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ABSTRACT: Understanding complex biological systems requires the extensive support of computational
tools. This is particularly true for systems pharmacology, which aims to understand the action of drugs and
their interactions in a systems context. Computational models play an important role as they can be viewed
as an explicit representation of biological hypotheses to be tested. A series of software and data resources are
used for model development, verification and exploration of the possible behaviors of biological systems
using the model that may not be possible or not cost effective by experiments. Software platforms play a
dominant role in creativity and productivity support and have transformedmany industries, techniques that
canbe applied tobiology aswell. Establishing an integrated softwareplatformwill be the next important step
in the field. © 2013 The Authors. Biopharmaceutics & Drug Disposition published by John Wiley & Sons, Ltd.
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Introduction

Systems biology emerged in the mid-1990s aimed
at a system-level understanding of living organisms
and their applications in various areas including
medicine and biotechnology [1–4]. System-level
studies are often built upon molecular and
genetic-level findings, as well as involving ‘omics’
studies such as genomics, proteomics and meta-
bolomics. Aspects of systems biology that many
researchers are facing are essentially fights against
the complexity of systems, the vastness of the data
and scattered pieces of knowledge that all has to
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be integrated to make sense of and be useful. It is
not possible for humans to simply look at them
and expect to extract useful knowledge or to
integrate them coherently without systematic aids
from computational tools. Thus, computational
tools are critically important in systems biology
because anything we do requires computational
aids to varying degree and aspects.

Lessons from industrial experiences in electro-
nics, aviation and other areas strongly suggest
that powerful tools that are aligned as a platform
can drive transformation of an industry [5]. One
of the best examples is computer graphics.
Computer graphics used to be on hand for only
a handful of computer geeks and artists who were
eager to uptake new technology for their
expression. However, with the development of a
range of platforms from OpenGL (an open source
graphics software code library) to commercial 3D
rendering and animation packages that confer
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509TOWARD AN INTEGRATED SOFTWARE PLATFORM FOR SYSTEMS PHARMACOLOGY
them with industrial standards of representation,
it has turned into a powerful set of tools in
everyone’s hands. As a result, large numbers of
computer graphics designers and artists have
emerged, the game industry has flourished, and
industrial computer aided design and desktop
publishing (DTP) has replaced the old approach,
and today Hollywood studios are fortified with
high performance computers. All these transfor-
mations and the explosion of industry-scale systems
would not have been possible without the emer-
gence of powerful software platforms.
Biological sciences are no exception. This is partic-

ularly true for systems biology and its application
in areas such as systems drug design because their
success depends on sophisticated data handling,
modeling, integrated computational analysis and
knowledge integration. One of the central ap-
proaches is to create computational models that
enable us to predict the behaviors of biological
systems at multiple scales thereby helping us to
understand the mechanism behind them as well as
to predict the impacts of perturbations, including
drugs. This article reviews the current status and
Figure 1. Workflow of computational tasks in systems biology. (
involved. In this cycle, modeling is not just an interaction map
experimental planning because data suitable for model verificatio
the same time, what can be actually measured and at what accuracy
will be used for various analyses. In most cases, analysis results a
procedures. This cycle is consistent with what is known as the ‘
Do-Study-Act (PDSA) cycle that is the standard practice for busine
model development and analysis, it is obvious that this process invo
requires a kind of extreme programming (XP) that assumes multiple
be detected earlier in the development phase and can be quickly fi

© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
issues in software tools, the need for integrated
software platforms and challenges for the future.
Software Needs in Systems Biology and
Systems Pharmacology

What is expected in software platforms is the capac-
ity to support novel biological discoveries, drug
design and other life science research by their analy-
sis, prediction, explanation, sharing and integration
capabilities, thereby enabling research and develop-
ment that would not be possible without such plat-
forms. A set of software tools and resources has to
be defined and provided to best achieve these
objectives. A typical workflow for computational
analysis in engineering involves data acquisition,
modeling and analysis. Prediction and explanation
capabilities are associated with this cycle, and
integration and sharing of knowledge are involved
to best achieve and sustain these capabilities. This
cycle of workflow is relatively universal and it can
be applied for biological research (Figure 1).
a) Research cycle with computational modeling and analysis
and computational model development, but also involves

n and analysis have to be acquired through experiments. At
affect the proper modeling strategy. Acquired data and models
re used for further improvement of models and experimental
Deming cycle’ (also known as the ‘Shewhart cycle’) of Plan-
ss process quality improvement. Given the nature of biological
lves a highly interactive and flexible process. In some aspects, it
iterations of different time spans so that potential problems can
xed
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The central pillar of the whole process is the
development and verification of computational
models that are represented at the proper level of
abstraction and scope required to best answer
the biological questions being asked. Computa-
tional models, or in silico models, play an impor-
tant role in systems biology because these are a
tangible implementation of hypotheses and
verified knowledge of the biological systems and
processes being investigated. In the engineering
design process, computer models are assumed to
be an in silico replica of a specific aspect of the
artificial objects being manufactured. In the
biological investigation process, computer models
are supposed to be an in silico replica of a specific
aspect of a biological system as recognized and
hypothesized.
When a research project adopts this view, the

entire research cycle has to be aligned to achieve
the goal of creating and verifying the computa-
tional model. This means ‘wet’ experiments will
be designed to provide the data required for
model construction and verification. At the same
time, the kind of models that can be developed
and verified properly depends on the experimen-
tal capabilities available for the project. This
process of interactive design of experiments and
definition of model scope is one of the most
important steps in systems biology research, and
the parties involved need to share what are the
central scientific questions being asked in the
project, and hence the hypotheses to be tested.
Within this context, it is all about creating

hypotheses and verifying them. There are two typ-
ical, contrasting but not contradicting, approaches
for hypotheses generation. One is a top-down and
data-driven approach, and the other is a bottom-
up and often literature-based approach. The top-
down data-driven approach makes the most use
of large-scale data to construct possible hypotheses
that are represented in the form of a network
derived from the data set using certain algorithms.
This is often called a ‘weak method’ meaning
that the hypotheses are generated without prior
knowledge of the domain, but merely from
statistical inference from the data. Thus, networks
mostly represent association and correlation among
protein and genes rather than causality and mecha-
nisms. The network can be used for further model-
ing, designing the next round of experiments,
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
interpretations of experimental results, etc. On
the contrary, the bottom-up approach tries to
create detailed and highly precise models by
integrating knowledge taken from the literature
and well-curated databases. This approach, that
can be called a ‘strong method’, creates in-depth
mechanistic models, but is extremely labor-
intensive and limited in coverage of the model.
Analysis of the models created also requires a set
of computational tools either involving numerical
computation or a more quantitative and logic-
oriented approach, and generates vast computa-
tional results as well.

At the same time, modeling and simulation has
traditionally been a strong pillar in pharmacology
in understanding the mechanisms of drug effects,
side effects and adverse events. Recently, the com-
munity has increasingly acknowledged the need
for a global, network-based understanding of
drug–target interactions [82]. Systems pharma-
cology or network pharmacology aims to obtain
insights into drug actions and adverse events in
the context of the biological network around the
therapeutic targets rather than in isolation [83–86].
Such an holistic approach requires an enhancement
of existing PK/PD systems analysis techniques
with deeply integrated computational systems
biology approaches across and between multiple
scales of organization – from chemistry to structural
biology, pathology/cell physiology and to organ-
level specialties (cardiology, nephrology etc.) and
clinical care [83].

In particular, in a recent NIH study group white
paper reviewing the state of the art in systems
biology and pharmacology [87], special emphasis
was laid on the emerging discipline of quantita-
tive systems pharmacology (QSP), defined as
‘.. as an approach to translational medicine that
combines computational and experimental methods
to elucidate, validate and apply new pharmacological
concepts to the development and use of small
molecule and biologic drugs. QSP will provide an
integrated ‘systems- level’ approach to determining
mechanisms of action of new and existing drugs in
preclinical and animal models and in patients.’
Amongst the various expected outcomes envis-
aged in the paper, the working group highlighted
the specific need for ‘new approaches and tools
to link preclinical and clinical studies of drugs
and disease’.
Biopharm. Drug Dispos. 34: 508–526 (2013)
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As mentioned earlier, various tools for model-
ing, simulation and pharmacodynamics systems
analysis have been applied extensively in
pharmacology. A comprehensive summary of
such network modeling tools and their applica-
tion in drug discovery has been reviewed
recently by Csermely et al. [88]. While models
occupy an unique position in systems biology
and systems pharmacology, many insights can
be gained during the process of creating the
model, rather than from the model itself. A
software platform should be designed flexibly
to support various deviations of research pro-
cesses from the assumed process. At the same
time, certain workflows are assumed as a
typical procedure of model development and
verification. This review presents a view of how
each task in the workflow can be interlinked to
generate and verify the hypotheses-driven approach
based on computational models.
In the next few sections, software tools, issues

and challenges of typical data handling,
model development and analysis procedures will
be described.
Figure 2. From HD data to HD analytics. Biological data are ch
spanning across genomics, transcriptomics, proteomics and metab
captures the dynamics across various features (parameters) acros
various techniques are applied for vertical or horizontal integration
flux balance analysis to data-driven and statistical analysis of trans

© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
Data Management

The proper acquisition and handling of data is
critically important for both the generation of
hypotheses and their verification. The quality of
hypotheses depends on the nature of the data.
The rapid development of high throughput exper-
imental techniques (next generation sequencers,
genome wide association study (GWAS) tools,
proteomics, transcriptomics and metabolomics
studies) is transforming life science research into
big data science [6,7]. Vast amounts of data are
generated on a regular basis in individual research
laboratories as well as in large-scale systems
biology projects spanning multiple groups spread
across different countries. With such an exponen-
tial growth of experimental data production, data
management becomes fundamental. This is partic-
ularly true for systems biology, where heteroge-
neous sources of data need to be aggregated,
analysed and interpreted in a systems-level context.

The heterogeneity and complexity of the data
pose the greatest challenges in data management
for biological and preclinical research [8]. Figure 2
aracterized by heterogeneity and diversity in multiple scales
olomics to tissue, organ and whole body modeling. Each layer
s different temporal scales. Depending on the analysis focus,
, including but not limited to PK/PD modeling, pathway and
criptomics or proteomics data

Biopharm. Drug Dispos. 34: 508–526 (2013)
DOI: 10.1002/bdd



512 S. GHOSH ET AL.
captures the complexity and diversity of biologi-
cal data across multiple scales. Such HD data
(high dimension, high diversity, high definition)
calls for HD analytics techniques necessitating
vertical integration across pathways, cells, tissues
and organs as well as horizontal integration
linking transcriptomics, proteomics and metabo-
lomics within a cell. This is further aggravated
by huge volume, context dependency and
provenance [9], lack of well-established exchange
standards and globally unique identifiers, which
hinder mapping and integration of the results
[10]. While there are already plenty of tools for
bioinformatics and data management for the life
sciences [11–14], systems biology requires yet
another set of tools and standards.
The role of standards andprotocols in information

exchange and management has been underscored
by their widespread adoption in engineering, prod-
uct manufacturing and recently in information
technology.Data representation and communication
standards for systems biology and bioinformatics
have developed as a distinct field [15], leading to
the development of a plethora of standards covering
different stages of the research pipeline. Standards
for data management have been focused on three
core aspects: minimum information for data descrip-
tion, file format and ontology [8]. These standards
combined enable the consistent and rich annotation
of data generated, and can thus be used effectively
for further analysis.
Informatics tools and services have played a

central role in the analysis and interpretation
of large-scale biomedical data both in basic
research as well as in preclinical and clinical
trials. Traditionally, the options for informatics
tools have revolved around in-house custom
tool development, the use of open source software
(such as R programming language) or commercial
data management software. Current data manage-
ment systems include spreadsheet-based system,
web-based document sharing systems and labora-
tory information management systems (LIMS),
and Workflow Management Systems [8]. An
integrated LIMS and Workflow Management
System would play an even greater role as the
number and complexity of experiments increases,
and there are several examples of these systems such
as Taverna [16], caGrid [17], Bio-Steer [18] and
KNIME (Link 9).However, the lack of interoperability
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
and interfaces with other software tools pose a
serious bottleneck for wider adoption.

Closely associated with the management of a
genome-wide data-set is their visualization and
analysis. Several tools provide different levels
of functionality to visualize molecular networks,
expression profiles and genomic data [19,20],
Cytoscape [21] being one of the most widely
used software in the community.

It is the plethora, rather than the paucity, of
databases, standards and tools that provides the
major challenge towards developing a platform
that is integrated and consistent. A key driver in
a systems approach is the ability to integrate data
from diverse sources and to apply computational
analysis techniques to generate global insights
of the biological systems and hypotheses to be
tested. Thus, an integrated platform should
reconcile the existence of multiple standards and
tools, and develop technologies that allow them
to co-exist and inter-operate.
Data-driven Network Inference

Data-driven, network-based approaches have been
actively developed over the past decade [22] to
infer a causal relationship between molecular
entities from experimental data. A data-driven
approach algorithmically generates a set of hypoth-
eses on the possible relationships among genes and
molecules depending on the data and inference
methods used. The first generation studies were
focused on finding patterns in gene expression
profiles to distinguish disease and healthy states
at the molecular level, as elucidated in the classical
study in breast cancer prognosis [23]. The limitation
of using a one-dimensional expression profile in
reconstructing the complex interactions in living
systems has led to the development of new
methods correlating genome scale DNA variations
with disease traits in identifying disease susceptible
genes [24–26].

To further improve the approach, researchers
have combined genotypic data with phenotypic
data (gene expression, protein andmetabolite states)
to develop integrated models of disease networks
[27–29]. With the growing availability of high-
throughput data in multiple dimensions, recent
efforts have focused on harnessing knowledge from
Biopharm. Drug Dispos. 34: 508–526 (2013)
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genotypes, gene expression, protein–protein inter-
action, DNA–protein binding and complex binding
data to construct probabilistic, causal gene networks
[30–32]. These models have been predominantly
based on Bayesian inference techniques – com-
puting the probability of a hypothesis (in this case
the relationship between two molecular entities)
based on some kind of evidence or observations
(known as priors). However, several alternative
techniques have also been applied with varying
degrees of success such as mutual information
(MI) approaches [33,34] and others [35–40].
Although numerous inference algorithms have

been proposed and even incorporated in commer-
cial data analysis packages, the reconstruction
accuracy of such techniques requires a careful
and systematic evaluation, benchmarking and
verification. An interesting effort in standardized
benchmarking for network reconstruction has been
initiated through the DREAMproject (Dialogue for
Reverse Engineering Assessments and Methods)
[Link 10] –which attempts to evaluate the different
paradigms influencing network inference. Analysis
of DREAM results (DREAM2 and DREAM3)
reveals that algorithms complement each other in
a highly context specific manner. A community-
driven, consensus based reverse-engineering, which
aggregates the results from the best performing
algorithm has been advocated as a way forward
for high quality network inference. One explana-
tion for why such a community-based approach
performs better than the best algorithm in the pool
is the existence of strengths and weaknesses of
each algorithm, thus multiple algorithms need
to be used to compensate for such characteristics.
This is an interesting observation and consistent
with the reason why IBM’s DeepQA system was
successful in the Jeopardy! Challenge [41].
Deep Curation

Contrasting with the data-driven network infer-
ence is the deep curation approach. The deep
curation approach creates a detailed molecular
interaction map by integration of available knowl-
edge using publications, databases and other
information sources [42,43]. This is essentially a
large-scale knowledge integration approach. Unlike
the data-driven approach in which hypotheses
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
about interactions are generated automatically, the
deep curation approach manually or semi-manually
constructs the model that means it is easier for
researchers to add their own hypotheses onto the
model. The map has to be precise and sufficiently
in-depth in order to be useful. While a data-driven
approach may generate networks representing
inferred causality or an association of behaviors for
molecules and genes, it does not provide mechanis-
tic details nor confirm causality. A deep curation
approach can provide mechanistic details for each
interaction.

In-depth mechanistic-level models are essential
not only for precise computer simulation and
understanding of biological mechanisms, but also
for the proper evaluation of potential drug targets
(Figure 3). Models that only represent interactions
without details of their mechanisms have limited
utility. This is critical because only in the in-depth
model, is it possible to identify precisely which
interaction leads to target, thus a proper choice
of lead compound and their optimization strategy
can be defined. Deep curation requires an open-
ended knowledge assembly from publications,
pathway databases, as well as from high-
throughput data [42–45]. The current ‘Gold
Standard’ is manually curated maps carefully built
based on literature and various data resources by a
small group of people who spend months on the
same pathway to the extent they would be familiar
with almost every work reported [46]. Recent
progress in standard formation such as SBML [47],
SBGN [48] and MIRIAM [49] and software such as
CellDesigner [50] have made it possible to develop
such detailed models.

Challenges of the deep curation approach are
up-dating and validation. Manually creating
large-scale network maps from the literature is
extremely labor-intensive and stressful work.
Also, it is very difficult to maintain motivation
for continuously up-dating the map to keep up
with new discoveries for many years. Automated
literature mining has been investigated exten-
sively, but is nowhere near the stage needed to
replace human curators. Validation is another
challenge for deep curation. Although standards
such as SBGN and commonly used tools such as
CellDesigner have been made available, the inter-
pretation of papers and data presented depends
on someone reading them and transfering them
Biopharm. Drug Dispos. 34: 508–526 (2013)
DOI: 10.1002/bdd



Figure 3. Molecular interactions at different levels of abstraction. (a) A simple visualization of a part of the protein–protein interac-
tion (PPI) data. It is visualized as nodes and undirected arcs. (b) A possible network inferred by Bayesian inference. Nodes represent
genes and are connected via a directed arc that shows statistically inferred association characteristics, such as correlational or anti-
correlational. It should be noted that this does not necessary represent causal relationships. (c) Conventional diagram that indicates
the flow of activation and inhibition. This type of diagram is often called an activity flowdiagram. (d) SBGNprocess diagram represen-
tation that depicts the detailedmechanisms of interactions. For example, onemay try to identify a drug target.With an abstractmodel of
interactions, it may only represent an effect inhibition for a specific molecule (molecule A) as seen in (c). With an in-depth mechanistic
model, it is now possible to capture the fact that there are four processes of interaction and that inhibition of any one of them would
appear to inhibit the same molecule, but may have a different overall efficacy and collateral effects (d)
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into interaction maps. Validation requires expert
knowledge of the biology and the ability to
decipher the literature evidence into the pathway
diagram. Recruiting experts and assigning them
for pathway curation, and their working together
to build the integrated pathway itself is a big
challenge. While community-based development
and refinement of pathways has been proposed
as seen in WikiPathways [51], following the
success of Wikipedia, it has not been taken up
seriously by the community so far, perhaps due
to the issue of incentives in biological community.
In addition, there is an issue of how two parallel

approaches can be integrated. The data-driven
approach is comprehensive, unbiased and has
the potential to uncover novel interactions that
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
have not been identified before. Deep curation
integrates knowledge from publications and data-
bases so that novel discovery cannot be expected
unless explicitly added, but each interaction
incorporated into the map is backed by specific
experiments and independently confirmed. It
would be ideal if both approaches could be com-
bined to enhance the strength of each approach.
Certain percentages of interactions inferred by
the data-driven approach are likely to be con-
firmed by the deep curation approach and some
can be clearly rejected, then the remaining inferred
interactions deserve further study, hence research
resources can be focused on these hypotheses.
Extensive software support and research are needed
to enable the integration of the two approaches.
Biopharm. Drug Dispos. 34: 508–526 (2013)
DOI: 10.1002/bdd
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In silico Simulation Models

Simulation is an indispensable tool in all engi-
neering designs and has been applied successfully
in the automobile, aerospace and telecommunica-
tion industries for many decades. Computational
fluid dynamics (CFD), for example, is an essential
design process in aircraft design, ship design and
automobile design. Any high rising building has
to carry out a series of structural integrity simu-
lations even to be approved for construction;
chipmakers model, modify and simulate their
designs on computers before sending them to the
fabrication plants; ‘virtual cars’ are driven and
‘virtual aircrafts’ flown under simulated condi-
tions before hitting the manufacturing floor [89].
While the application of advanced modeling and
simulation techniques have resulted in immense
cost-savings and standardized procedures for such
R&D intensive industries, the pharmaceutical
industry has historically lacked these approaches,
leading to astronomical costs in drug development
(~25% of its revenue, almost twice that of other
knowledge-driven industries [89]).
While an appreciation and awareness for the

potential benefits of the computational approach
in the future of biological sciences and drug
design has been on an increasing trajectory in
industry and academic circles [55,60], it is impor-
tant to keep in perspective the unique hurdles
and significant challenges in applying in silico tech-
niques in the life sciences. Identification of the
specific needs for computational tools in the
pharmaceutical industry, together with an open,
collaborative mindset between all players would
form the key stepping stones in developing safer,
efficacious and cost-efficient drugs for complex
diseases such as cancer.
Issues and Challenges

The adoption of simulation techniques in the life
sciences requires careful and detailed consider-
ation of the unique challenges faced in trying to
fathom the complex interaction between the dif-
ferent entities at multiple scales – from cells, to
tissues and organs to whole human body and
host–pathogen interactions. There exists a series
of issues that has to be addressed before
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
simulation can be accepted as normal practice in
the industry.

First, there is a set of fundamental technical
issues to be solved to further improve the
accuracy of simulation. Different flavors of
simulation technologies exist, from determinis-
tic, differential equation-based systems to non-
deterministic, stochastic techniques, agent-based
and discrete-event based simulations. Each
presents a unique set of assumptions and system
conditions which need to be considered before their
successful application to specific biological prob-
lems, as elucidated schematically in Figure 4 [90].
Cellular modeling or physiological modeling with
molecular details will require the integration of
heterogeneous computational models that are on
different spatial and temporal scales, and the basic
equations still need to be defined.

The purpose and goal of a simulation system
applied in drug design should be clearly defined:
as in other fields such as Formula 1 aerodynamics
design, where the goal is to design an aerodynam-
ically optimal body with maximum down force
and minimum drag. This forms a key step in
determining the eventual success of a biological
simulation system and in defining the boundaries
of the system. For example, Merrimack Pharma-
ceuticals [91] used computer simulation to
identify a novel drug target for a specific cancer
that resulted in the development of a monoclonal
antibody for ErbB3, now in clinical trial. Simu-
lation models need to be designed sufficiently
to capture the essential features to accomplish
the task defined, but features that are unlikely
to affect prediction accuracy of the given task
may be ignored.

Sophisticated models with molecular details
that can predict cellular behaviors under various
conditions are crucial for elucidating system-level
properties of cellular systems, such as their robust-
ness and the underlying principles of cellular
functions. Such models should be able to provide
predictions on how cells and organs respond when
certain perturbations, such as drug administration,
are given. While there are some successful cases of
computational modeling of limited scale biological
networks, there is no established method for
developing high precision models.

While time is a key component of biological
systems, spatial dynamics also play an important
Biopharm. Drug Dispos. 34: 508–526 (2013)
DOI: 10.1002/bdd



Figure 4. Multi-scale modeling and simulation. Depending on the level of focus, modeling and simulation techniques can be
applied from the genetic level upwards to the molecular level (bottom-up) or starting from abstract physiological models (at organ
or tissue level) downwards to molecular and pathway levels (top-down)
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role in elucidating their behavior. This is particu-
larly true for multi-scale models involving cells,
tissues and organs where the spatial heterogeneity
of different components governs their behavior in
time. The PDE solvers available in engineering
tools such as Matlab® can be applied to model
biological systems in time and space. In addition,
finite element method (FEM) based PDE solvers
may be used to compute the elastic displacement
of the system. There some popular software,
e.g. OpenFEM (Link 4) and FreeFEM (Link 5),
for this task.
It is often the case that the stochastic behavior of

molecules significantly affects the outcome of
cellular and physiological behaviors of the system.
Thus, stochastic computation plays an important
role in biological simulation. In typical cases,
Gillespie’s algorithm is used for approximation
of the chemical master equation (CME), captures
the stochastic (random) behavior of molecular
interaction and has been successful in elucidating
the dynamics behind gene transcription and
translation processes [56,57]. Some such examples
can be seen in the E. coli fate decision under phage
infection [61].
Several other techniques, such as agent-based

modeling [62] and process algebra (PetriNets)
[63] have also been applied to study the behavior
of specific biological systems.
Apart from the challenges in model calibration

and verification, large-scale simulation systems
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
require computational resources and efficient
numerical algorithms. Further, standards for
simulation experimental definition (MIASE [64]),
parametric conditions (SED-ML) and result dis-
semination (SBRML) need to be developed for
high precision simulation models. In this direction,
the systems biology markup language (SBML) [47]
has been widely adopted as the standard format
for the storage and sharing of dynamic models.
This has led to the development of inter-operability
among a suite of SBML compliant simulation and
analysis tools.
Lessons from Computational
Fluid Dynamics

While there are some successful cases of computa-
tional modeling of limited scale biological networks
[54,55,58–60], there is no established method for de-
veloping high precision models. It should be re-
membered that even the most successful
computational approach so far, computational fluid
dynamics (CFD), took decades of research to be-
come practically useful. So, it is perhaps too optimis-
tic to expect such a technology to be easily
obtainable, although there is no need to think that
it will never be realized. At the same time, we need
to move forward to solve a series of problems. We
can learn some lessons from CFD as to how we
Biopharm. Drug Dispos. 34: 508–526 (2013)
DOI: 10.1002/bdd
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can improve biological simulation, as there are sev-
eral reasons that make CFD indispensable today.
First, CFD uses the Navier-Storkes equation

that is a very suitable motion equation to describe
most of fluid dynamics. It assumes a homoge-
neous medium flowing through objects. In addi-
tion, it is fundamentally a monolayer system.
Cellular modeling or physiological modeling with
molecular details requires the integration of
heterogeneous computational models that are on
different spatial and temporal scales, and the basic
equations still need to be defined. Most inter-
action-network simulations use the Michaelis–
Menten equation or a similar equation that
assumes a certain ideal condition. However, these
assumptions might be unwarranted in a crowded
molecular environment in which reactions and
molecular movements are constrained in space.
The challenging issue of the integration of different
computationalmodels for interaction networks and
cellular structures, macroscopic dynamics at the
cellular and molecular levels and processes with
different timescales has to be resolved.
Second, integration of computational modeling

and experimental data acquisition has to be pro-
moted. Looking at the design process for a Formula
1 racing car, an iterative design cycle is established.
First, numbers of designs are testedwithCFD. Some
designs will be tested using a wind tunnel. One or
two designs are actually implemented and tested
in a test course, and one design is selected for the
final production. In this process, CFD models are
calibrated against wind tunnel data for further
improvement of accuracy, instead of data from test
course or from actual racing telemetry data. This is
because only a wind tunnel enables highly
controlled experiments so that high precision data
with controlled initial and boundary conditions
can be obtained. This comparison delivers two
messages. First, we need to develop highly control-
lable experimental systems comparable to the wind
tunnel in aerodynamics. This means that we need to
be able precisely to control exposure to chemical
substances and other environmental conditions.
Micro-fluidics technologies offer interesting oppor-
tunities to develop experimental systems that may
meet the needs of modeling. Second, efforts need
to be made to create a high precision model against
well-controlled experimental systems, instead of
relatively uncontrollable systems.
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
Third, the structural, spatial and temporal
dynamics of both interaction networks and
cellular structures need to be identified in order
to define proper models. Whether cellular micro-
structures need to be modeled depends on the
purpose and specific biological processes being
modeled. The dynamics of cellular structure and
interaction networks need to be measured by
taking comprehensive, high-resolution quantita-
tive measurements of the intracellular status, such
as the concentrations, interactions, modifications
and localizations of molecules, and of cellular
structures at each coordinate in four dimensions
under various conditions. In addition, the prob-
lem still remains as to how to identify unknown
interactions from such data sets. These problems
are very fundamental and require collaborative ef-
fort from the community.
Model Analysis

After models have been verified using experimen-
tal data, further analysis can provide in-depth
insights on the intrinsic and dynamic nature of
the system. Conventional time course simulation
with a defined initial state provides us with an
idea on how the system behaves dynamically
under the specific condition. However, it only
provides us with a snapshot of the dynamics the
system may exhibit. In-depth insights on how
systems may behave can be captured by system-
atic analysis of the system’s reactions under
different initial conditions and the propensity to
change in reaction to the variations. It can also
compute possible system behavior for condi-
tions that cannot be set or are too expensive to
be tested experimentally.

Different mathematical techniques have been
developed to analyse the behavior of complex
biological models [65,66], particularly focused on
sensitivity analysis, phase space analysis and
metabolic flux analysis.

Sensitivity analysis

The sensitivity of the system against various
parameter changes is one of the properties that
affects robustness and fragility of the system. It
can reveal not only the stability of the system for
Biopharm. Drug Dispos. 34: 508–526 (2013)
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various perturbations, but also the controllability
of the system.

Phase space analysis

As living systems operate under cellular homeo-
stasis and homeodynamics, capturing the behavior
of a complex biological model under equilibrium
(steady-state or quasi steady state) conditions and
the delineation of boundaries of different dynamic
states within a set of parameter axes can provide
insights into the dynamic properties of the system.
Bifurcation analysis (analysis of a system of ODEs
under parameter variation), phase-plane analysis
(e.g. null-clines and local stability) helps to predict
system behavior (equilibrium or oscillations)
under a different parameter space. While model
analysis is supported bymany ODE solver systems
such as Matlab®, specific tools are used widely
in the community, e.g. Auto (Link 11), XPPAut
(Link 12), BUNKI (Link 13) to name a few.

Metabolic control analysis (MCA)

This is a powerful quantitative framework for un-
derstanding the relationship between the properties
of a metabolic network (steady state) character-
ized by its stoichiometric structure and the com-
ponent reactions. It has been applied widely for
analysis of cellular metabolism, particularly the
control and regulation thereof. Developing on
from the stoichiometric structure, a constraint-
based modeling technique has been applied in
metabolic engineering called Flux Balance Analy-
sis (FBA) [67,68]. This does not require details of
enzyme kinetics or metabolite concentrations,
but aims to compute metabolic fluxes across a
network that maximizes certain system proper-
ties (e.g. growth rates) under constraint condi-
tions. Notably, FBA has been shown accurately
to predict the growth rate of the bacteria Escherichia
coli under different culture conditions [68].
While most of the model analysis techniques

elucidated here focus on dynamic systems repre-
sented as a set of ODEs, it is pertinent to mention
that alternative analyses have also been devel-
oped, based on statistical network analysis [63].
In particular, Boolean network modeling of
genetic regulatory networks have gained wide
acceptance in the modeling community based on
the pioneering work by Kauffman [69]. Several
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
Boolean network simulators for biological systems
have been developed including NetBuilder
[Link 14], BooleanNet [Link 15], SimBoolNet [70],
to name a few.

One of the central difficulties for such a series
of analysis is the nature of biological systems
which are very high dimensional and non-linear.
The choice of axis of phase space affects what
dynamic properties can be captured, but such
choices are made primarily by the intuition of
researchers. Thus, using such analysis software
does not ensure that proper insights can be
obtained. In addition, the implication of analysis
results requires proper translation from mathe-
matical terms to biological terms. For example,
when a system exhibits a saddle node bifurca-
tion at a certain parameter region, it implies that
the system can be unstable and its dynamics can
qualitatively change depending on which paths
are followed near the bifurcation point. While
such a discovery is mathematically exciting,
how can this be translated into experimental
set-ups to verify that such findings are possible,
but not trivial.
Integrated Software Platform

The process of data acquisition and management,
model development by data-driven and deep
curation approaches, and model verification and
analysis requires a series of software and data
resources to be interlinked and used in an
integrated manner. Looking at systems biology
and biomedical research in general, there are
numbers of software tools and resources that can
be used independently. However, their interopera-
bility is missing. Back in the 1990s, a group of
researchers recognized the need for community-
wide efforts for data and model representation
standards so that data and models can be used
among different software tools. Efforts that resulted
in the successful development and acceptance
include the formation of data representation stan-
dards (MIAME [71], etc.), model representation
standards (SBML [72], BioPAX [73], etc.), graphical
representation standards (SBGN [74]) and model
curation standards (MIRIAM [49]), etc. Workshops
such as COMBINE (Link 2), a joint forum for
standardization efforts, are now held regularly.
Biopharm. Drug Dispos. 34: 508–526 (2013)
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The establishment of a series of standards has
dramatically improved the situation by enabling
data and models to be reused by multiple soft-
ware, promoted healthy competition among soft-
ware tools, and helped to build a pipeline of tools
for efficient analysis. However, the problem still
remains of a lack of interoperability and inconsis-
tent user interfaces. Software tools are being
developed by independent research groups and
companies without explicit agreement of how they
can be operated smoothly when users have to use
multiple tools in a singleworkflow. Thus, users often
have to convert data format to adjust differences
between tools, learn operating procedures for each
tool, and sometimes even have to adjust operating
environments. This impedes users from using these
tools easily and does not help the wide utilization
of tools either.
Recently, an alliance called ‘The GarudaAlliance’

(Link 1) was formed to rectify this situation. The
aim of The Garuda Alliance is to create a platform
and a set of guidelines that enable a high level of
interoperability, consistent user experiences and a
broader reachability of tools and resources. To
achieve these objectives, the alliance will provide
Figure 5. A conceptual diagram of the Garuda Platform. The inte
common software and application program interfaces (APIs). In t
Garuda core that are derived from CellDesigner APIs will play a piv
through this core software using Garuda APIs

© 2013 The Authors. Biopharmaceutics & Drug Disposition published
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the Garuda Core that provides defined and com-
prehensive application program interfaces (APIs),
a wide range of program and widget parts and a
series of design guidelines (Figure 5).

The developers of tools can use well-defined
APIs to make their tools operational on the
Garuda Core and can easily attain a high level of
interoperability. Garuda compliant software also
needs to adopt user interface guidelines so that
users can use a range of tools without extra learn-
ing efforts. Initially, software such as CellDesigner,
Panther pathway database [75], bioCompendium
(Link 3), PathText [76], Edinburgh SBSI tools (Link
6) and other software tools will be provided as
Garuda compliant software, and the list will
increase rapidly. Given the already widely used
software and data resources, the numbers of
Garuda users will be substantial from the begin-
ning. This helps developers to reach out their tools
to broader users through the Garuda download
site, and users can obtain a wide selection of tools
that are consistently designed. In this aspect, The
Garuda Alliance (Link 1) can provide users with
a one-stop-service type resource in systems
biology and bioinformatics field.
grated platform requires a well defined and widely accepted
he case of the Garuda platform, a set of APIs defined for the
otal role. Numbers of Garuda application can talk to each other
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There are other alliances that share a similar
objective, but with a different emphasis such as
Sage Bionetworks (Link 7) that focuses on data
annotation and sharing. The Sage Bionetworks is
currently focusing on establishing a platform for
data acquisition, data curation, data adjustment,
reformatting, and eventually modeling using
open collaborative approach. While proper data
handling can be achieved with software tools
and well-defined protocols, achieving effective
data sharing requires community-wide efforts.
Most data are not fully utilized often because data
published are not properly annotated, not stored
in a proper repository, etc. A certain mechanism
must be imposed for effective solution and the
software platform design has to be an integral part
of the solution to be practical and enforceable.
Along a similar line of thought is the European
effort for building biological data management
infrastructure ELIXIR (Link 8) that is funded by
EMBL and multiple European countries.
From Molecules to Physiology

One of the applications that can be effectively
enabled by such a platform is an integrated
modeling from molecular to physiology level
because it has to smoothly integrate software for
multiple levels of abstractions and various model
development and analysis approaches. Applica-
tion of computational models to clinically relevant
studies often requires that the model be extended
to embrace tissue, organ and whole body. While
a cellular level model often plays a pivotal role,
integration from the molecular level to the whole
body level is critical because changes in the
molecular and genetic level may affect the
physiological outcome that is relevant to specific
disease manifestation.
Research on how such integration can be accom-

plished is a major interest in systems biology and
the physiology community. While there are numer-
ous studies attempting tomake such an integration,
especially heart models, more comprehensive and
community-driven projects have been launched.
The IUPS (International Union of Physiological
Sciences) Physiome Project has been trying to
promote basic science and technological foundation
for integrated physiological models for years.
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
A couple of new initiatives started in 2010 are
the Virtual Physiological Human (VPH) project
in Europe and the High Definition Physiology
(HD-Physiology) project in Japan.

For example, the HD-Physiology Project funded
by the Japanese government is trying to develop a
comprehensive platform for the virtual integra-
tion of models from the molecular to the whole
body level, and focuses on developing a combined
model of whole heart electrophysiology intercon-
nected with cellular, pathway and molecular level
modes and a whole body metabolism model.
The core modeling tools are CellDesigner and
PhysioDesigner. CellDesigner is a modeling soft-
ware specialized for molecular and gene regulatory
networks from sub-cellular to multi-cellular levels,
and PhysioDesigner is a modeling software for the
physiological level that is from the multi-cellular
to the whole body level. Both software packages
comply with standards such as SBML, SBGN and
provide extensions to interface with other software
platforms. They are connected to other software via
the Garuda platform.

One of the typical use cases may be to simulate
an effect of a certain drug on cardiac events and
possibly to predict its difference due to genetic
variation. In this case, first, an ADME/PK model
has to be developed as a whole body metabolism
to estimate drug dose changes in cardiac cells
under the defined regimen. Then, pathway and
cellular level models will be used to compute the
effects of drugs on ion transport, signaling and
other cellular behaviors that impacts on electro-
physiology at the tissue level. Cellular level
models are aggregated to compute tissue or organ
level behavior that will provide organ level
behaviors such as arrhythmia (Figure 6a). There
are specific modeling tasks at each layer of
modeling that have to be linked to provide a
coherent simulation outcome.

The challenges are that such models have to
deal with different time scales (Figure 6b), physi-
cal size, modeling principles and heterogeneity
of the system. For example, modeling heartbeat
alone from the molecular level requires the
integration of the whole heart electrophysiology,
heart muscle tissue structure, cardiomyocyte
electrophysiology and contraction, intra-cellular
signaling and ion channel behaviors, and molecu-
lar-level behaviors of key molecules, and their
Biopharm. Drug Dispos. 34: 508–526 (2013)
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Figure 6. A possible use case and multiple time scale integration for the HD-Physiology Project. (a) A possible use case of an
integrated model is to evaluate the effects of a drug for cardiac events. One can set a simulation condition of a specific drug dosage
with a specific interval as a hypothetical regimen. The ADME/PK model can compute drug distribution and metabolism, so that
change in a drug dose at cardiomyocytes can be simulated. Pathway and cellular level models assume the computed drug dosage
level as an environmental factor for the simulation of ion channel, signaling and energy metabolism to compute membrane
potential and cellular contraction. In some cases, genetic polymorphisms may change the behaviors of the cell. For novel protein
structures for ion channel and other critical molecules, in silico simulation of molecular interactions may be used to better estimate
the interaction parameters that are not experimentally known. Computed membrane potential will be used to reproduce organ
level electrophysiology of arrhythmia. (b) Three different time scales have to be coupled for such simulation. The ADME/PK will
be simulated on the scale from minutes to days. Cellular and pathway level simulations are mostly of the order from milli-seconds
to hours. Molecular dynamics is computed in the order from nano- to micro-seconds. With such a difference in time-scale, loosely
coupled simulation and pre-computed values will be used for the final integrated computation
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differences due to genetic polymorphism. In addi-
tion, precise heart modeling at the organ and
tissue level will include fibre directions, neuronal
systems, coronary arteries, blood fluid dynamics
and other biological sub-systems that are
functioning in an integrated manner. The models
of ADME/PK that are calculated based on a
number of molecular properties as well as the
atomic interaction between the given biologically
relevant receptors and drug also need to be
considered in order computationally to evaluate
the pharmacophore features relating to the
bioactivity and potential toxicity of a candidate
drug. Many of the ADMET properties that are
driven by the physiochemical properties of a
candidate drug are calculated using the in silico
method [77], such as QSAR (quantitative structure-
activity relationship) modeling. Such ADMET
properties correlate with the drug’s bioavailability,
distribution and clearance in the body, and can
be applied as a parametric component to a spe-
cific cell model.
Inevitably, different numerical solution methods

need to be used, but function coherently. For
example, the fluid dynamics of blood in a heart
can be described by PDEs such as the Navier–
Stokes equation and Poisson equation, ECG de-
rived from the cardiac electrical activity with the
3D torso model will be computed using PDEs as
well, but most of intracellular signaling and whole
body ADME model will be calculated by ODEs
[52,53]. Close linkage of ODE and PDE is critical
in such a model, but stochastic computation may
have to be involved in case the stochastic behaviors
of molecules play a critical role.
This is in sharp contrast to computational fluid

dynamics (CFD) in which models are monolithic,
monolayer and mono-physics. Biological models
are inevitably multi-scale, hierarchical, heteroge-
neous and governed by different computational
principles for each layer. Thus, proper modeling
and computational architecture has to be designed
to produce coherent and accurate results.
Beyond Software: Network of Intelligence

Creating and making the best use of software and
data resources will certainly promote research for
© 2013 The Authors. Biopharmaceutics & Drug Disposition published
by John Wiley & Sons, Ltd.
novel discoveries and efficient drug design. How-
ever, the impact of creating a widely accepted soft-
ware platform may go far beyond productivity
improvement in each research group, because it
can potentially connect research groups globally.
One of the desires of biomedical researchers is to
find a way collaboratively to accomplish a major
mission that cannot be accomplished by a single
research group or a project alone. For example,
creating and maintaining a comprehensive and
in-depth model of biological systems at multiple
spatio-temporal scales is often beyond the scope
of any single research group. Even though one
managed to develop one, it is not feasible to
continue to maintain such models and to up-date
new discoveries in the field.

Some alternative approaches have been pro-
posed that includes Web2.0 services such as
Wikipedia. There are several such attempts
including WikiPathways [78], WikiGenes [79],
etc. for large scale pathway maps. However,
many of such efforts are at best struggling. One of
the possible reasons is the sociological and
incentive issue for contributing one’s knowledge
and data. The basic question is why should you
spend time to share knowledge when such a
contribution is not properly acknowledged.

One of a few successful community-based
resource development efforts is a project on
tuberculosis metabolic network reconstruction
of the Open Source Drug Discovery project in
India (http://www.osdd.net/). In this project,
the Payao system was used to promote collective
pathway development and annotation [80]. The
key for success is the high motivation of
participants because every year over 1 million
outbreaks are reported in India and the expecta-
tion is that participation in such a project may
provide better job opportunities. Furthermore,
how such a success can be repeated in other
domains where such burning motivations are
not prevalent is a major issue and other motiva-
tions have to be considered.

Building such a ‘network of intelligence’, which
supports a knowledge continuum, is key for the
success of quantitative systems pharmacology
(QSP) as a discipline and its application towards
the development of personalized medicine. The
marriage of systems biology approaches with
network-based pharmacology analysis systems
Biopharm. Drug Dispos. 34: 508–526 (2013)
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across academia, industry and governmental reg-
ulatory bodies such as the US FDA, is critical
towards translating the promises into reality. As
outlined by Rogers et al. [92], ‘..analogy comes to
mind that we have two railroad companies attempting
to span a continent, beginning at different ends and
meeting in the middle. It is obviously necessary to
arrive at the same place with the same gauge tracks’.
How to frame and motivate open-ended collab-

oration is not well understood. Consistency of the
software platform and the interoperability of
various tools and devices is the first step, but is
not enough to transform the field into the next
stage. The successful formation of virtual big science
may be the key for solving many of the significant
biomedical problems such as an in-depth under-
standing of particular aspects of cellular function,
drug discovery of neglected diseases, etc. [81]. The
NIH study group on quantitative systems pharma-
cology (QSP) [87] recommended the establishment
of inter-disciplinary research and training programs
on numerous scales from individual teams to
multi-investigator, multi-center programs. While
establishing such a network of intelligence is going
to be a key component of future research, a compre-
hensive, consistent and community-wide software
platform is the prerequisite for such evolution
in research paradigm, and we are now about
to establish such a platform.
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