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ABSTRACT: The temperature dependence of psychro-
philic and mesophilic (R)-3-hydroxybutyrate dehydrogen-
ase steady-state rates yields nonlinear and linear Eyring
plots, respectively. Solvent viscosity effects and multiple-
and single-turnover pre-steady-state kinetics demonstrate
that while product release is rate-limiting at high
temperatures for the psychrophilic enzyme, either
interconversion between enzyme−substrate and en-
zyme−product complexes or a step prior to it limits the
rate at low temperatures. Unexpectedly, a similar change
in the rate-limiting step is observed with the mesophilic
enzyme, where a step prior to chemistry becomes rate-
limiting at low temperatures. This observation may have
implications for past and future interpretations of
temperature−rate profiles.

Temperature−rate profiles are powerful tools for gaining
insight into thermodynamic activation parameters of

chemical reactions.1 In enzyme-catalyzed reactions, analysis of
the temperature-dependent behavior of rate constants is widely
used to uncover catalytic properties among psychrophilic,
mesophilic, and thermophilic enzymes2 and to probe protein
dynamics and hydrogen tunneling3 and even allosteric
regulation.4,5 Plotting ln(k/T) versus 1/T (Eyring plot) often
results in a straight line, and fitting data to eq 1 yields the
activation enthalpy and entropy, assuming they are constant
over the temperature range and recrossing is negligible.1,6,7

However, nonlinear Eyring plots have been reported,8 and a
recent and elegant hypothesis for interpreting them invokes a
role for activation heat capacity in enzyme catalysis upon fitting
data to eq 2.9,10 In eqs 1 and 2, k is the rate constant; kB, h, and
R are the Boltzmann, Planck, and gas constants, respectively;
ΔH⧧ and ΔS⧧ are the activation enthalpy and entropy,
respectively; T is the temperature; T0 is a reference
temperature; ΔH⧧

T0
and ΔS⧧T0

are ΔH⧧ and ΔS⧧ at T0,
respectively; and ΔCp

⧧ is the activation heat capacity.
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Nonlinear Eyring plots without protein denaturation could
also arise from a switch in the rate-limiting step at a given
temperature, which must be tested.2,8 Conversely, linear Eyring
plots are often assumed to reflect the same rate-limiting step at
all temperatures.2,6,9,11,12 Here we show that linear Eyring plots
may accommodate a change in the rate-limiting step.
We cloned and expressed the bacterial (R)-3-hydroxybuty-

rate dehydrogenase (HBDH)-encoding gene from mesophilic
Acinetobacter baumannii13 and from psychrophilic Psychrobacter
arcticus14 and purified the recombinant mesophilic (AbHBDH)
and psychrophilic (PaHBDH) enzymes (Figure S1). HBDH
(EC 1.1.1.30) catalyzes the NADH-dependent reduction of
acetoacetate to (R)-3-hydroxybutyrate, with 3-oxovalerate
being an alternative substrate turned over more slowly by
the enzyme (Scheme S1).15

HBDH is part of the short-chain dehydrogenase/reductase
(SDR) superfamily, one of the largest known protein groups.16

SDR proteins share a low level of sequence identity but highly
conserved three-dimensional architecture and catalytic resi-
dues.17 HBDH has applications in asymmetric synthesis of
precursors of pharmaceuticals and monomeric constituents of
biodegradable polyhydroxyalkanoates.18,19

We measured saturation curves for AbHBDH and PaHBDH
at various temperatures (283−330 K for AbHBDH and 283−
318 K for PaHBDH) (Figure S2 and Tables S1−S4).
Differential scanning fluorimetry demonstrated no denatura-
tion occurs in this temperature range (Figure S3 and Table
S5). Apparent steady-state catalytic constants (kcat) were used
to construct Eyring plots for each enzyme (Figure 1). Fitting
all data with both eqs 1 and 2 resulted in best-fit lines that are
linear for AbHBDH but nonlinear for PaHBDH. Accordingly, a
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Figure 1. Eyring plots for PaHBDH and AbHBDH with acetoacetate
and 3-oxovalerate as substrates.
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significant negative ΔCp
⧧ is predicted for the psychrophilic

enzyme but not for the mesophilic one (Table S6).
A negative ΔCp

⧧ for kcat could suggest a decrease in the
number of vibrational modes as the Michaelis complex
progresses toward the transition state.9,11,12,20 However,
enzymatic rates often contain contributions from several
steps, and a negative ΔCp

⧧ can report on vibrational modes
associated with chemical10,20 and physical steps.2

To test if diffusional steps limit the steady-state rate in
PaHBDH and AbHBDH reactions at 298 K, we determined
solvent viscosity effects by measuring saturation curves at
different concentrations of glycerol (Figure S4 and Tables S7−
S10), and plots of kcat ratios versus relative viscosity21 are
shown in Figure 2. Fitting data to eq S5 yielded slopes of 0.43

± 0.04 and 0.36 ± 0.02 for PaHBDH and AbHBDH,
respectively, indicating product release is significantly rate-
limiting with acetoacetate as the substrate.21,22 With 3-
oxovalerate as the substrate, slopes decrease to 0.25 ± 0.02
for PaHBDH, consistent with only a modest product release
contribution to the rate-limiting step, and −0.16 ± 0.02 for
AbHBDH, showing no contribution from diffusional steps to
kcat. Diffusional steps from substrate binding do not limit
reaction rates for either enzyme (Figure S4), and 5% PEG-
8000 as a macroviscogen had no effect on saturation curves
(Figure S5), pointing to the effects of glycerol resulting from
an increase in solvent microviscosity.21,23

The solvent viscosity effects on kcat suggest that the
curvatures in the Eyring plots and the consequent negative
ΔCp

⧧ calculated for PaHBDH may report on distinct steps
when acetoacetate and 3-oxovalerate are used as substrates. To
probe further the nature of the rate-limiting step for this
enzyme, we employed multiple-turnover pre-steady-state
kinetics to characterize the approach to the steady state24 at
283, 298, and 318 K (Figure 3A). No burst in substrate
consumption is observed with 3-oxovalerate as the substrate.
These results support the conclusion from solvent viscosity
effects at 298 K that kcat is not limited by the product release
rate with 3-oxovalerate as the substrate.
When acetoacetate is used as the substrate, even though a

burst in substrate depletion at 298 and 318 K cannot be
directly observed, it can be inferred25 (Figure 3A). The
concentration of co-substrate NADH at time zero in the
presence of PaHBDH and acetoacetate is significantly offset
from its value in the control without acetoacetate (Figure S6),
suggesting at least one turnover has happened within the 0.9
ms dead time of the stopped-flow spectrophotometer. This
suggests a step after chemistry, likely product release, is rate-
limiting at 298 and 318 K, in agreement with the significant
solvent viscosity effect on kcat at 298 K. At 283 K, however,

there is no burst (Figure 3A and Figure S6), indicating a
change in the rate-limiting step at low temperatures.
The hypotheses regarding rate-limiting steps in the

PaHBDH reaction at different temperatures were tested
further by single-turnover pre-steady-state kinetics at 283 and
298 K with NADH as the limiting reagent. PaHBDH single-
turnover rate constants (kSTO) were independent of enzyme
concentration (Figure 3B), demonstrating NADH is saturated
with PaHBDH and kSTO is unimolecular.24 With 3-oxovalerate,
kSTO and kcat values are similar at the same temperatures (Table
S11). Along with the absence of a pre-steady-state burst and a
negligible solvent viscosity effect on kcat with this substrate, this

Figure 2. Solvent viscosity effects on kcat for PaHBDH and AbHBDH
with acetoacetate and 3-oxovalerate as substrates. Lines are fits of data
to eq S5.

Figure 3. Rapid kinetics for PaHBDH with acetoacetate and 3-
oxovalerate as substrates. (A) Multiple-turnover pre-steady-state
kinetics. Black lines are fits of data to eq S3. (B) Single-turnover
pre-steady-state kinetics. Black lines are fits of data to eq S4.
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result indicates that interconversion between PaHBDH-
NADH-3-oxovalerate and PaHBDH-NAD+-3-hydroxyvalerate
is rate-limiting. With acetoacetate as the substrate, if the
hypothesis emerging from multiple-turnover pre-steady-state
kinetics and solvent viscosity effects holds, kSTO should be
measurable at 283 K but should not be possible to monitor at
298 K as it takes place within the dead time of the instrument.
This is exactly what is observed (Figure 3B and Table S11),
with kSTO being too fast to be detected at 298 K although
NADH is consumed. At 283 K, kSTO is 2.2-fold higher than kcat,
which, combined with the absence of a burst, indicates a step
prior to acetoacetate reduction is rate-limiting at this
temperature.
Whereas there is precedent for a change in the rate-limiting

step in nonlinear Eyring plots of enzyme reactions,26 PaHBDH
Eyring plots are linear in the range of 283−308 K (Figure S7),
and the switch in the rate-limiting step occurs between 283 and
298 K. This indicates a temperature-dependent shift in the
rate-limiting step giving rise to a linear Eyring plot.
To assess whether this unusual behavior is displayed by the

mesophilic enzyme, we carried out rapid kinetics experiments
with AbHBDH, whose Eyring plots are linear throughout the
experimental temperature range. Remarkably, multiple-turn-
over pre-steady-state kinetics at 283, 298, and 328 K (Figure
4A) show a change in the rate-limiting step with both
substrates. A burst in substrate consumption at 298 and 328 K
with acetoacetate and at 328 K with 3-oxovalerate is too fast to
be directly observed but is clearly inferred25 from the offset in
NADH concentration at time zero in the presence and absence
of acetoacetate or 3-oxovalerate (Figure S6), indicating the first
turnover occurs within the dead time of the stopped-flow
spectrophotometer. Conversely, there is no burst at 283 K with
either substrate or at 298 K with 3-oxovalerate (Figure 4A and
Figure S6). The results at 298 K are in strict agreement with
the conclusions drawn from solvent viscosity effects for both
substrates.
As with PaHBDH, we performed single-turnover pre-steady-

state kinetics experiments at 283 and 298 K, with NADH as
the limiting reagent, to examine further the hypothesis of a
change in the rate-limiting step in AbHBDH catalysis at
different temperatures. AbHBDH kSTO values were independ-
ent of enzyme concentration (Figure 4B), demonstrating
NADH is saturated with AbHBDH and kSTO is unimolecular.
The kSTO for acetoacetate reduction can be measured at 283 K,
but it is too fast to be monitored at 298 K, even though NADH
is consumed. This is in accordance with the results from rapid
kinetics under multiple-turnover conditions. The kSTO for 3-
oxovalerate reduction can be measured at 283 and 298 K, as
predicted by the absence of a burst at these temperatures. The
affinity between AbHBDH and its substrates decreases severely
at high temperatures, which prevented single-turnover experi-
ments at 328 K (the enzyme could not be concentrated
enough to ensure sufficient binding to NADH). Combined,
these results demonstrate a shift in the rate-limiting step
between 283 and 298 K for AbHBDH-catalyzed reduction of
acetoacetate and between 298 and 328 K for reduction of 3-
oxovalerate despite linear Eyring plots with both substrates.
The kSTOs for AbHBDH-catalyzed reduction of 3-oxovaler-

ate are 10- and 7-fold higher than kcat at 283 and 298 K,
respectively, and the kSTO for acetoacetate reduction at 283 K
is 8-fold higher than the corresponding kcat (Table S12).
Therefore, unlike the PaHBDH reaction, a step preceding
chemistry limits the AbHBDH reaction rate with 3-oxovalerate

at 283 and 298 K and with acetoacetate at 283 K. Distinct rate-
limiting steps between enzyme orthologues have been reported
for other members of the SDR superfamily.27,28

Temperature−rate profiles are invaluable for the inves-
tigation of enzymatic mechanisms, encompassing probing
quantum mechanical tunneling,3 enzyme dynamics,10,12

allostery,4,5 and calculation of thermodynamic parameters of
activation.6,9−12 They are also instrumental for studying the
evolution of modern enzymes from primitive catalysts that
arose in a hot Earth.2,29,30

A temperature-dependent change in the rate-limiting step
could produce a linear Eyring plot for kcat if the ratio of Eyring
plot slopes for the microscopic rate constant(s) determining

Figure 4. Rapid kinetics for AbHBDH with acetoacetate and 3-
oxovalerate as substrates. (A) Multiple-turnover pre-steady-state
kinetics. Black lines are fits of data to eq S3. (B) Single-turnover
pre-steady-state kinetics. Black lines are fits of data to eq S4.

Biochemistry Communication

DOI: 10.1021/acs.biochem.8b01099
Biochemistry 2018, 57, 6757−6761

6759

http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.8b01099/suppl_file/bi8b01099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.8b01099/suppl_file/bi8b01099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.8b01099/suppl_file/bi8b01099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.8b01099/suppl_file/bi8b01099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.8b01099/suppl_file/bi8b01099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.8b01099/suppl_file/bi8b01099_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.8b01099/suppl_file/bi8b01099_si_001.pdf
http://dx.doi.org/10.1021/acs.biochem.8b01099


each step is relatively small. This scenario is demonstrated
(Supporting Information) from simulated data (Figure S8) for
a hypothetical two-step mechanism (Scheme S2) and may
explain the results with AbHBDH. This highlights the
importance of confirming whether the same rate-limiting step
holds throughout the experimental temperature range before
further interpretation of both nonlinear and linear Eyring plots
of macroscopic rate constants.
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