library 
have been fully sequenced and assembled, we performed comparative genomics 
analyses by combining genomic annotations conducted using tools created by PATRIC 
with our quantified growth phenotypes (34).

Next, we employed an ML strategy to determine whether potential annotations 
employed by PATRIC were indicative of a strain’s ability to grow in varying environmental 
osmolality and pH conditions. Unlike most ML applications, where the goal is to train a 
model based on input features and then evaluate and optimize its accuracy and 
generalization, our goal was restricted to the task of feature selection from the large set 
of available PATRIC annotations. Therefore, we constructed a novel featurization of the 
PATRIC annotations and used a simple ML model called a decision stump to fit many 
predictive models to the data. For each candidate PATRIC feature, we measured model­
ing error on both a training set and held-out test set. We then used the modeling error to 
rank all the PATRIC features according to their ability to predict the phenotype. This ML 
analysis efficiently identified PATRIC annotations (ML model features) that correlated 
with an increased maximum OD of bacterial growth in the different growth conditions 
(Materials and Methods; Table S2).

We found that the presence of several subsystems correlated with a higher maximum 
OD at high osmolality (Table S2). A challenge with this type of analysis is that many 
functional annotations may be correlated and present in the same strains (Fig. S2), but 
not necessarily directly implicated in response to perturbations. Thus, we identified 
features that ranked high in distinguishing growth phenotypes and were mechanistically 
plausible. Importantly, the held-out data set performed comparably to the training data 
set, indicating the identified features generalized across this sampling of strains (Fig. 
S3A). To further increase our ability to detect relevant features, we re-analyzed a 
previously published and annotated metagenomic data set of in vivo osmotic perturba­
tion in a humanized mouse model (14). Briefly, in this data set, mice were exposed to the 
osmotic laxative PEG, which increased the mean intestinal osmolality from 533 to 810 
mOsm/kg. The functional pathways present in this community were then quantified for 
mice prior to, during, and after osmotic perturbation. We identified features that were 
both over-represented in high osmolality in vivo and detected in our ML analysis.

Of particular interest were the subclasses for glutathione biosynthesis/gamma-
glutamyl cycle, choline uptake and conversion to betaine, and osmotic stress (Fig. 2B 
through D). Notably, we also identified cold shock proteins as a distinguishing feature for 
growth in different osmotic conditions (Fig. S3B and C). Characterized bacterial taxa that 
possessed annotated genes within these subsystems or roles demonstrated a higher 
maximum OD on average with increasing osmolality and were also significantly over-
represented in vivo in high-osmolality conditions. Confirming the importance of stress 
gene annotations, we identified the osmotic stress gene category as the top predictive 
feature in this analysis, with a minimum of 10 features in this category being predictive of 
growth in high-osmolality conditions (Fig. 2D; Table S2). These analyses reveal candidates 
for future transcriptomic/proteomic studies that will be necessary to define the mecha­
nisms by which these features may support osmotolerance.

Bacterial families demonstrate a wide range of phenotypic variation in 
growth and yield in response to acidic/alkaline stress

We assessed the growth of the strain library for a pH range of 4–7.4 and revealed a wide 
range of tolerances to acidic conditions (Fig. 2A). Because physiological pH within the gut 
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varies with intestinal site, diet, and disease, we chose a range of pH conditions to 
encompass physiologically relevant perturbations a bacterial species may face (4, 22, 23, 
25). Most strains, except for Lactobacillaceae members, were unable to grow at pH 4; 
even at pH 5.5, these strains displayed serious defects in growth rate and maximum yield. 
Bacteria within the Lactobacillaceae family displayed the highest tolerance to low pH, as 
expected for lactic acid bacteria. However, even within this family, genera differed in 
their tolerance, with several members of Lactobacillus and Ligilactobacillus displaying 
sharp decreases in growth rate and maximum OD at pH 4 and inhibition of growth at pH 
7.4 compared with physiological pH (6.4–7). Interestingly, isolates from commercial 
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probiotic sources showed high sensitivity to pH changes. Furthermore, at pH 5.5, many 
species, such as Erysipelotrichaceae members, displayed a decreased growth rate and 
yield. An exception were members of the Desulfovibrionaceae, Fusobacteriaceae, 
Veillonellaceae, and Bifidobacteriaceae families, which contain members that have been 
described in acidic environments (e.g., acidic mine tailings, dental caries, vagina, and 
fermented foods, respectively) (35–39). Reports have also shown that Bacteroides species, 
which belong to the family Bacteroidaceae, are sensitive to low pH (40); however, we 
observed a wide range of sensitivities in growth at pH 5.5 in this genus, suggesting that 
different species and strains may be better adapted to acidic conditions. Some families 
displayed severe deficits in growth rate and yield at pH 5.5, including members of the 
Enterobacteriaceae and Streptococcaceae families. An acid-tolerance response has been 
described for members of the Enterobacteriaceae family (e.g., Escherichia coli and 
Salmonella) (41); however, this response may require priming in mildly acidic conditions 
prior to exposure to more acidic conditions. In our experiments, we subcultured bacteria 
at neutral pH immediately prior to growth under experimental conditions to simulate the 
transfer of a healthy microbiota into a diseased environment, which could potentially 
mask acid-stress adaptations in these families. Interestingly, several bacteria displayed 
narrow pH tolerances and were inhibited by mildly alkaline conditions, including 
Lactobacillaceae members. This sensitivity to alkaline conditions has been documented 
for Lactobacillaceae (19). Interestingly, similar to our observations in high-osmolality 
conditions, relative deficits in growth rate did not always translate into deficits in final 
yield (Fig. 2A), suggesting a path for survival of species in communities experiencing 
physical perturbation in the gut, if they are able to withstand washout.

After identifying growth patterns across our strain library, we once again performed 
ML analysis on PATRIC features to identify subsystems correlated to bacterial strain 
growth in acidic/alkaline stress. Unlike our osmolality analysis, the identified PATRIC 
features were sensitive, in that the model’s fit of the held-out data showed poorer 
generalization (Table S2; Fig. S4). Furthermore, PATRIC features ranked as highly 
predictive strongly correlated with specific bacterial families such as Lactobacillaceae, 
and therefore had less broadly predictive power across the identified strains.

Taxon-specific responses to pH and osmolality are predictive of behavior in 
naturally derived complex communities

In the intestine, the microbial communities comprising the microbiota are affected by 
the physical environment as well as other microbial species that compete for resources 
and may produce inhibitory molecules (42). To determine whether the behaviors in 
single-strain pure cultures are generalizable to growth phenotypes in communities, 
we examined the growth of complex gut microbiota in in vitro cultures subjected to 
defined pH and osmolality environments. We cultured feces from six healthy human 
donors for 48 h in Mega Medium under the same medium conditions used to assess 
the single-strain growth of the individual strains. Selection of fecal microbiota from 
multiple unrelated donors enabled us to study different taxa that are naturally coexisting 
and adapted to their specific complex community, allowing us to identify generalizable 
behaviors independent of specific metabolic interactions. Varying pH and osmolality 
resulted in a wide range of community compositions (Fig. 3A). We found that commun­
ity OD at 48 h (Fig. 3B) and DNA concentration (Fig. S5) were generally resilient to 
osmolality except at the highest osmolality tested, but showed a much greater pH 
dependence. This mirrored the behavior of the most osmotolerant and acid-tolerant 
species in single-strain growth (Fig. 2), suggesting that these strains drove the observed 
behavior of the communities. We compared abundance changes in different conditions 
at the family level, avoiding potential strain-specific behaviors. We observed numerous 
and distinct positive and negative correlations between pH and osmolality and the 
relative abundance of specific families (Fig. 3C). A negative correlation with pH indicates 
that a family is more tolerant of low pH, while a negative correlation with osmolality 
indicates that a family is less tolerant of high osmolality. These correlations of human 

Research Article mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.00753-23 7

https://doi.org/10.1128/mbio.00753-23


taxa for varying pH mirrored our observations in the single-strain growth of individual 
species, suggesting that, for specific taxa, the environmental pH is a stronger driver of 
bacterial abundance than the specific microbiota composition. For example, the relative 
abundance of Bifidobacteriaceae exhibited a highly negative correlation (r = −0.86) with 
increasing pH (Fig. 3D), matching the widespread low pH tolerance of Bifidobacteriaceae 
species relative to other families (Fig. 2A). In contrast, the Enterobacteriaceae, Tannerella­
ceae, Oscillospiraceae, and Bacteroidaceae families correlated positively with increasing 
pH (suggesting acid sensitivity), which is consistent with our single-strain growth data. 
Responses of bacterial families to different osmolalities in fecal fermentations also 
displayed similarities to single-strain responses. For example, the relative abundance 
of Enterococcaceae exhibited a highly positive correlation with osmolality (r= 0.71) (Fig. 
3E), in line with the tolerance of Enterococcaceae species to high osmolality in vitro 
(Fig. 2A) and in vivo (14). Conversely, members of the Lachnospiraceae and Bacteroida­
ceae families displayed a strong negative correlation with osmolality; the heterogene­
ity of single-strain responses in these families (Fig. 2A) suggests that the populations 
within the surveyed communities may be skewed toward relatively osmolality-sensitive 
members.

For many strains, the single-strain behavior was predictive of their response in a 
community setting; however, we observed a weak correlation with environmental pH or 
osmolality for some bacterial families whose members in our strain library displayed 
consistent responses in vitro. For example, some correlations for bacterial species that 
demonstrated acid tolerance in in vitro single-strain growth (e.g., Lactobacillaceae) were 
not as strong as expected. In some instances, we observed heterogeneity in responses 
across donors, likely stemming from sparsity of taxa in individual donor samples. For 
example, Bifidobacteriaceae were the dominant family at low pH in all samples except for 
one [Tropini Lab 6 (TL6)], in which the lactic acid bacterial family Leuconostocaceae 
dominated; this family was absent or present at less than 1% in all samples except for 
TL6. In the case of the Lactobacillaceae, in communities in which it was detected, the pH 
5.5 condition supported the highest relative abundance of this taxon; however, Lactoba­
cillaceae were entirely undetectable in three donors, and even in the other donors it was 
undetectable in conditions other than pH 5.5 (Fig. 3A). This sparsity both across donors 
and within conditions impacted the calculated correlations. Additionally, other factors, 
such as nutritional or resource competition, may contribute to the relative abundance of 
bacterial species in the intestine (Fig. 3C). Finally, the Enterobacteriaceae family displayed 
increased abundance in increasing osmolality in only some fecal communities (TL1, TL2, 
and TL4), which may be due to genus- or species/strain-level variation or, more likely, 
out-competition by other osmotically tolerant bacteria present in non-responsive fecal 
communities. Because we used 16S ribosomal RNA (rRNA) amplicon sequencing and 
measured relative abundances, the survival and proliferation of other osmotically 
tolerant bacteria could mask survival or increases in absolute Enterobacteriaceae 
abundance.

Single-strain behavior correlates with responses to environmental pH and 
osmolality in the gut

Having shown the in vitro generalizability of pH and osmolality resilience in a complex 
microbiota for several key taxa, we explored whether these phenotypes would also be 
consistent in vivo, where, beyond microbiota interactions, the interplay with host 
dynamics plays a significant role in determining bacterial abundance. As other studies 
have investigated the response to osmolality in vivo (14, 43), we sought to investigate 
how microbiota members are affected by changes in pH in vivo. We reasoned that 
changing diet would impact gut pH differentially in the various intestinal compartments 
(44, 45). Specifically, microbial fermentation of carbohydrates in the cecum and colon 
produces SCFAs, lowering the pH of these intestinal compartments. As with any pertur­
bation in vivo, changing diet will have multiple orthogonal effects (i.e., in this case, 
combining differences in nutrient availability for both the host and the microbiota as 

Research Article mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.00753-23 8

https://doi.org/10.1128/mbio.00753-23


well as pH); however, using our in vitro analysis, we reasoned this model might enable us 
to identify patterns that are consistent with pH tolerance. Although most monosacchar­
ides and disaccharides are hydrolyzed and absorbed in the small intestine, many dietary 
oligosaccharides and polysaccharides cannot be hydrolyzed by host enzymes and pass 
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undigested into the large intestine, where they are readily fermented by bacteria. One 
such carbohydrate is guar gum (46), a galactomannan polysaccharide comprising a linear 
backbone of β-1,4-linked mannose residues with randomly attached β-1,6-linked 
galactose residues, a structure that cannot be digested by the mammalian host (47). We 
hypothesized that mice on this diet would undergo increased fermentation and 
acidification in their large intestines relative to mice on a standard diet. We gavaged 
germ-free Swiss Webster (SW) mice with feces from a healthy human donor, colonizing 
their intestines with a representative community of human intestinal bacteria (Fig. 4A). 
After equilibration for 6 weeks on a standard rodent diet, the mice were divided into two 
groups: one group was placed on a diet with 30% guar gum and allowed to adjust to 
their diet for an additional 2 weeks, whereas the second group continued on a standard 
rodent diet (Fig. 4A). We then sacrificed the mice and performed 16S rRNA sequencing 
(Fig. 4B) and pH measurements (Fig. 4C) on different intestinal segments. Measurements 
of intestinal content revealed a significant decrease in pH in the jejunum, cecum, and 
colon of mice receiving the guar gum diet (Fig. 4C), suggesting that increased fermenta­
tion occurred. Unlike the pH at the other sites, the duodenal and ileal pH values were 
unaffected by the diet change. We then investigated whether SCFA production in the 
cecum was altered by the diet. Indeed, we found that butyrate levels increased threefold 
in mice fed the guar gum diet while other SCFAs were not significantly affected except 
valerate, which was mildly decreased (Fig. 4D).

Next, we analyzed the relative abundance of bacteria in the different intestinal 
segments and diet conditions by performing 16S rRNA sequencing of communities 
isolated from those regions. In mice on the guar gum diet, the average cecal and colonic 
pH values were 6.36 and 6.02, respectively, compared with 7.26 and 7.04 for the stand­
ard-diet-fed mice (Fig. 4C). Given the distinct pH tolerance profiles of different bacterial 
families (Fig. 2A), we hypothesized that this acidification would change the composition 
of the colonic microbiota. We observed an increase in the butyrate producer Blautia 
(Lachnospiraceae family) and a loss of the Erysipelotrichaceae family (Fig. 4; Fig. S6). Our 
single-strain analyses revealed that Blautia was able to grow at pH 5.5, consistent with its 
ability to thrive in these conditions in vivo (Fig. 2A and 4B). Conversely, our in vitro data 
suggest that many Bacteroides members are sensitive to low pH (Fig. 2A). Interestingly, 
we observed in vivo expansion of Bacteroides within the cecum and colon in experimen­
tal mice despite Bacteroides members displaying a sensitivity to in vitro conditions of pH 
5.5 and below (Fig. 2A and 4B). This observation suggests that the expansion of relatively 
more acid-tolerant Bacteroides isolates within the same niche may occur upon changes in 
the physical environment.

DISCUSSION

In this study, we sought to characterize the pH and osmolality tolerance of a wide range 
of publicly available and sequenced gut bacteria and probiotic strains. We characterized 
the growth of 92 bacterial representatives of the gut across 28 families under multiple pH 
and osmolality conditions in vitro (Fig. 1A). Most of these bacterial species were human 
isolates, selected to maximize their relevance to the human intestine; however, by 
measuring the response to pH and osmolality in both mouse and human isolates from 
the same families, we provided a more extensive coverage of the diversity found within 
gut bacteria across multiple hosts. We developed high-throughput growth assays to test 
bacterial growth in pH and osmolality conditions representative of those found within 
the gut in health and disease. Our measurements demonstrate a wide range of tolerance 
to perturbation across bacterial families and family specific responses to changes in pH 
and osmolality. Within families, individual members across hosts demonstrated a varied 
response to in vitro conditions. Using comparative genomics, we uncovered the abun­
dance and prevalence of genes in characterized microbial taxa responding to stress. In 
many cases, the abilities to tolerate acidic stress and high osmolality were congruent 
with the abundance and presence of identified stress response genes. One limitation of 
this study arises from differences in the depth of gene annotations/knowledge of the 
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more deeply studied families, such as Enterobacteriaceae and Bacteroidaceae, and more 
newly discovered and relatively culture-intractable families (Fig. 2A). However, our 
analysis provides a framework for identifying strains that may possess novel stress 
responses for cases in which an isolate shows growth in limiting pH or osmolality 
conditions despite not possessing annotated stress tolerance genes.

We observed widespread pH and osmolality tolerance in representatives of 
Lactobacillaceae (including isolates from commercially available probiotic sources) 
and Enterococcaceae, respectively. Conversely, Bacteroidaceae and Bifidobacteriaceae 
displayed heterogeneity in their responses to osmolality and pH. Despite a broad 
diversity of growth phenotypes, we did not observe genomic features that could explain 
the phenotypic variation. This may be due to a difference in unannotated genes, or in the 
expression of annotated genes, and suggests that transcriptomic analyses or single-gene 
knockout libraries may be required to untangle mechanisms underlying the differential 
tolerance of these bacteria.

Interestingly, many strains that displayed deficits in maximum growth rate at lower 
pH or higher osmolality still produced similar maximum yields (Fig. S1B). Although 
bacteria in the intestine must grow at a sufficient rate to prevent washout, maintaining 
a maximum efficiency of biomass yield may also be an effective strategy for survival; 
thus, efforts to connect single-strain tolerance to behavior/yield in complex communities 
must incorporate both metrics. It is also important to note that while some of these 
strains displayed relative deficits in growth rate compared with their maximal growth 
rate in ideal conditions, a strain merely needs to survive or efficiently produce biomass 
relative to other bacteria to be propagated in the gut. Moreover, some bacterial taxa 
spatially inhabit specific niches within the gut, which limits the competition for resources 
against other bacteria preventing washout.

Our ML analysis highlighted how the presence of specific genes is strongly predictive 
of growth at different osmolalities (Fig. 2B through D). Many of these genes are involved 
in stress tolerance (48, 49). For osmotic stress, the subsystem of glutathione biosynthe­
sis/gamma-glutamyl cycle has previously been shown to provide osmo-adaptation (48). 
Tellingly, mutants lacking genes within this subsystem (e.g., gshA and gor) in E. coli 
show deficient growth in elevated osmolarity (48). Furthermore, we identified other 
genes not traditionally viewed as osmotic-stress response genes (Table S2). For example, 
we found that dihydrolipoamide dehydrogenase is predictive of osmotic tolerance. 
This protein functions to oxidize dihydrolipoamide in a ping-pong mechanism as an 
oxidoreductase (50). Interestingly, the identified dihydrolipoamide dehydrogenase of the 
pyruvate dehydrogenase complex has been implicated in the increased osmo-tolerance 
of Staphylococcus aureus (51, 52).

The identification of genes and pathways involved in pH tolerance was less obvious 
than that for osmolality, indicating that family specific tolerance mechanisms may be 
at play, masking potential generalizable features. This finding indicates that community-
based techniques, such as metagenomics, may not shed light on the importance of 
specific genes involved in pH tolerance; identified features that may be unrelated to pH 
may be over-represented in acid-tolerant bacteria and appear significant. Therefore, we 
predict that more traditional genetic screens and transcriptomics assays will be needed 
to discover genes involved in pH tolerance in poorly annotated bacteria. For cases in 
which there is phenotypic variation within a family, comparative genomic techniques 
may be valuable, but for cases in which there is complete penetration of a phenotype 
within a taxon, elucidation of such features will prove more challenging. Importantly, we 
also found that the most acid- and osmolality-tolerant bacteria generally did not overlap 
(Fig. 2), suggesting that there are distinct mechanisms for acid and osmolality tolerance. 

FIG 4 (Continued)

humanized mice on the guar gum or control diet, highlighting the gut microbial composition at the family taxonomic level. (C) Quantification of pH along the 

gastrointestinal tract of humanized mice on the guar gum or control diet. (D) SCFA concentrations in cecal contents from humanized mice on the guar gum or 

control diet.
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This was also confirmed in our ML analysis, in which the set of features that predicted 
osmolality tolerance did not rank highly in pH tolerance (Fig. S4C).

We then explored whether single-taxon phenotypes are generalizable to a complex 
microbiota grown in complex media (Fig. 3). Using six distinct human fecal micro­
biota samples, we tested growth across pH and osmolality conditions and found 
that growth patterns observed in isolated bacteria were consistent with relative 
abundance in complex microbiota communities. Bifidobacteriaceae and Bacteroidaceae 
were negatively and positively correlated with pH, respectively, in concordance with 
their acid tolerance and sensitivity in single-strain growth (Fig. 2A). Similarly, families 
such as Enterococcaceae exhibited positive correlations with osmolality, mirroring their 
tolerance to osmolality. Enterobacteriaceae also displayed osmotic tolerance in pure 
cultures and in three donor samples (Fig. 3; TL1, TL2, and TL4); this family flourished 
in intermediate and high osmolalities as well. The lack of significant correlation across 
donors may be due to several reasons, including genetic or phenotypic variation at the 
species level and out-competition by highly osmo-tolerant bacteria such as Enterococ­
caceae. Although single-strain response data may highlight tolerance and potential 
mechanisms for survival, the relative tolerance and resilience of competing bacteria 
may ultimately be the determinant for success. Sparsity of taxa across donors may also 
underlie the lack of obvious correlations in some taxa; for example, we observed a bloom 
in the lactic acid bacteria family Leuconostocaceae in one donor sample (Fig. 3; TL6) at 
pH 5.5; this species, which is found in fermented food products, was absent in three 
donors and present at approximately 0.1% or less in TL3 and TL5, where it appeared 
that Bifidobacteriaceae dominated in low pH conditions. Similar sparsity between donors 
and within conditions underlies the weak correlation between Lactobacillaceae and 
pH despite its higher abundance at low pH. This result underscores the importance of 
quantifying tolerance across multiple bacterial families to capture the potential diverse 
responses in heterogenous human populations.

Finally, we investigated whether our in vitro observations were representative of an 
in vivo microbiota responding to changes in gut pH (Fig. 4). We selected an animal 
model with a dietary intervention that yielded a decrease in pH in multiple intestinal 
segments and a significant increase in butyrate, a SCFA found in cecal contents. These 
changes corresponded to a loss of Erysipelotrichaceae, a family that displayed extreme 
sensitivity to pH in single-strain growth with member H. biformis (Fig. 2A). Additionally, 
our in vitro strain characterizations confirmed the in vivo phenotypes, we previously 
observed in an animal model of mild osmotic diarrhea induced by PEG laxatives (14). In 
our in vitro strain library, the families Enterobacteriaceae and Enterococcaceae displayed 
high osmotic tolerance; these families experienced significant expansions during PEG 
treatment in humanized mice (14). Similarly, the family Verrucomicrobiaceae (which 
contains the species A. muciniphila) was extremely sensitive to osmolality in our in vitro 
characterization; this species decreased 25-fold during osmotic perturbation in vivo (14).

Taken together, these results highlight the importance of the physical parameters 
of pH and osmolality and their role in the survivability of bacterial taxa found within 
the gut and, therefore, overall gut community composition. By quantifying the pH and 
osmolality tolerance across a wide range of representative intestinal bacterial families, 
we found that in vitro tolerance to physical parameters in single-strain growth can 
predict the effect of changes on complex communities in an in vivo physical environ­
ment. The tolerances we investigated were also consistent in in vivo animal models 
for multiple taxa. Thus, quantifying taxon-specific responses of the gut microbiota 
to environmental perturbations provides key information regarding the dynamics of 
community changes during health and disease.

Beyond the consistency between individual species growth and community relative 
abundance patterns in different environmental conditions, a valuable implication of 
our studies is the importance of broadly characterizing the physical environment in 
microbiota studies. To better understand how to remediate diseases associated with 
both dysbiosis and environmental perturbation of the gut such as IBD, it is crucial 
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to establish the physical parameter ranges in healthy and perturbed environments, 
including the microenvironments along the intestine that are relevant to disease states. 
Once these environmental parameters have been quantified, efforts can be made to 
predict how the existing pH and osmolality may affect the survival of prospective 
communities in the gut. These measurements are also important in microbiota therapies, 
where the tolerance of probiotic strains to osmotic and acidic perturbations must be 
identified to determine survivability and potential function as a therapeutic within a 
perturbed gut environment. Potential probiotic strains must be able to propagate and 
compete against resident microbes in an environment to provide therapeutic effects. 
Our work has demonstrated that probiotics within a family may differ in their tolerance 
to physical parameters; we observed strong heterogeneity among Lactobacillaceae (Fig. 
2A), which contains many currently marketed probiotic strains. For a diseased environ­
ment in which physical parameters are altered or misregulated, our results suggest 
these probiotics may not fare equally well. Thus, the selection of a particular strain 
must consider physical measurements from the disease state of interest as well as the 
tolerance of potential therapeutic probiotics.

Overall, these results indicate that the physical environment is a key predictor of 
bacterial abundance over a broad range of conditions and across multiple communities. 
This predictability across physiological ranges highlights the importance of monitoring 
the physical environment in microbiota studies as a key driver of bacterial availability 
and the utility of determining the diverse individual responses of bacteria in single-strain 
cultures.

MATERIALS AND METHODS

Phylogenetic tree construction

We acquired 16S sequences for most bacterial species from the SILVA database (https://
www.arb-silva.de/search/) and the National Center for Biotechnology Information (NCBI) 
(Project ID: PRJNA474907). Sequences downloaded from SILVA were at least 1,500 bp 
in sequence length. The downloaded FASTA files were compiled into a single file and 
imported to MEGA 11.0.10: Molecular Evolutionary Genetics Analysis version 11 for 
alignment using the MUSCLE algorithm and for construction of a phylogenetic tree 
using the “Construct/Test Neighbor-Joining Tree” option (53, 54). We then uploaded the 
Newick file generated by MEGA 11.0.10 to iTOL v6 (https://itol.embl.de/) for modification 
and coloring (53).

Bacterial culture

The bacterial strains and corresponding metadata (i.e., taxonomy) used in this study are 
reported in Table S1. All bacterial strains were grown and inoculated in a vinyl anaerobic 
chamber (Coy Laboratories, Grass Lake, MI, USA) maintained with an atmosphere of 5% 
CO2, 5% H2, and 90% N2 (Linde Canada, Delta, BC, Canada). All strains were incubated at 
37°C for growth, and all glycerol stocks were stored at −80°C.

Bacterial media

We prepared Mega Medium using the protocol provided in the Supplementary Methods, 
with minimal modifications from a previous publication (31). Each batch of liquid and 
solid media was autoclaved and pre-reduced in an anaerobic chamber at least 24 h 
before use. To characterize the pH and osmolality tolerance of strains, we aseptically 
loaded liquid Mega Medium into two sterile 96-deep-well plates, with media adjusted 
to eight different conditions. Medium conditions consisted of Mega Medium adjusted 
to pH 4, 5.5, 6.9, or 8 (osmolality normalized to ~600 mOsm/kg, the osmolality of the 
pH 4 condition) or to osmolality conditions of ~440, ~890, ~1,176, or ~1,800 mOsm/kg. 
We adjusted medium osmolality conditions using sodium chloride. Lowest osmolality 
condition of adjusted media was dependent on the basal osmolality of media used to 
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characterize strains ranging from ~234 to ~440 mOsm/kg. We adjusted the medium 
pH using 10 N HCl and NaOH (33 wt% solution in water). For pH measurements, we 
calibrated a micro pH probe (Orion PerpHecT ROSS Combination pH Micro Electrode, 
Catalog number: 8220BNWP) for media adjustment. For osmolality measurements, we 
injected 20 µL of media into an Advanced Instruments Osmo1 Single-Sample Micro-
Osmometer using an Ease-Eject 20-µL Sampler and clean sampler tips. We filter-steri-
lized the media using 150 mL 0.22 µm vacuum filtration tops (VWR: 10040-444) after 
adjustment. Due to the relatively high base osmolality of the pH media, some strains 
could not grow in any pH conditions and were therefore grayed out in the heatmap 
(Fig. 2A). We loaded one plate with media containing 1 µg/mL BCECF (Thermo Fisher 
Scientific, Waltham, MA, USA) to measure the environmental pH during growth. BCECF 
is a fluorescent pH sensor that detects extracellular changes in medium pH by establish­
ing a pH-dependent ratio of emission intensity at excitation wavelengths of 440 and 
490 nm. We loaded another plate without BCECF to accurately determine the BCECF 
signal during pH calculations. Both plates were incubated in an anaerobic chamber for 
24 h to pre-reduce and equilibrate the media for anaerobic growth. For some strains that 
were unable to grow in Mega Medium, we used solid and liquid media of peptone yeast 
glucose (PYG) medium, brain heart infusion-supplemented (BHIS) medium+mucin, and 
Mega Medium supplemented with either lactate or a combination of sodium citrate and 
MgSO4, as noted in Table S1.

Bacterial growth

Bacterial isolates were streaked onto solid media to isolate individual colonies from 
glycerol stocks and were grown at 37°C; single colonies were picked after 24–48 h and 
cultured in “overnight” pre-reduced liquid media at 37°C for 16–36 h. We primarily used 
Mega Medium for strain characterization, with a few exceptions (Table S1). Overnight 
cultures were diluted 10-fold in pre-reduced liquid media and incubated at 37°C for 2 h. 
We then diluted the cultures fivefold into pre-reduced liquid media in a 96-well plate in 
preparation for high-throughput strain loading. Subsequently, we added 5 µL of cultures 
to 75 µL of each medium condition in a 384-well plate, resulting in a 16-fold dilution 
with an 80-fold dilution in total. Each 384-well plate consisted of eight conditions varying 
in pH and osmolality, with each strain grown in quadruplicate in each condition. Three 
of these replicates contained BCECF, and one replicate was BCECF-free, which enabled 
real-time environmental pH measurements coupled with OD measurements. Cultures 
grew at 37°C, and we measured the absorbance at 600 nm and BCECF fluorescence 
every 13 min using a Synergy H1 plate reader (BioTek Instruments, Winooski, VT, USA) 
for 48–96 h of growth. We measured BCECF fluorescence using excitation wavelengths 
of 440 and 490 nm detected at 535 nm for every time point on the growth curve. 
To quantify the medium pH, we determined the ratio of emission intensity between 
excitation at 490 nm versus 440 nm and calibrated this ratio to a calibration curve 
of pH values measured before each experiment, according to Invitrogen’s protocol. 
We conducted our analysis using a custom-made MATLAB program (https://github.com/
Tropini-lab/Strain_library_paper).

Growth analysis

Growth curves were run through a custom MATLAB script (https://github.com/Tropini-
lab/Strain_library_paper). Briefly, the program identifies replicates based on assigned 
metadata (strain, pH/osmolality, etc.) and automatically selects the three most similar 
replicates for each condition for averaging and plotting. The maximum growth rate for 
each OD curve is determined after a least-squares fit is performed for the OD curve to the 
Gompertz equation (54).
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Growth data standards

We selected appropriate growth data for strains grown in each condition by comparing 
growth data against control conditions. Controls consisted of sterile Mega Medium 
(or BHIS+mucin, PYG, or Mega Medium supplemented with lactate or MgSO4+sodium 
citrate); strains that increased in OD at the same time as or after control wells 
were discarded and re-run in subsequent experiments. For bacterial strains that were 
selected and considered clean, we performed outlier detection on the quadruplicate 
OD measurements and selected the best three out of four technical replicates in each 
condition for downstream analysis.

Isolation of commercial probiotics for characterization

We dissolved probiotics purchased from local pharmacies in sterile 1× phosphate-buf­
fered saline (PBS; Fisher Bioreagents: BP3991) in the anaerobic chamber. The dissolved 
slurry was streaked onto agar plates and incubated anaerobically at 37°C for 24 h. 
Both PBS and medium were pre-reduced in an anaerobic chamber for at least 24 h 
before use. We isolated Lactobacillaceae using Mega Medium and Bifidobacteriaceae 
using Bifidobacterium selective iodoacetate mupirocin medium according to a previously 
published method (Table S1) (55).

Stock preparation

We obtained bacterial isolates from multiple culture collections, including BEI, ATCC, and 
DSMZ. Source cultures were streaked onto Mega Medium agar or appropriate media as 
noted in Table S1, and single colonies were picked and frozen for storage using a 1:1 
mixture of culture and a 50% glycerol solution. The solid- and liquid-rich media used 
for stock production are listed in Table S1. We confirmed the purity of final cultures 
via Sanger sequencing of the 16S rRNA gene using 8F and 1391R primers (8F: 5′-AGAGTT­
TGATCCTGGCTCAG-3′, 1391R: 5′-GACGGGCGGTGWGTRCA-3′).

PATRIC annotations

Genomes of publicly available species were downloaded from NCBI and submitted 
to PATRIC (https://www.patricbrc.org/) for annotation (56). The NCBI taxonomy ID and 
domain (i.e., bacteria) are required for submission. The abundance of annotated genomic 
features was compared across species at subsystem levels using the Shiny library in 
RStudio.

In vitro growth and PATRIC subsystem analysis

Analyses and graphing were performed using R v4.1.2 and RStudio v1.4.1717. 
We conducted heatmap analyses of RAST (rapid annotation using subsystem tech­
nology) subsystems and growth data through an in-house-developed R library 
named “strains_heatmaps” (available for download in the following GitHub reposi­
tory: https://github.com/Tropini-lab/Strain_library_paper) and the ComplexHeatmaps 
package v2.10.0 (57, 58). Briefly, our R library assembles all tables downloaded from 
RAST into a data frame that compares the number of features present in the different 
strains. Then, the R library filters and collapses the data frame based on broad annotation 
categories (in our case, subsystems involved in acid/osmolality tolerance) and transforms 
the data frame into a format compatible for use with the ComplexHeatmaps library. 
The ComplexHeatmaps library is then implemented to make various heatmaps, with 
coloring based on feature counts for each subsystem for each strain and the growth data 
joined as additional heatmaps or heatmap annotations. For more detailed explanations, 
please refer to the scripts and tutorials in the GitHub repositories (https://github.com/
Tropini-lab/Strain_library_paper).
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Machine learning

The goal of our ML model was to determine that PATRIC annotations could predict a 
strain’s ability to grow in varying pH and osmolality conditions.

Model input feature preparation

Using Python (version 3.10.5), we constructed a tabular Pandas (version 1.4.3) DataFrame 
of features for each strain’s genome starting from the PATRIC subsystem annotation 
output (59). PATRIC maps the strain genome name (genome_name in Table S3) to many 
PATRIC IDs, each of which is annotated with a Superclass, Class, Subclass, Subsystem name, 
and Role ID. Because this is a one-to-many mapping of genome_name to PATRIC ID, each 
genome_name appears on multiple rows, with various numbers of PATRIC IDs for each 
genome_name.

To efficiently fit the ML model, we used a fixed-length list of numbers represent­
ing each genome_name, that is, a feature vector. To featurize the 81 sequenced 
genome_names using the PATRIC annotations, we counted the number of times a 
particular value occurs in the PATRIC Superclass, Class, Subclass, Subsystem name, and 
Role ID columns for a given genome_name.

For example, if a particular genome_name maps to exactly seven PATRIC IDs for 
which the PATRIC Subsystem column’s value is “DNA repair, bacterial,” we create a feature 
column named “Subsystem Name = DNA repair, bacterial” whose feature value on the 
row for that genome_name is 7.

We further annotated the featurized DataFrame with additional feature columns for 
each genome_name with binary indicator variables for its location within the phyloge­
netic tree. For example, there was a column named “Family = Bacteroidaceae” whose 
value was 1 for every genome_name in the Bacteroidaceae family and 0 for other 
genome names. We added these indicator variables for all observed values in the Phylum, 
Class, Order, Family, Genus, and Species columns.

The feature DataFrame is relatively sparse and is thus filled with many cells contain­
ing counts of 0, as many genome_names did not associate with values for the PATRIC 
columns whose values we counted, but we did not take advantage of this sparsity.

Model output values

We joined the growth data outputs (maximum OD across pH and osmolality condi­
tions; Table S4) for each strain’s genome with the information obtained based on the 
genome_name.

We constructed separate models for predicting pH and osmolality responses. Within 
those models, we jointly modeled all observations relevant to each perturbation. For 
example, we constructed a single model that jointly predicts the normalized maxi­
mum OD observations across all pH conditions based on the above-described features 
representing the genome_name. Thus, our models for predicting pH response have 
four real-valued outputs for the observations at pH=4, 5.4, 6.7, and 7.3. Likewise, the 
osmolality prediction models have four outputs, for the lowest osmolality, 890, 1,180, 
and 1,800 mOsm/kg.

The osmolality measurements for one of the genome_names failed at two osmolality 
values; hence, we removed this row from the DataFrame used to fit the osmolality 
models, leaving 79 rows. The pH data had only one failed row.

Model architecture, loss function, and training procedure

Our featurized Pandas DataFrame was very short and wide (81×11,514), with a single row 
for each of the 81 different genome_names and 11,514 different feature columns. This 
shape is atypical for ML applications due to the potential for overfitting, but we were 
interested in feature evaluation rather than precise modeling; thus, we used a one-level 
decision tree regression model, also known as a decision stump (60). We fit this model 
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using sklearn’s default parameter values for regression trees, which minimizes the total 
squared error on both sides of the decision stump (60, 61).

Decision stump squared-error equation

A decision stump divides a data set into two groups using a single numerical feature and 
a splitting threshold. Rows in which the feature value is smaller than the threshold go 
down the left branch of the tree and arrive at the left terminal leaf node, whereas rows 
for which the feature value is at least as large as the threshold go to the right terminal 
leaf node.

At each of the left and right leaf nodes, the fitting algorithm computes the mean 
value for each of the outputs using the rows assigned to that node, which serves as 
the model’s prediction for all rows with the same classification. The fitting algorithm 
attempts to select a feature and splitting threshold which minimizes the total squared 
error of each row’s distance from its associated mean. Pedregosa et al. describe this 
algorithm as minimizing the “mean squared error, which is equal to variance reduction 
as feature selection criterion and minimizes the L2 loss using the mean of each terminal 
node” (61).

Single-feature decision stumps

To identify the quality of each candidate feature, we trained a single-feature decision 
stump on all 11,514 individual features. Because the decision tree fitting code is not 
required to select between competing features for the root split, the only remaining 
task is to identify the splitting threshold that minimizes the total squared error across 
the left and right terminal leaf nodes in predicting the maximum OD across all four 
responses. Note that this approach places us in the regime of a decision tree regression 
multi-output problem (61).

K-fold cross-validation

Even though the single-feature decision stump is a relatively simple model, it is still 
possible to overfit the data. The large number of features being evaluated increases the 
chance that this will happen for some features. To mitigate this risk, we performed K-fold 
cross-validation for all the models we fit, using sklearn’s default parameters settings (K 
= 5). K-fold cross-validation works by dividing the shuffled data into five partitions. Each 
time a model is fit, one of the partitions is held out of the training set. We then evaluated 
the trained model’s squared error on both the training partitions and the held-out test 
set partition.

Because we trained K = 5 different models for each feature, we computed five 
different estimates for each feature’s squared error on both the train and test sets. To 
compute an overall estimate of each feature’s quality, we took the mean of those five 
estimates.

We note that, particularly in modeling the pH data, some features happen to result 
in low squared error on the test set, despite having relatively high error on the train 
set (Fig. S4B). To further mitigate this, we computed each feature’s rank among all the 
features in the train and test set scores, and ultimately ranked the features according to 
its maximum (worst) rank across the train and test set scores.

Finally, since we trained five different models for each feature, each of the models 
could have selected a different decision splitting threshold for that feature. For binary 
partitions of the data used to make box plots and heatmaps, we took the mean value of 
the decision threshold selected for each of the five models.

Colony polymerase chain reaction and confirmation of strains used in 
experiments

Here, 1 mL of overnight cultures grown for 24 h at 37°C was spun down for 5 min at 
5,000 × g (relative centrifugal force), and the collected pellets were boiled for 5 min. 
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We prepared 1:10 and 1:100 dilutions using sterile DNase-free water to prepare for 
colony polymerase chain reaction (PCR) [(98°C 2 min) → (98°C 30 s, 57°C 30 s, 72°C 
45 s) × 30 cycles → (72°C 10 min) → (4°C ∞)] and performed sequencing using 8F and 
1391R primers (8F: AGAGTTTGATCCTGGCTCAG, 1391R: GACGGGCGGTGWGTRCA). Some 
cultures required DNA extraction prior to PCR, which was performed using the Qiagen 
DNeasy Blood and Tissue Kit (Catalog number: 69504).

Human fecal sample collection, fermentation, and DNA extraction

We collected feces from six individuals (TL1, TL2, TL3, TL4, TL5, and TL6), either a day 
prior to or on the morning of experimentation. We stored all fecal samples in sterile 
conical tubes at −80°C before processing. Fecal samples (1.5 g) were resuspended in 
sterile pre-reduced 1 × PBS, and contents were allowed to settle to collect liquid. Liquid 
Mega Medium was pre-reduced in an anaerobic chamber environment with 5% CO2, 5% 
H2, and 90% N2 for at least 24 h. For each sample, 1 µL of supernatant was collected and 
subsequently inoculated into 200 µL of pre-reduced liquid Mega Medium adjusted to a 
pH of 4, 5.5, 6.9, or 7.6 and an osmolality of 472, 670, 862, 1,047, 1,247, 1,437, 1,637, or 
1,824 mOsm/kg on two 96-well plates. We measured the OD at a wavelength of 600 nm 
(OD600) using a BioTek Synergy H1 Plate Reader after anaerobic incubation at 37°C for 
48 h. We selected the physical conditions based on generated OD600 measurements 
and extracted DNA from the 96-well plates using the DNeasy PowerSoil Pro Kit (Catalog 
number: 47016).

Humanized mice supplemented with a guar gum diet

Germ-free SW mice were gavaged with a human gut microbiota (TL1) at 9 weeks and 
placed on a standard rodent diet (LabDiet 5k67). Six weeks after colonization, five SW 
mice (two males and three females) were switched to a guar gum diet (TestDiet 5BSE) for 
2 weeks, while three (three males) remained on the standard diet. In Fig. 4B, M1 and M2, 
and M3 were three male mice and were co-housed and given a standard diet. M4 and M5 
were males and co-housed, while M6, M7, and M8 were females that were also separately 
co-housed. M4–M8 were given a guar gum diet. Two weeks after equilibration on the 
diet, the mice were sacrificed using carbon dioxide with secondary cervical dislocation. 
We collected contents from the duodenum, jejunum, ileum, cecum, and colon in the 
gastrointestinal tract for pH and osmolality measurements. Collected mouse intestinal 
contents were stored in 1.5-mL microcentrifuge tubes and kept on ice during prepara­
tion for pH and osmolality measurements. The same micro pH probe (Orion PerpHecT 
ROSS Combination pH Micro Electrode, Catalog number: 8220BNWP) and Advanced 
Instruments Osmo1 Single-Sample Micro-Osmometer were used to measure intestinal 
contents as described above. In addition, we performed DNA extraction as described 
above for 16S rRNA sequencing and sent cecal contents for SCFA analysis.

16S sequencing library preparation and sequencing

We quantified the extracted DNA using the Quant-iT 1 × dsDNA HS (High-Sensitivity) 
Assay kit (Catalog number: Q33232). We submitted the DNA samples to either Biofac­
torial, a high-throughput biology facility located in the Life Sciences Institute at the 
University of British Columbia, or the Gut4Health Microbiome Core Facility at the British 
Columbia Children’s Hospital Research Institute and the University of British Columbia for 
a paired-end sequencing run using a MiSeqv3-600 instrument with dual-indexed V4V5 
primers (Biofactorial) or V4 primers (Gut4Health). For samples sequenced at Biofactorial, 
a dual-indexing, one-step 10 µL PCR reaction was performed on a LabCyte Access 
Workstation using Quanta repliQa HiFi ToughMix with 0.5 ng input DNA and complete 
“fusion primers” that include Illumina Nextera adaptors, indices, and specific regions 
targeting the V4/V5 region of the 16S rRNA genes (62). After quantification of amplicons 
via a picogreen assay (Quant-iT PicoGreen dsDNA Assay Kit, Thermo Fisher Scientific, 
Waltham, MA, USA), 2 ng of each product were pooled for subsequent cleanup using 
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the AmpureXP PCR cleanup protocol (Beckman Coulter, Brea, CA, USA). The pooled 
library was quantified by a picogreen assay and loaded onto an Illumina MiSeq Reagent 
Kit v3 (600-cycle) according to the manufacturer’s recommendations with 15% PhiX. 
Samples submitted to Gut4Health were prepared according to a previously published 
method (63). Briefly, the V4 region of the 16S rRNA gene was amplified with barcode 
primers containing the index sequences using a KAPA HiFi HotStart Real-time PCR 
Master Mix (Roche, Grenzach-Wyhlen, Germany). We monitored PCR product amplifica-
tion and concentration on a Bio-Rad CFT Connect Real-Time PCR system. Amplicon 
libraries were then purified, normalized, and pooled via a SequalPrep normalization 
plate (Applied Biosystems, Foster City, CA, USA). We further purified the pooled library 
with the Agencourt AMPure XP system (Beckman Coulter, Brea, CA, USA) according to 
the manufacturer’s protocol. Library concentrations were verified by a Qubit dsDNA 
high-sensitivity assay kit (Invitrogen, Carlsbad, CA, USA) and the KAPA Library Quantifica-
tion Kit (Roche, Grenzach-Wyhlen, Germany) according to the manufacturer’s instruc­
tions. We submitted the purified pooled libraries to the Bioinformatics+Sequencing 
Consortium at the University of British Columbia, which verifies DNA quality and quantity 
using a high-sensitivity DNA kit (Agilent) on an Agilent 2100 Bioanalyzer. Sequencing was 
performed on the Illumina MiSeq v2 platform with 2×250 paired end-read chemistry.

16S rRNA data analysis

We imported 16S rRNA reads generated through the MiSeq v3-600 run to QIIME 2 
2020.11 for analysis (64). The read quality was assessed by FastQC (https://github.com/
s-andrews/FastQC). We processed the sequences using DADA2 (https://github.com/
qiime2/q2-dada2). The primers were trimmed, and sequences with a quality score below 
30 were truncated. We taxonomically classified the denoised sequences using a SILVA 
v138-trained classifier (65).

SCFA analysis of murine cecal samples from the guar gum diet

To prepare SCFA samples for gas chromatography analysis, we extracted SCFAs from 40 
to 100 mg of cecal contents. The samples were mixed and homogenized with 800 µL of 
25% phosphoric acid. We collected the supernatants via centrifugation at 15,000 × g for 
10 min at 4°C. We then added 200 µL isocaproic acid and 0.2 mL 25% phosphoric acid 
as an internal standard. Supernatants were sent to the AFNS Chromatography Facility 
at the University of Alberta for quantification. We ran the samples on a Varian 430 gas 
chromatograph with a Stabilwax-DA column (length: 30 m, inner diameter: 0.53 mm, and 
film thickness: 0.5 µm) and helium carrier gas, using a 250C injector with a split ratio of 5 
and a 1 µL injection. We utilized a flame ionization detector with a detector temperature 
of 250°C. Retention times were compared with known standards.

Software and algorithms

In this work, we utilized MATLAB 2020a (MathWorks, Natick, MA, USA) to analyze the 
bacterial growth, as described above. We used BioTek GEN5 software to collect bacterial 
absorbance and fluorescence. We employed RStudio to compare the abundance of 
annotated genomic features across species at subsystem levels (Shiny library) in RStudio. 
We performed analyses and graphing using R v4.1.2 and RStudio v1.4.1717, as described 
above.
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