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Abstract—Patient-specificmodels of the ventricularmyocardium,
combinedwith the computational power to run rapid simulations,
are approaching the level where they could be used for person-
alized cardiovascular medicine. A major remaining challenge is
determining model parameters from available patient data,
especially formodelsof thePurkinje-myocardial junctions (PMJs):
the sites of initial ventricular electrical activation. There are no
non-invasive methods for localizing PMJs in patients, and the
relationship between the standard clinical ECG and PMJ model
parameters is underexplored. Thus, this study aimed to determine
the sensitivity of the QRS complex of the ECG to the anatomical
location and regional number of PMJs. The QRS complex was
simulated using an image-based human torso and biventricular
model, and cardiac electrophysiology was simulated using Car-
dioid.ThePMJsweremodeledasdiscrete current injection stimuli,
and the location and number of stimuli were varied within initial
activation regions based on published experiments. Results
indicate that the QRS complex features were most sensitive to
the presence or absence of four ‘‘seed’’ stimuli, and adjusting
locations of nearby ‘‘regional’’ stimuli provided finer tuning.
Decreasing number of regional stimuli by an order of magnitude
resulted in virtually no change in the QRS complex. Thus, a
minimal 12-stimuli configuration was identified that resulted in
physiological excitation, defined by QRS complex feature metrics
and ventricular excitation pattern. Overall, the sensitivity results
suggest that parameterizing PMJ location, rather than number, be
given significantly higher priority in future studies creating
personalized ventricular models from patient-derived ECGs.

Keywords—Human ventricular excitation, Sensitivity analy-

sis, Electrocardiogram, Patient-specific modeling, Computa-

tional electrophysiology, Bundle branch block.

INTRODUCTION

As modeling and computational methodologies
evolve, the ability to use these techniques to provide
more effective, customized medical care for patients is
fast approaching, generally termed ‘‘patient-specific
modeling’’.1,28,32 Even now, the potential applications
of patient-specific modeling has drawn attention from
NIH in the form of numerous funding announce-
ments.15 Patient-specific modeling facilitates the ability
to move away from using population-based metrics to
prescribe treatment for an individual, a practice that
does not result in optimal care for many patients.30 It
has the potential to reduce dependence on ‘‘trial and
error’’ techniques to determine a patient’s response to
a particular treatment, and to move towards lower
risk, more effective, truly personalized therapy.30

Despite the promise and excitement of the clinical
implications of patient-specific modeling, it has not yet
advanced to the point where it can be used as a stan-
dard of clinical care. One of the ongoing challenges is
determining model parameters from available patient
data in a minimally invasive fashion.10 In many cases,
parameters of larger scale geometries may be obtained,
yet parameters related to detailed structures are more
difficult to obtain. This challenge is particularly evi-
dent in modeling initial electrical activation of the
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ventricles. Initial ventricular activation is crucial for
coordinated ventricular contraction, and activation
disorders include bundle branch block (BBB), higher-
degree heart block, and symptomatic profound sinus
bradycardia. Yet, the Purkinje network that carries the
electrical signal to the ventricular muscle is too fine to
be captured by current clinical imaging technologies,
and the Purkinje-myocardial junctions (PMJs) that
activate the muscle are even more elusive.17,31

Previous studies that have modeled initial ventric-
ular activation have offered valuable insights into
obtaining appropriate model parameters; yet, there are
still challenges in implementing them in the context of
patient-specific modeling. Some approaches yield very
detailed and specific information, but require extract-
ing the heart and imaging intact or dissected ventri-
cles,5,6,11,23,24,27 which is not viable for designing
customized treatment of patients in the clinic. Other
approaches use a fractal tree rule-based approach for
growing the Purkinje network and defining the PMJs
along the subendocardium, which enables parameter
exploration and sensitivity analyses of model parame-
ters.3,8,17,31 Some of these rule-based approaches use
activation times from patient endocardial mappings to
customize the network and junctions to a particular
patient17,31; yet, this requires an invasive procedure
that still does not guarantee exact architecture of the
patient’s Purkinje network. Furthermore, while full
representation of the Purkinje network and PMJs may
be required for certain disorders of initial activation,
customizing this full network drastically increases the
parameter space that must be explored in parameter
fitting. Finally, a limited number of studies are
emerging that explore the relationship between PMJ
model parameters and the QRS complex of the stan-
dard, noninvasive ECG.7,19 These studies offer initial
insight into using patient-derived ECGs to determine
PMJ model parameters, yet only a subset of the pos-
sible parameters and their interactions have been fully
explored.

Our work begins by recognizing the potential benefit
of determining PMJ model parameters from the pa-
tient-derived, noninvasive QRS complex of the ECG
that is commonly measured in the clinic. We posit that
an important step in advancing this approach is to
further determine the sensitivity of the QRS complex
to properties of the PMJs, and in turn, which PMJ
properties are most important in model parameter
fitting. To perform this analysis, we build upon pre-
vious work by our team, having already successfully
demonstrated a simulation of several heart beats and
the resulting QRS complexes in an image-based
biventricular and torso model.12,20 Specifically, we use
our existing codes and tools to explore the sensitivity
of the simulated QRS complex to ventricular model

input parameters related to regional number and
anatomical location of PMJs, modeling the PMJs as
discrete current-injection activation stimuli. Number
and location of PMJs are important parameters that
have been explored previously,3,14 but their interplay
and relative importance have not been fully explored in
the context of the QRS complex.7,19 As an extension to
our sensitivity analysis in healthy ventricles, we also
simulate the QRS complex features seen in LBBB and
RBBB. Finally, as a control and to provide greater
connection to other models in the community that
calculate the QRS complex in different ways, we repeat
the sensitivity analysis using an alternate model for
calculation of the QRS complex.

MATERIALS AND METHODS

Biventricular and Torso Models Used in Sensitivity
Analysis

Simulations of ventricles were executed on the IBM
Blue Gene�/Q supercomputers at Lawrence Livermore
National Laboratory (LLNL), using the highly scal-
able code Cardioid. Cardioid solves the reaction-dif-
fusion equations of the monodomain model, which
describes spatiotemporal evolution of the transmem-
brane potential (Vm),

Cm
@Vm

@t
¼ 1

b
r � ðDrVmÞ � Iion þ Istim; ð1Þ

where Cm is the membrane surface capacitance, t is
time, b is the tissue surface area-to-volume ratio, D is
the spatially-dependent anisotropic conductivity tensor
determined by the fiber structure of the heart, and Istim
is the imposed stimulus. The reaction term, Iion, rep-
resents the sum of the nonlinear ionic current densities
at the cellular level, using the 2006 ten Tusscher
model26 with modifications as described in our previ-
ous publications.12,20

Equation (1) is solved on the domain comprised of
geometry from images of human ventricles obtained
from the Visible Human Project� (VHP) of The Na-
tional Library of Medicine.29 To obtain this ventricu-
lar domain, the full torso from VHP was segmented
and meshed as follows: two-dimensional full-body
cryosection images were stacked together to form a
three-dimensional image. The 3D image was seg-
mented using a combination of thresholding, level set,
and manual techniques using the software package
Seg3D.21 Next, a linear tetrahedral finite element mesh
was generated from the segmented image. The result-
ing mesh contained 11 different tissues in the torso and
was conformal along interfaces, including multiple-
material interfaces. The ventricular mesh was extracted
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from the full torso mesh, and used to generate a 3D
Cartesian grid (0.1 mm resolution), which is the do-
main in which Eq. (1) is solved using finite volumes for
the divergence operator and finite differences for the
gradient operator. Muscle fiber orientations were
generated using a rule-based approach similar to that
of Bayer et al.2 A forward Euler scheme is used for
time integration. For additional detailed information,
see prior Cardioid publications.12,20

The combined torso and ventricular models to-
gether enabled computation of the QRS complex of the
ECG, as described previously.20 Note, only the QRS
complex was computed, not the T wave, given that our
study is focused entirely on ventricular activation.
Surface potential was calculated on the left arm, right
arm, and bottom left side of the torso, and from dif-
ferences in these potentials, leads I, II, and III of the
ECG were derived (Fig. 1a). The sensitivity of four
QRS complex features were analyzed: Q, R, and S
wave amplitudes, and the QRS duration. Amplitudes
were calculated using the Pan-Tompkins algorithm18 in
the ECG leads where they were most pronounced
based on the heart’s orientation in the model: lead I for
Q and R waves, and lead II for the S wave. QRS
duration was measured from lead I. Lead III of the
QRS complex was also calculated to provide more
information about the orientation of the heart in the
torso. Simulations of the combined ventricular and
torso models provide connection between ventricular
level activation parameters and the features of the
QRS complex, which ultimately enable the sensitivity
analysis.

Ventricular Stimuli Parameters in the Sensitivity
Analysis

Prior to performing sensitivity analysis simulations,
four initial activation regions (IARs) in the ventricles
were defined based on experiments by Durrer et al.9

Durrer et al.9 performed seminal studies nearly half a
century ago, which still represent the ‘‘gold standard’’
dataset and remain in wide use.4,8,11,22 In their work,
activation timings (ATs) were recorded from seven
healthy human hearts, each investigated using the
Langendorff preparation with 870 intramural plunge
electrode recordings. Across all seven hearts, four
IARs were found (Figs. 1b and 1c): 1) the left side of
the midseptum (S), 2) the left anterior superior wall
near the base (LASW), 3) the left posterior inferior
wall (LPIW) in the paraseptal region approximately
one-third the distance between the apex and base, and
4) the right anterior inferior wall (RAIW) near the
insertion of the anterior papillary muscle. The sensi-
tivity analysis was built upon different configurations
of stimuli in these IARs. Stimuli were placed suben-
docardially, where the PMJs reside, to excite the ven-
tricles. Each stimulus was defined as an 8 mm3 volume
(rectangular parallelepiped) of tissue with an injected
stimulus current (Istim in Eq. (1)). All stimuli had the
following square wave pulse parameters: magnitude =
72 lA/lF, duration = 1.0 ms, period = 1000 ms. All
stimuli were initiated at the beginning of the period,
except that stimuli in the right ventricular wall were
delayed by 5 ms, based on experimental observations
of Durrer et al.9

RESULTS

Sensitivity of QRS Complex Features to Number of
Seed Stimuli

Analysis begins by investigating the sensitivity of
the QRS complex features to number of ‘‘seed’’ acti-
vation stimuli. A seed stimulus is a single, initial
stimulus for each IAR. One by one, to observe the
effect each seed stimulus has on the QRS complex
features, each IAR receives a seed stimulus (Fig. 2).
Figure 3 presents the QRS complex feature metrics as

FIGURE 1. Transverse cross-section of the torso and heart mesh used to compute the ECG leads (a), and four IARs in the
biventricular model based on experiments by Durrer et al.9 (b and c). In (a), locations of left arm (LA), right arm (RA), and left leg
(LL) electrodes are indicated by black circles, and leads I, II, and III are labeled according to the potential differences indicated by
the arrows. Internal torso tissues exterior to the heart (e.g., bone and fat) are not shown for clarity. The four IARs in the ventricles
are shown from the anterior view (b) and from the superior view (c); acronyms are expanded in the text.
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FIGURE 2. Seed stimuli in the ventricles. The four stimuli are given codes corresponding to the IAR in which they reside (see
Fig. 1): septum (S), left ventricular anterior superior wall (LASW), left ventricular posterior inferior wall (LPIW), and right ventricular
anterior inferior wall (RAIW). Stimuli are displayed in the order in which they were added in the sensitivity analysis: S, S/LASW, S/
LASW/LPIW, and S/LASW/LPIW/RAIW. The anterior view along with the total number of stimuli for each configuration are shown on
the left, and the superior view is shown on the right.
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the number of seed stimuli are increased. Overall, the
feature metrics are sensitive to the number of seed
stimuli, especially the QRS duration and R wave
amplitude, where changing number of seed stimuli by
just one can bring these metrics in and out of physio-
logical range (Figs. 3a and 3c). For example, simply
adding a stimulus in the right ventricular myocardium
changes the QRS duration by nearly 25% and moves it
within physiological range. The ranges of QRS dura-
tions and R wave amplitudes data are 107% and 70%
of their physiological ranges, respectively. In contrast,
the Q and S wave amplitudes, while showing some
sensitivity, are always within physiological range, even
though S wave amplitude varies more significantly
(range of data points is 74% of physiological range)
than the Q wave amplitude (range of data points is
23% of physiological range). This seemingly anoma-
lous behavior is discussed below in the observed
trends.

The trends observed in the feature metrics as more
stimuli are added are not consistent between all met-

rics. The QRS duration and Q wave amplitude show
no change or monotonic decrease as seed stimuli are
added, but the R and S wave amplitudes change in a
more complex way. Considering each metric in turn,
the ultimate decrease in QRS duration is consistent
with the understanding that adding stimuli increases
the volume of tissue that is activated early, thus
decreasing total activation time. The Q wave amplitude
decreases monotonically, perhaps from activation of
more substantive regions of ventricular tissue diluting
the effects of septal activation. The R wave amplitude
is complex, yet ultimately shows a decrease in ampli-
tude when adding stimuli. The seemingly anomalous
large increase in S wave amplitude resembles RBBB
morphology, as shown in the QRS complex signal
(Fig. 4). Here, all three stimuli are confined to the left
ventricular myocardium, and no stimuli are in the right
ventricular myocardium, essentially simulating RBBB:
in lead I QRS duration is greater than 120 ms (130 ms)
and the slurred S wave is longer than 40 ms (50 ms).25

Note, the net negative deflection in lead III along with

FIGURE 3. Values of QRS complex features as a function of the total number of seed stimuli, up to a maximum of four stimuli.
Stimuli are added in the order presented in Fig. 2. For each panel, the thin dashed lines indicate upper and lower physiological
thresholds for the normal QRS complex (from Chou’s Electrocardiography in Clinical Practice25). Panels show the QRS duration
measured in lead I (a), the Q wave amplitude measured in lead I (b), the R wave amplitude measured in lead I (c), and the S wave
amplitude measured in lead II (d). Lead positions on the torso are shown in Fig. 1a.
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normal polarities in leads I and II indicate that the
QRS axis is slightly shifted leftward.

Overall, the QRS complex feature metrics are sen-
sitive to the number of seed stimuli, with the most
sensitive metrics being QRS duration, and the R and S
wave amplitudes. The trends in the metrics as the
number of stimuli increase are different for each met-
ric, and some are non-monotonic. In reality, repre-
senting activation in each IAR by one stimulus per
region is an oversimplification. Thus, in the next sec-
tion, the consequences of adding ‘‘regional’’ activation
stimuli around the seed stimuli are analyzed, in terms
of the effects on the QRS complex feature metrics.

Sensitivity of QRS Complex Features to Number of
Regional Stimuli Around the Four Seed Stimuli

Sensitivity of the QRS complex feature metrics to
increasing number of regional stimuli in each IAR is
analyzed. Regional stimuli are added layer by layer
around each of the four seed stimuli, as shown in
Fig. 5. Given a lack of experimental data on the
number of PMJs, regional stimuli were added until the
total number of stimuli in the ventricles was in the
hundreds, on the order of previous modeling stud-
ies.3,27

Figure 6 reveals that QRS complex feature metrics
are less sensitive to an increase in regional number of

FIGURE 4. QRS complex of the ECG in leads I–III (lead positions on the torso shown in Fig. 1) as seed stimuli are added, up to a
maximum of four total stimuli. Stimuli are added in the order given in Fig. 2. Thick grid lines indicate 0.5 mV and 200 ms increments
and thin grid lines indicate 0.1 mV and 40 ms increments, in accordance with the standard ECG. Top row uses x/y-axes ratio not in
accordance with the standard ECG to increased clarity, while the bottom row does use the proper ratio where 0.1 mV and 40 ms
intervals are equivalent Euclidean distances. Signals scaled to the standard ECG are shown here, for reference, and are generally
not shown in later results (non-scaled version is clearer).
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stimuli (local density) than the number of seed stimuli.
This observation is now examined in detail using sev-
eral different approaches. First, visual observation of
the panels in Fig. 6 indicates that the changes in QRS
complex features from addition of regional stimuli
(greater than 4 stimuli) are not significant enough to
bring any of the features in or out of normal physio-
logical range. Compare this observation to the effects
from adding seed stimuli (4 or less stimuli), which can
bring metrics in and out of normal physiological range.
Second, desensitization to adding regional stimuli is
calculated via a desensitization factor (DF) reported in
Fig. 7. DF is calculated by first dividing each of the
four QRS complex metrics (i.e., QRS duration and Q/
R/S wave amplitudes) into two categories, less than 4
(seed stimuli) or greater than 4 (addition of regional
stimuli), and then finding the ratio of the statistical
range of the metric in each category,

DF ¼ range(fmetricN : 1 � N � 4g)
range(fmetricN : 4 � N � 384g) ; ð2Þ

where metricN is the value of a particular QRS com-
plex metric from using the configuration with N total
number of stimuli (from Fig. 6). All DF values are
greater than one, indicating the QRS complex is more
sensitive to adding seed stimuli than regional stimuli.
Still, to the degree that each metric is sensitive to
adding regional stimuli relative to seed stimuli, the
QRS duration is most sensitive (smallest DF), followed
by the S, Q, and R wave amplitudes. These relative
sensitivities indicate how useful adding regional stimuli
may be in fitting different QRS complex features. For
example, regional stimuli may be more important in
fitting the QRS duration, and less important in fitting
the R wave amplitude.

FIG. 5. Sequential addition of regional stimuli around the seed stimuli in each IAR (refer to Figs. 1b and 1c for IARs). Configu-
rations in (a–c) add stimuli in the apico-basal direction, (d–f) add stimuli in left-right/anterior-posterior directions, and (g) adds one
layer of stimuli in the transmural direction. The perspective changes slightly between rows to enhance clarity as stimulus boxes
are added in different directions. The total number of stimuli in each configuration are given below each panel.
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Third, the aforementioned desensitization to adding
regional stimuli is also apparent from the simulated
QRS complexes themselves. Figure 8 shows QRS
complexes for all eleven stimuli configurations, corre-
sponding to the eleven data points for each metric in
Fig. 6 and the eleven stimuli configurations in Figs. 2
and 5. As seed stimuli are added (black, cyan, ma-
genta, and light brown curves), there are visually sig-
nificant changes in the curves. Adding regional stimuli
to the seed stimuli (all other colored curves) also pro-
duce changes in the QRS complex, yet changes are less
dramatic. Specifically, there are more subtle changes in
R wave amplitude, QRS duration, and apparent initi-
ation time of the QRS complex.

Fourth, the aforementioned desensitization to add-
ing regional stimuli is also observable in the ventricular
isochrone activation maps. Figure 9 shows the iso-
chrone activation maps from four stimuli configura-
tions: using just one seed stimulus, four seed stimuli,
using a relatively small number of additional regional

FIG. 6. Values of QRS complex features as a function of the number of seed stimuli (4 or fewer stimuli) and regional stimuli (12 or
more stimuli), up to a maximum of 384 total stimuli. Regional stimuli are progressively added symmetrically around the four initial
seed stimuli (see Fig. 5). For each panel, the thin dashed lines indicate upper and lower physiological thresholds for the normal
QRS complex (from Chou’s Electrocardiography In Clinical Practice25). The inset in each panel shows the same data using a linear
x-axis to more intuitively visualize trends as the number of stimuli increase. Panels show the QRS duration measured in lead I (a),
the Q wave amplitude measured in lead I (b), the R wave amplitude measured in lead I (c), and the S wave amplitude measured in
lead II (d). Lead positions on torso are shown in Fig. 1a.

FIGURE 7. DF calculated for each QRS complex feature
metric, using Eq. (2). DF is a ratio that measures the degree to
which the QRS complex features are desensitized to the
addition of regional stimuli. DF is larger than unity for all the
feature metrics, and, thus, all metrics are more sensitive to
seed stimuli than regional stimuli; the magnitude of DF indi-
cates the degree to which a metric is more sensitive to seed
stimuli.
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stimuli (28 stimuli total), and using a large number of
regional stimuli (384 stimuli total). Certainly as ex-
pected, there is a large change in the AT map between
using one and four seed stimuli, and using just one
stimulus produces an AT that looks nothing like the
experimental results of Durrer et al.9 Using four or
more stimuli, the AT maps do change, but to a lesser
extent. The change between using four and twenty-
eight stimuli is much more pronounced than between
using 28 and 384, a trend that is investigated more
using QRS complex metrics in the next section. Using
four or more stimuli, the pattern of activation quali-
tatively matches IARs seen in experiments by Durrer
et al.9 (circles in Fig. 9): I) the midseptum, II) the
anterior left ventricular wall near the base, III) the
posterior left ventricular wall in the paraseptal region
about one-third the distance between apex and base,
and IV) the right ventricular wall near the insertion of
the anterior papillary muscle.9 Specifically, in each
IAR, there is at least a small volume of tissue that
matches earliest ATs seen in Durrer et al.: 0–5 ms in
the septum and left ventricle (black circles I–III in
Fig. 9), and 5–10 ms in the right ventricle (black circle
IV in Fig. 9).

Finally, in the observed desensitization, it is
important to consider the application of patient-
specific modeling, where fitting parameters in the
model that do not have significant effect on the QRS
complex features is undesirable. While QRS complex
features are more sensitive to seed than regional
stimuli, it is still prudent to examine the per-stimulus
effect on the QRS complex features from adding re-
gional stimuli. Figure 10 shows a calculation of
diminishing returns as more and more regional stimuli
are added, reported as average sensitivity per stimulus
(ASPS),

ASPS ¼ avg abs DmetricNð Þ : 1 � N � Mf g½ �
M

;

M ¼ 4; 12; 20; 28; 84; 140; 196; 384f g;
ð3Þ

where DmetricN is the change in the particular QRS
complex metric value (i.e., QRS duration and Q/R/S
wave amplitudes) from using the configuration with N
total number of stimuli vs. using the configuration with
next smallest value of N (calculated from Fig. 6). M is
the chosen maximum number of total stimuli consid-
ered in calculating a particular ASPS value. Thus, the
ASPS for a particular value of M is interpreted as the
average sensitivity contributed per stimulus for N £ M,
divided by the maximum number of stimuli considered
(M). The higher ASPS is, the more sensitive the QRS
complex feature metric is to each stimulus (using M or
less total stimuli). Figure 10 indicates that for all
metrics, the average sensitivity per stimulus using at
most four seed stimuli (M = 4, first grey square in
both panels of Fig. 10) is higher than the sensitivity per
stimulus for any number of additional regional stimuli.
Thus, the QRS complex features are most sensitive to
seed stimuli on a per-stimulus basis. Furthermore, all
metrics for M> 4 show a per-stimulus change that is
small: only a fraction of a standard ECG unit (0.1 mV
by 40 ms). The 28 stimuli configuration (second grey
rectangle in both panels of Fig. 10) is a reasonable
ceiling on the number of stimuli needed for activation
of a healthy heart for three reasons. First, for M> 28,
the maximum per-stimulus change in QRS duration is
less than 0.2% of 40 ms, and the maximum per-stim-
ulus change in wave amplitudes is 10% of 0.1 mV.
Second, from visual inspection, atM = 28 is where the
slopes of ASPS for all metrics start leveling off, thus
indicating that not much precision is gained by using
more than 28 stimuli. Third, using 28 stimuli, Fig. 6

FIGURE 8. QRS complex of the ECG in leads I, II, and III for all eleven stimuli configurations in Figs. 2 and 5, corresponding to
eleven feature metric data points in each panel of Fig. 6. Thick grid lines indicate 0.5 mV and 200 ms increments and thin grid lines
indicate 0.1 mV and 40 ms increments, in accordance with the standard ECG. The ratio of x/y-axes is not in accordance with the
standard ECG to increase clarity.
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indicates that all metrics are well within normal
physiological range with significate buffer zones
between the metric value and non-physiological values.

Ultimately, it is undesirable to make a model more
complex than required by having more stimuli than
necessary to reproduce patient-derived QRS complex

FIGURE 9. AT isochrones maps. For direct comparison, times of activation (in ms) are color-coded to match the color scheme of
Durrer et al.,9 except that more detail is favored in this map by using more color contour divisions. Isochrone maps are shown for
posterior and anterior halves for 1, 4, 28 and 384 stimuli configurations (see Figs. 2 and 5). Black circles show four IARs com-
parable to those of Durrer et al.: (I) the midseptum, (II) the anterior left ventricular wall near the base, (III) the posterior left
ventricular wall in the paraseptal region approximately one-third the distance between the apex and base, and (IV) the right
ventricular wall near the insertion of the anterior papillary muscle. A geometric smoothing filter was applied to the mesh without
modification of color contour data or major geometrical features.
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features, and, therefore, 28 stimuli appears to be a
reasonable upper bound from both precision and
physiological considerations.

Sensitivity of QRS Complex Features to Number Versus
Topographical Extent of Stimuli

Adhering to the goal of minimizing the number of
stimuli while maintaining precision and control over
the QRS complex features (e.g., for model parameter
fitting), the relative effect of number vs. topographical
extent of stimuli is investigated. The topographical
extent of stimuli is defined as the distance between seed
stimulus and most peripheral regional stimuli, and in
the previous analysis it is evident that as regional
stimuli are added, this extent also changes. To separate
number from topographical extent effects, each of the
seven configurations in the previous analysis that add
regional stimuli around the seed stimuli (Fig. 5) are
considered. Sensitivity simulations are repeated by
retaining the peripheral regional stimuli (and the seed
stimulus) in each configuration in Fig. 5, but the
number of regional stimuli bounded by the peripheral
stimuli are reduced. For a visual reference, compare
‘‘dense’’ configurations in Fig. 5 to ‘‘sparse’’ configu-
rations in Fig. 11. Figure 12 indicates that QRS com-
plex features are very similar between dense and sparse
configurations. While some differences appear signifi-
cant, the scale of y-axis must be kept in mind; in fact,
the maximum differences are 0 ms for QRS duration,
0.022 mV for Q wave amplitude, 0.086 mV for R wave
amplitude, and 0.049 mV for S wave amplitude. These
differences represent only fractions of the standard
ECG precision, except for the difference in R wave,
which is indeed very close to the 0.1 mV precision.
Figure 13 shows how these small differences manifest
in lead I of the QRS complex. Observing these com-
plexes, if the topographical extent of stimuli is pre-

served, a nearly identical QRS complex is produced
even when decreasing the number of stimuli by ten-
fold (e.g., 384S sparse configuration of 36 stimuli and
384 dense configuration of 384 stimuli, Fig. 11g).
Thus, overall, the number of regional stimuli has
much less effect than the topographical extent of the
stimuli. The previously found upper bound of 28
stimuli to simulate activation in a normal heart is
reduced to only 12 stimuli if arranged appropriately
(compare sparse configuration 28S in panel (c) of
Figs. 11 and 13 to dense configuration 28 in panel (c)
of Figs. 5 and 13).

Bundle Branch Block (BBB) Simulations

Having examined the sensitivities in the context of a
normal QRS complex, and having found a reasonable
minimal 12-stimuli protocol for normal activation,
simulating a diseased state is now examined. Both BBB
stimuli configurations are derived from the 12-stimuli
sparse configuration (Fig. 11c), and are shown in
Fig. 14. QRS complexes from simulations of RBBB
and LBBB are shown in Fig. 15. Figure 15a exhibits
signature QRS complex features of RBBB, including a
long, slurred S wave in lead I with duration of 40 ms or
greater (64 ms), as well as a total QRS duration of
120 ms or greater (140 ms).25 Interestingly, these same
features are present when using the 3-stimuli configu-
ration (Fig. 4), which is another example of the QRS
complex being more sensitive to location than number
of stimuli. Figure 15b exhibits the signature features of
LBBB, including a total QRS duration of 120 ms or
greater (132 ms) and notching in the upstroke of the R
wave in leads I and II.33 Thus, the 12-stimuli sparse
protocol is able to simulate the major features of
healthy ventricular activation in the QRS complex, and
simple alterations to this protocol yield major features
of BBB.

FIGURE 10. Average sensitivity per stimulus (ASPS, Eq. (3)) for QRS complex feature metrics as a function of maximum number
of regional stimuli considered in calculating ASPS (M 5 4, 12, 20, 28, 84, 140, 196, 384). Values of ASPS for QRS duration are shown
in (a), and values of ASPS for wave amplitudes are shown in (b). Grey rectangles highlight metrics for M = 4 and M = 28.
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Sensitivity of QRS Complex Features to Heterogeneous
Versus Homogeneous Material Torso Models

In a departure from examining only the relationship
between number and location of stimuli in the ventri-
cles, the effects of torso material composition are now
investigated. Some models in the cardiac electrophys-
iology community do not include a torso model, and
some of those that do include it do not model
heterogeneous material composition. Thus, as a first
step in assessing the effect that the heterogeneous tissue
materials have on the sensitivity results, analysis of the
QRS complex features is repeated using a homoge-

neous tissue material torso model. In Fig. 16, for all
features except S wave amplitude, trends similar to the
heterogeneous case are observed in the homogeneous
case, except the values of the features have smaller
magnitude. The S wave amplitude for homogeneous
torso material is qualitatively different from the
heterogeneous case: the S wave is absent except for the
N = 3 configuration. Thus, the variation in S wave
amplitude as the number of regional stimuli changes
appears to be linked to torso composition. DF is gen-
erally lower (Fig. 17) for all homogeneous torso met-
rics, except the Q wave amplitude, where the sensitivity

FIGURE 11. Sparse stimuli configurations for all dense configurations in Fig. 5. Sparse configurations (indicated by the ap-
pended ‘‘S’’) capture the same topographical extent of stimuli in each IAR, but the number of stimuli bounded by the most
peripheral stimuli are reduced. The perspective changes slightly between panels to enhance clarity. Configuration name, and total
number of stimuli in each sparse configuration (in parentheses), are given below each panel. For maximum extension configu-
rations, the regional inter-stimuli distance in regions LASW, LPIW, and RAIW (not in parenthesis) and in region S (in parenthesis,
apico-basal direction and anterior-posterior direction) are given. Sparse configuration 12S (a) is exactly the same as dense
configuration 12 in Fig. 5a.
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to seed stimuli is small enough that it yields a larger DF
than the heterogeneous case. Overall, the DF values for
the homogeneous case are still greater than one; thus,
the QRS complex features are still more sensitive to
presence/absence of seed stimuli than the number of
regional stimuli.

DISCUSSION

QRS complex sensitivity simulations were per-
formed using a biventricular and torso model by
varying the number and location of current injection
stimuli (i.e., PMJs) in the biventricular model. Loca-
tions of stimuli were constrained to the approximate
volume of tissue corresponding to the IARs identified
in Durrer et al.9 Simulations revealed relative sensi-
tivity differences between altering number vs. location
of stimuli. Overall, results suggest that patient-specific
modeling of PMJs should focus parameter fitting on
the location of just a few stimuli in each IAR, rather

than parameterizing the number of stimuli. This trend
is observed in several of the results. First, the DF
(Figs. 7 and 17) quantifies the decrease in sensitivity
observed in the QRS complex feature metrics (Figs. 6
and 16) to increasing number of stimuli at the regional
scale. The DF values indicate that all QRS complex
features are at least two-fold more sensitive to adding
up to only 4 seed stimuli than to adding up to 380
regional stimuli, regardless of torso composition. In
fact, for modeling healthy hearts, the QRS complex
features attain physiological values when one stimulus
per IAR is used. Thus, having at least one seed stim-
ulus in each IAR may be thought of as a prerequisite
for any further parameter fitting of stimuli that may
follow. Second, it is evident that location plays a
greater role in simulating BBB diseased states: RBBB
simulated using only 3 seed stimuli (Fig. 4) produced
similar QRS complex features as using 7 stimuli
(Fig. 15a). Third, to the degree that the QRS complex
features are sensitive to regional stimuli, it is the
topographical extent of the stimuli rather than number

FIGURE 12. Comparing values of QRS complex feature metrics for sparse vs. dense stimuli configurations. Metrics shown for
regional stimuli, i.e., between 12 and 384 total stimuli (# stimuli based on dense configurations). Metrics for dense configurations
(Fig. 6) are shown as solid line, while metrics from sparse configurations (Fig. 11, ‘‘S’’ configurations) are shown as dashed-dotted
line. All other descriptors are the same as in the caption for Fig. 6.
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of stimuli that make the difference (Figs. 12 and 13). In
fact, for a given topographical extent of stimuli, the
QRS complex shows virtually no sensitivity to the
number of stimuli situated between the peripheral
stimuli even when total number of stimuli is decreased
by more than an order of magnitude (384 to 36 stimuli
in Fig. 13g). Thus, for reproducing QRS complexes, it
appears sufficient to vary regional topographical ex-
tent using no more than 36 stimuli distributed evenly
amongst the four IARs (Figs. 11, 12, and 13).
Understanding the maximum number of stimuli nee-
ded is important in patient-specific modeling, as

reducing number of stimuli decreases the parameter
space that must be explored, which increases efficiency.

As mentioned above, the QRS complex features are
less sensitive to regional stimuli than to seed stimuli,
and within the context of patient-specific modeling,
regional stimuli may be viewed as a ‘‘fine tuning’’ step
in parameter fitting. This fine tuning may prove more
effective for features with lower DF values, namely,
QRS duration and S wave amplitude. Stated slightly
differently, changing the topographical extent of re-
gional stimuli may have a greater effect when trying to
model QRS duration (especially smaller durations,

FIGURE 13. QRS complex of the ECG for sparse (Fig. 11) vs. dense (Fig. 5) stimuli configurations from lead I. Similar trends are
seen in leads II and III, which are not included to enhance readability of the figure. For each panel, results from sparse configu-
rations use a dash-dot line, while dense configurations use a solid line. Thick grid lines indicate 0.5 mV and 200 ms increments and
thin grid lines indicate 0.1 mV and 40 ms increments, in accordance with the standard ECG. The x/y-axes ratio are not scaled to the
standard ECG to increase clarity.
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Figs. 6 and 16) and S wave amplitude (e.g., RBBB,
Fig. 6d) accurately. Given that the QRS duration is
affected by many diseases, the locations of regional
stimuli may be an important consideration in model
fitting. Certainly, the importance of altering locations
of regional stimuli was observed in simulating RBBB
and LBBB, where the septal stimulus close to the base
needed to be translated by small amounts to produce
appropriate BBB QRS complex features (Figs. 14 and
15). In contrast, there may be less added value in
altering locations of regional stimuli when the focus of
fitting is on Q wave amplitude (e.g., myocardial
infarction) and R wave amplitude (e.g., hypertrophy),
given their high DF values (Figs. 7 and 17). Also, torso
material composition appears to be another factor that
determines how much the topographical extent of re-
gional stimuli affects QRS complex feature metrics
(Fig. 16). The S wave amplitude appears to be excep-
tionally sensitive to torso material composition, as it is
absent for many stimuli configurations in the homo-
geneous torso material model. Thus, for certain
applications where S wave amplitude fitting is critical,
it may be worthwhile to incorporate heterogeneous
materials in the torso model. The DF for the Q wave
amplitude is even higher for the homogeneous torso
material, which means adding regional stimuli is likely
to have even less effect on the Q wave amplitude than
for the heterogeneous torso material model. Ideally,
fitting parameters to patient-derived QRS complexes
will involve matching all QRS complex features, but
understanding the sensitivity of individual features
may be beneficial when the focus is on a diseased state
that manifests as a particular feature.

Using regional stimuli for fine tuning may also be
viewed from a precision argument: how much preci-
sion does one need to reproduce faithfully patient-

derived QRS complex features? While the precision
needed and focus on particular features will vary by
application in patient-specific modeling, results indi-
cate that it is sufficient to use 12 stimuli (i.e., 28 stimuli
dense configuration in Fig. 10) aligned in the apico-
basal direction with regional inter-stimulus distance of
no more than 0.7 cm (1.6 cm in septum). Using more
than 12 stimuli, and increasing the topographical ex-
tent in directions other than apico-basal, produce only
a per-stimulus change in QRS duration of less than
0.08 ms, and in wave amplitude of 0.01 mV or less
(Fig. 10). Obtaining these kinds of precisions is likely
not needed in terms of disease diagnosis, and exceed
standard ECG precision. It is also worth noting that
QRS complex features appear more sensitive to re-
gional stimuli being shifted in the apico-basal direction
than in other directions, which may provide guidance
in constraining location of stimuli in parameter fitting
procedures. Overall, altering the location of 12 stimuli
(4 seed, 8 regional) arranged in the apico-basal direc-
tion appears to be a reasonable compromise between
ability to manipulate QRS complex features, and
having drastically more stimuli than needed for fitting
precision.

Our results both contrast and corroborate results
from previous modeling studies that examine the sen-
sitivity of the QRS complex to PMJ parameters. The
findings of Simelius et al.22 did emphasize the impor-
tance of location of stimulus sites; yet, these authors
attributed their importance primarily to producing
physiological AT maps on the heart rather than the
QRS complex. They found that the QRS complex is
primarily affected by carefully balancing stimuli firing
times in the left and right ventricles. While our work
does not explore sensitivity to stimuli firing times, it
does show that the location of stimuli (topographical

FIGURE 14. Stimuli configurations used for RBBB and LBBB. The stimuli and their locations within the ventricles are shown for
RBBB (a) and LBBB (b). Both BBB stimuli configurations are derived from the 12-stimuli sparse configuration (Fig. 11c). Starting
from the 12-stimuli sparse configuration, RBBB is simulated by removing stimuli in the right ventricle, and LBBB is simulated by
removing stimuli in the left ventricle. For both BBBs, the basal, septal stimulus is positioned to emulate the physiological delay in
the depolarization ‘‘wave’’ from fibrotic block in the infra-Hisian bundle of interest.
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FIGURE 15. QRS complex of the ECG in leads I, II, and III for RBBB (a) and LBBB (b), refer to BBB stimuli configurations in Fig. 14. For
both panels, the solid line is the ‘‘normal’’ QRS complex from using sparse 12-stimuli configuration (Figs. 11c and 13c), while the dashed
line is the BBB QRS complex. Thick grid lines indicate 0.5 mV and 200 ms increments and thin grid lines indicate 0.1 mV and 40 ms
increments, in accordance with the standard ECG. Top row in each panel uses x/y-axes ratio not in accordance with the standard ECG to
increase clarity, while the bottom row does use the proper ratio where 0.1 mV and 40 ms intervals are equivalent Euclidean distances.
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extent) affects the QRS complex, in addition to the AT
maps. In fact, even in absence of the more sophisti-
cated stimuli firing timings used in other studies, we
were able to reproduce some of the same general
phenomena in these studies. Specifically, we simulated
signature BBB QRS complex features by removing
specific stimuli (Fig. 15), altered magnitudes of QRS
complex features via torso material manipulation
(Fig. 16), and altered the S wave via changes in apico-
basal location of stimuli (Fig. 12d).7 Regarding the S
wave, studies by Potse et al.19 found it difficult to
match simulated-to-measured S wave amplitudes. Our
results combined with those of Cardone-Noott et al.7

suggest employing apico-basal location changes of
stimuli (Fig. 12d), as well as alteration of torso com-
position (Fig. 16d), for control of S wave amplitude.
Overall, despite these trends, the relationships between
number, location, and activation timing of stimuli
deserves further investigation in future studies.

Other studies that model the full Purkinje network
tend to focus on obtaining high density of the network
and the PMJs.3,8 Costabal et al.8 used special tech-
niques to achieve smaller maximum distance between

FIGURE 16. Values of QRS complex feature metrics as a function of the number of stimuli, using heterogeneous (data from Fig. 6)
vs. homogeneous material torso composition. For each panel, the dashed-dotted lines are the signals generated using homo-
geneous torso, and solid lines are the signals generated using heterogeneous torso. The S wave was not detectable for the
homogeneous material torso except when using 3 stimuli. All other descriptors are the same as in the caption for Fig. 6.

FIGURE 17. DF calculated for each QRS complex feature
metric, using Eq. (2), for heterogeneous (see Fig. 7) and
homogeneous torso material model. DF is a ratio that mea-
sures the degree to which the QRS complex features are
desensitized to the addition of regional stimuli, relative to the
addition of seed stimuli. DF is larger than unity for all the
feature metrics, and, thus, all metrics are more sensitive to
seed than regional stimuli; the magnitude of DF indicates the
degree to which the metric is more sensitive to seed stimuli.
For homogeneous case, the S wave is not detectable for re-
gional stimuli configurations (using more than 4 stimuli, see
Fig. 5), and, thus, the DF does not exist.
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branches in generating the network over irregular
geometric domains, which are ubiquitous in the heart.
In contrast, our work suggests that emphasis on den-
sity and number of PMJs in the network may be less
important for reproducing QRS complex features than
strategic, physiologic placement of a limited number of
PMJs.

Still, the added sophistication of a dense, anatomi-
cally accurate Purkinje network representation may be
required for some modeling applications, even if not
for all. For example, it is clearly advantageous to
model a full Purkinje network if network topology or
Purkinje cell function is the focus of investigation.
Furthermore, studies such as those by Behradfar et al.
have found that the number of junctions in a Purkinje
network model plays a role in simulating reentry dur-
ing arrhythmia.3 Their work was performed using a
rabbit heart model, but when geometry is scaled to
human size, they varied the number of PMJs between
1000 and 5000. Thus, while in our study relatively little
added value is found beyond using 12 stimuli (the 28
stimuli dense configuration in Fig. 10) to simulate a
healthy heart, there may be value in having more
stimuli to simulate diseased hearts. Nayak et al. also
found that increasing number of PMJs resulted in lit-
tle-to-no spiral-wave breakup activity.14 Thus, future
directions should include a sensitivity analysis of a
wide range of ventricular disorders. To do so, our
model may need to be altered in significant ways, given
the Purkinje network fibers can act as a current sink
during arrhythmias.4,13,34 This effect is not currently
captured in the model and is beyond the scope of the
current study, but would be an important addition in
future studies.

Another outcome of the sensitivity analysis is a
simple 12-stimuli configuration for modeling ventric-
ular activation without the full Purkinje network. Such
a simple protocol may be useful for studies in the
community where it is desirable to model activation,
but with a primary focus on diseases and phenomena
downstream of initial activation, such as defects in
ionic channel activities of myocytes and their impact
on whole-organ ventricular dynamics. Still, even at the
stage of initial activation, the 12-stimuli configuration
has some relevance in modeling disorders, as shown for
simulating QRS complex features of RBBB and LBBB
(Figs. 14 and 15).

In the next phase of this work, the analysis will be
expanded to include a more comprehensive examina-
tion of sensitivity in other disease states, and additional
parameters of activation beyond number and location
of stimuli will be examined. Furthermore, given that
these results were derived from a single biventricu-
lar/torso model, the analysis will be performed in a
variety of image-based heart and torso sets to test the

repeatability and universality of the sensitivity results
across users and geometries. Factors such as heart
position and orientation will be evaluated in terms of
how they affect sensitivity of the QRS complex features
to stimuli parameters. Such studies could be compared
to the work of Nguyên et al.16 Their research varied
heart position and orientation, and examined effects
on the QRS complex, but they did not alter initial
ventricular activation parameters.

CONCLUSION

In summary, this sensitivity analysis models PMJs
as current injection stimuli in one biventricular/torso
model, and investigates the sensitivity of simulated
QRS complex features to number and location of these
stimuli. We found that the QRS complex features are
most sensitive to the locations of a few well-placed
stimuli rather than to the sheer number of stimuli. The
presence or absence of just one seed stimulus per IAR
has significant effects on the QRS complex features,
and to the extent that the regional stimuli affect QRS
complex features, the topographical extent of relatively
few stimuli (between 12 and 36) dominates QRS
complex features. The QRS complex features are more
sensitive to seed stimuli, but regional stimuli changes
may offer ‘‘fine tuning’’ of these features to match
patient-derived data. The stimulus configuration with
12 total stimuli oriented in an apico-basal direction
and regional inter-stimuli distance of 0.7 cm (1.6 cm in
septum) produced QRS complex features of a healthy
heart with reasonable precision. This 12-stimuli con-
figuration also served as a good basis for simulating
BBB, yet it is undeniable that there are certain disease
states and application spaces where a dense, full
Purkinje network is useful. Ultimately, this work
establishes a new approach in describing the sensitivity
of QRS complex features for patient-specific modeling
of activation. The QRS complex of the ECG is a
noninvasive, standardized measurement of electrical
activity in the ventricles, and thus is an attractive tool
for model parameter fitting. Our results should be
viewed within the context of our model limitations
(current-injection stimuli model of PMJs), as well as
viewed as a catalyst for future explorations of QRS
complex sensitivities to numerous other PMJ parame-
ters. Still, the results provided herein should aid in
effectively decreasing the sheer number of parameters
to be considered in fitting studies, and illuminate which
parameters should be given the greatest weight, i.e.,
location over number. By providing knowledge that
may increase the efficiency of fitting model parameters
to clinically derived QRS complexes, this work repre-
sents another step towards the realization of patient-
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specific medicine. As the horizon of patient-specific
medicine approaches, it brings with it the promise of
lower risk and more effective treatment.
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