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A B S T R A C T   

There is a growing interest in using sweeteners for taste improvement in the food and drink industry. Sweeteners 
were found to regulate the formation or dispersal of structural components of microbial biofilms. Dietary sugars 
may enhance biofilm formation and facilitate the development of antimicrobial resistance, which has become a 
major health issue worldwide. In contrast, bulk and non-nutritive sweeteners are also beneficial for managing 
microbial infections. This review discusses the clinical significance of oral biofilms formed upon the adminis-
tration of nutritive and non-nutritive sweeteners. The underlying mechanism of action of sweeteners in the 
regulation of mono- or poly-microbial biofilm formation and destruction is comprehensively discussed. Bulk and 
non-nutritive sweeteners have also been used in conjunction with antimicrobial substances to reduce microbial 
biofilm formation. Formulations with bulk and non-nutritive sweeteners have been demonstrated to be partic-
ularly efficient in this regard. Finally, future perspectives with respect to advancing our understanding of 
mechanisms underlying biofilm regulation activities of sweeteners are presented as well. Several alternative 
strategies for the application of bulk sweeteners and non-nutritive sweeteners have been employed to control the 
biofilm-forming microbial pathogens. Gaining insight into the underlying mechanisms responsible for enhancing 
or inhibiting biofilm formation and virulence properties by both mono- and poly-microbial species in the 
presence of the sweetener is crucial for developing a therapeutic agent to manage microbial infections.   

1. Introduction 

A carbohydrate-rich diet facilitates the colonization of microbial 
species in the gut and thereby protects gut microbiota from the host 
immune system and antimicrobials [1]. Nutritive and non-nutritive 
sweeteners were shown to affect the gut microbial community posi-
tively or negatively [2–4]. The ingestion of dietary sugars, such as 
glucose, sucrose, lactose, fructose, and maltose, which are metabolized 
by microbes into organic acids, may drive microbial communities to 
shift toward more aciduric and acidogenic profiles [5]. Such microbial 
communities predominantly inhabit the oral cavity, where they use 
sugars to form biofilms on tooth surfaces for survival [6]. The shift to-
ward aciduric and acidogenic bacterial species lowers the pH level 
within the biofilm and ultimately causes demineralization of the hard 
tissue of the tooth and the development of dental caries [7]. 

Microbes have the ability to self-secrete exopolysaccharides with the 
assistance of intracellular enzymes that are self-produced by the eps gene 
cluster [8,9]. Oral bacteria such as Streptococcus mutans are capable of 

using sugars as substrates for metabolic activities that create extracel-
lular polymeric substances (EPS) in biofilms that have a high level of 
physical stability [10]. In this case, the synthesis of EPS takes place as a 
result of the activity of secreted enzymes, such as glucosyltransferase 
(Gtf), which act on dietary sugars (e.g., sucrose) to generate extracel-
lular polysaccharides (e.g., α-glucan), which in turn aid the attachment 
of bacterial cells to the surface of the tooth [11]. Gtf also strongly binds 
N- and O-linked mannans on Candida albicans cell surface [12]. Thus, the 
Gtf-assisted synthesis of bacterial EPS as well as the high affinity of Gtf 
for the mannan residues on C. albicans leads to a synergistic interaction 
as well as the formation of a mixed bacterial-fungal biofilm in the oral 
cavity [13]. The synergistic interaction between bacterial and fungal 
pathogens has resulted in enhanced poly-microbial biofilm formation 
and a tolerance mechanism against antibiotics or antimicrobials 
[16–18]. As a result, new treatment approaches are required to combat 
poly-microbial biofilms of bacterial and fungal pathogens [14,15]. 

The biofilm matrix also includes polysaccharides that facilitate bio-
film formation and increase the expression of related genes [19]. EPS 
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formation in the biofilm matrix in the presence of sweeteners further 
accelerates microbial colonization, and thus functions as a critical 
virulence factor and facilitates protection from the host immune system 
and host-derived antimicrobial peptides [11]. Biofilms also reduce the 
effectiveness of infectious disease treatment since they act as physical 
barriers between microbes and antimicrobial drugs [20]. To this pur-
pose, it has been common practice to use bulk (sugar alcohols/polyols) 
and non-nutritive sweeteners with minimal calorie content to prevent 
the development of oral biofilms [21]. Bulk sweeteners, also known as 
nutritive sweeteners, are extensively employed in the food, medical, and 
pharmaceutical sectors because they have fewer calories and lower 
glycemic responses than sugar [22]. Aside from inhibiting biofilm for-
mation, non-nutritive sweeteners have been frequently employed for a 
variety of reasons, including increased sweetening power relative to 
sucrose, inexpensive, and accessibility [23]. 

Despite these advantages, the intake of non-nutritive sweeteners was 
also shown to have significant adverse effects on health [24]. Although 

non-nutritive sweeteners cannot be digested to generate energy, they 
can be potentially toxic to cells following cellular absorption [25]. 
Nevertheless, non-nutritive sweeteners have also been shown recently to 
be beneficial in managing microbial infections [26–30]. Bulk sweeteners 
also exhibit antibacterial efficacy against a variety of drug-resistant 
pathogens [31–33]. These sweeteners have also been used in conjunc-
tion with antimicrobial substances to inhibit biofilm formation [34–36]. 
Formulations with bulk and non-nutritive sweeteners have been 
described to efficiently reduce biofilm-forming microbial pathogens 
[37–39]. 

The clinical significance of oral biofilms that are developed upon the 
use of nutritive and non-nutritive sweeteners is thoroughly examined 
here. The regulatory effects of sweeteners on microbial biofilms and the 
underlying mechanisms are discussed in detail. In addition, strategies 
involving the application of mixed formulations of nutritive and non- 
nutritive sweeteners are presented. Understanding the mechanisms 
involved in sweetener-regulated promotion or inhibition of mono- and 

Fig. 1. Chemical structures of nutritive and non-nutritive sweeteners. (A) The blue color chemical structures are dietary sugars, (B) the red color chemical structures 
are bulk sweeteners, and (C) the green color chemical structures are non-nutritive sweeteners. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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poly-microbial biofilm formation will facilitate efforts in the discovery 
of therapeutics to control microbial infections. 

2. Sweeteners 

Sweeteners augment the taste of sweetness and are therefore used in 
a variety of foods and beverages. Sweeteners can be classified as nutri-
tive or non-nutritive depending on whether they provide energy (Fig. 1) 
[40]. Nutritive sweeteners comprise dietary sugars such as mono- and 
di-saccharides as well as bulk sweeteners known as sugar alcohol-
s/polyols [22]. Non-nutritive sweeteners are also known as ‘artificial 
sweeteners’, and are produced via chemical synthesis [21]. 

Glucose, fructose, and galactose are the major natural mono-
saccharide types found in plants [41]. These monosaccharides are 
combined to form disaccharides such as lactose (glucose and galactose), 
sucrose (fructose and glucose), and maltose (glucose and glucose) [42]. 
Sucrose is widely and readily available in various plant species such as 
sugarcane (Saccharum spp.) and sugar beets (Beta vulgaris) [43]. Sucrose 
is widely used in dishes; however, excessive intake of sucrose may cause 
numerous health issues such as obesity, diabetes, and hypertension [44]. 
In particular, dietary sucrose is directly related to dental caries since EPS 
synthesis by dental bacteria requires sucrose [45]. Lactose has a 
sweetness of approximately 20–40 % that of sucrose [46]. Lactose also 
causes dental caries; however, it is less carcinogenic than sucrose since it 
induces a lower level of reduction in pH level in the oral environment 
compared to sucrose [47,48]. Caries formation due to maltose is also 
lower than that due to sucrose [49]. Hence, despite being a major energy 
source for human metabolism, sugar can also cause various diseases and 
metabolic abnormalities, including dental caries [50]. 

Bulk sweeteners (sugar alcohols/polyols) include erythritol, 
mannitol, xylitol, lactitol, and maltitol [51]. These sweeteners are either 
produced naturally or synthesized from monosaccharides or di-
saccharides [50]. Owing to the negative effects of excessive sugar con-
sumption on health, bulk sweeteners play an important role as sugar 
substitutes in the food industry [52]. Compared to sugars, bulk sweet-
eners are poorly absorbed by the body, resulting in lower levels of cal-
orie intake and glycemic responses [53]. In addition, they are also 
non-cariogenic since oral bacteria are unable to utilize them [54]. 
Among these sweeteners, xylitol is a particularly good sugar substitute 
because it promotes salivation and reduces plaque formation [55]. 

Non-nutritive sweeteners include aspartame, acesulfame-K, sucra-
lose, saccharin, and steviol glycosides [24]. They have a sweet taste 
when consumed in very small amounts with little or no calories [23]. 
Unlike fermentable carbohydrates, non-nutritive sweeteners cannot be 
fermented by oral microorganisms, and are therefore considered 
non-cariogenic [46]. Because of these properties, non-nutritive sweet-
eners are increasingly being employed in a variety of food and hygiene 
products, as well as drug formulations [24]. However, evidence also 
continues to emerge regarding the effects of non-nutritive sweeteners on 
carcinogenesis and metabolism, requiring critical evaluation of their use 
[25]. 

3. Clinical significance of oral biofilm 

Oral microbes have a strong tendency to adhere onto tooth surfaces 
[56]. Oral microorganisms include bacteria that are beneficial to oral 
health as well as harmful species that cause various oral diseases [57]. 
Oral microbial communities adhere onto the surface of dental pellicles 
through adhesion-receptor interactions mediated by hydrophobic or 
electrostatic forces to initiate colonization and biofilm formation [58]. 
Dental caries is a biofilm-induced disease that causes damage to tooth 
enamel [59]. Uptake of sugars results in an acidic environment (pH 
4.5–5.5) in the oral environment, and thus promotes the growth of 
cariogenic bacteria (S. mutans, Actinomyces, and Lactobacillus) that form 
oral biofilms, eventually leading to the development of oral diseases [5]. 
EPS in oral biofilms is mainly composed of S. mutans-derived glucans, in 

addition to soluble fructans and glucans produced by other oral micro-
organisms (Actinomyces, S. gordonii, and S. salivarius) [19]. S. mutans 
promotes carious biofilm formation by metabolizing various carbohy-
drates into organic acids on tooth surfaces [6]. Sucrose is a fermentable 
disaccharide that serves as a substrate for EPS-synthesizing bacterial 
enzymes [60]. S. mutans uses sugars, including sucrose, starch, glucose, 
and fructose as carbon sources to produce EPS and acids [10]. Thus, the 
pathogenicity of S. mutans in the oral microbiome is based on its ability 
to utilize extracellular insoluble glucans for EPS formation [61]. 
S. mutans secretes Gtf to degrade sucrose and produce extracellular 
glucan [62]. Gtf induces the production of glucan-rich exopoly-
saccharides to form a scaffold that provides protection against external 
stress and antimicrobial agents [11]. GtfB is responsible for the synthesis 
of insoluble glucans with primarily α-1,3 crosslinks, whereas GtfC is 
responsible for the synthesis of both insoluble and soluble glucans that 
are abundant in α-1,6 linkages [63,64]. GtfB and GtfC synthesize glucans 
that enhance the adhesion of bacterial cells onto the tooth surface, 
thereby improving the structural stability of the biofilm matrix [61]. 
GtfD produces soluble glucans that are easily metabolized and serve as 
primers for GtfB. In addition, S. mutans synthesizes fructans by secreting 
fructosyltransferase (Ftf), which uses sucrose as a substrate [65]. Fruc-
tans produced by Ftf are stored to be used as nutrients later on and also 
increase the virulence of oral biofilms by facilitating bacterial adhesion 
and colonization [66]. Glucan, produced in the oral environment, is 
bound by S. mutans cells via the glucan-binding protein (Gbp) [67]. 
Gbps, including GbpA, GbpB, GbpC, and GbpD, are considered 
caries-inducing factors due to their glucan-binding properties [68]. 
Moreover, S. mutans also regulates the expression of several genes that 
sense and adapt to external stressors through a two-component system 
[69]. In particular, the quorum sensing system encoded by comCDE is 
involved in biofilm formation and formation of the protective extracel-
lular matrix in S. mutans [69]. Although different microorganisms are 
present in oral biofilms, most of them do not contribute to glucan syn-
thesis until they are coated by Gtf produced by S. mutans [70]. Instead, 
GtfB binds to other oral microorganisms (A. viscosus, L. casei, and 
C. albicans) and non-Gtf-producing microorganisms, converting them 
into extracellular glucan producers [71,72]. Accordingly, S. mutans 
contributes to poly-microbial biofilm growth by building EPS together 
with other oral microorganisms [70]. In particular, C. albicans forms 
symbiotic relationships with oral bacteria in dental biofilms [73]. 
S. gordonii increases hyphae and biofilm formation of C. albicans by 
interacting with C. albicans [74]. In addition, C. albicans provides an 
adhesion site for S. mutans, which enhances the formation of 
poly-microbial biofilms [75]. 

The structural and genetic profile of S. mutans biofilms is affected by 
sugar availability as well [76]. Changes in the oral environment caused 
by sugar exposure can disturb the microbial balance within the biofilm, 
and promote the growth of pathogens such as S. mutans, Actinomyces 
spp., S. salivarius, and S. gordonii [77]. In contrast, bulk and 
non-nutritive sweeteners are mainly non-fermentable and, therefore, 
cannot be metabolized to acids by oral microorganisms and are therefore 
considered non-cariogenic [21,46,55]. 

4. Role of sweeteners in oral biofilm modulation 

4.1. Enhancement of oral biofilm formation by dietary sugars 

The cariogenic properties of S. mutans biofilms are mainly regulated 
by genes related to the extracellular polysaccharide, acid production, 
microbial adhesion, acid tolerance, and other biofilm-related genes 
(Fig. 2) [10,76,78]. Therefore, identification of the mechanisms used by 
S. mutans to adhere to the tooth surface may facilitate the development 
of new approaches for the treatment of dental caries [79]. Nutritive 
sweeteners, including sucrose, improve oral microbial biofilm properties 
through mechanisms shown in Table 1. 

In an early study examining the correlation between the use of 
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sweeteners and biofilm formation, sucrose (10 and 40 g/L) was found to 
enhance the properties of S. mutans biofilms formed in TY growth me-
dium containing 1.4 % tryptone and 0.8 % yeast extract [78]. The 
expression levels of gtfB, gtfC, comDE, ftf, gpbB, and spaP, which promote 
biofilm formation, were found to increase in the presence of sucrose. In 
contrast, the expressions of these genes were suppressed when sucrose 
was introduced into the BHI medium. These results were attributed to 
the fact that the glucose in the BHI medium neutralized the effect of 
sucrose since microorganisms prefer simple sugars as their main carbon 
source. In a study investigating the effect of a combination of starch and 
sucrose on biofilms, a mixture including 1 % starch and 1 % sucrose was 
found to affect the exopolysaccharide composition and the expression of 
genes involved in exopolysaccharide formation in S. mutans biofilms 
[80]. S. mutans formed a tightly attached biofilm composed mostly of 
water-insoluble polysaccharides derived from a combination of starch 
and sucrose. Moreover, biofilms formed from the combination of starch 
and sucrose included higher levels of gtfB than those grown with sucrose 
alone or a combination of sucrose and glucose. In another study, the 
presence of 5 % sucrose in the growth medium was found to result in a 
higher percentage of vital cells in S. mutans biofilms compared to xylitol 
[76]. In addition, sucrose addition led to increased expression of genes 
associated with biofilm formation (gtfB, gtfD, and ftf). In another study 
that assessed the impact of sucrose on S. mutans biofilms, the effects of 
sucrose on bacterial adhesion, biofilm composition, and acidogenicity of 
S. mutans followed a second-order polynomial curve with sucrose con-
centration dependency [81]. The adhesion and biofilm development of 
S. mutans increased and subsequently decreased as sucrose concentra-
tion increased, with a turning concentration range of 0.45–2.40 %. 
Raffinose, together with sucrose, induced biofilm formation at concen-
trations lower than that required to induce S. mutans biofilm formation 
[82]. Sucrose increased bacterial cell-surface hydrophobicity and 

raffinose-induced fructan synthesis via Ftf, which enhances extracellular 
DNA-dependent cell aggregation. In mono- and co-culture studies of 
C. albicans and C. tropicalis, the application of 5 % sucrose enhanced the 
growth, adhesion, and biofilm formation of Candida spp. [83]. These 
findings were attributed to sucrose promoting the formation of aggre-
gates and fibrillar layers and the subsequent biofilm formation by 
Candida spp.. In a study imitating human meal patterns, the application 
of 1–5 % sucrose increased acid production and accumulation in 
S. mutans biofilms [10]. However, biofilm development and acid pro-
duction were found to decrease with increasing sucrose concentration at 
concentrations beyond 5 %, suggesting that the effect of sucrose on 
S. mutans biofilm formation follows a second-order polynomial curve. In 
contrast, EPS formation, acid production, and acid tolerance-related 
gene expression were upregulated with increasing sucrose concentra-
tions. Hence, high sucrose concentrations could stimulate the expression 
of related genes to compensate for the EPS reduction. In an in situ study 
of humans wearing palatal devices containing titanium specimens, daily 
sucrose exposure was found to increase biofilm biomass and negatively 
affect the biochemical and microbiological composition of the biofilm 
formed [84]. In addition, the adhesion of S. mutans biofilms on titanium 
substrates was found to be induced by sucrose levels ranging from 
0–750 mM [85]. In particular, S. mutans biofilms formed in the presence 
of 75 mM sucrose were found to show the maximum adhesion and 
mounds. In addition to these studies, 2–5 % lactose was also found to 
significantly enhance S. mutans biofilm formation [86]. Lactose was 
found to lead to increased expression of biofilm formation-related genes, 
such as gtfB, gtfC, gtfD, ftf, brpA, and SMU.1039. Furthermore, the 
biomass of S. mutans biofilms was also increased to a level similar to that 
obtained upon application of sucrose, yet with a different poly-
saccharide composition. 

Fig. 2. Enhancement of oral biofilm properties by sucrose. In representative oral bacteria Streptococcus mutans, dietary sugars upregulate the expression of extra-
cellular polysaccharide synthesis (gtfB, gtfC, gtfD, and ftf), acid production (ldh), microbial adhesion (gbpB), acid tolerance (comD, comE, and aptD), and other biofilm- 
related (spP and brpA) genes. Additionally, S. mutans GtfB binds to other oral microorganisms, transforming them into extracellular glucan producers. In an oral 
environment rich in dietary sugar, S. mutans GtfB binds to N- and O-linked mannans on the surface of Candida albicans, inducing the conversion of sucrose to α-glucan 
in the host. Then, α-glucan provides a binding site for S. mutans, leading to the formation of C. albicans-S. mutans mixed biofilms, which causes severe dental caries. 
Information obtained from the literature [11–13,70,71]. EPS, extracellular polymeric substances; Ftf, fructosyltransferase; Gbp, glucan-binding protein; Gtf, 
glucosyltransferase. 
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Table 1 
Enhancement of oral biofilm properties by dietary sugars.  

Product Studied 
microorganism 

Testing 
method 

Active concentration Surface material Mechanism References 

Sucrose Streptococcus 
mutans 

In vitro 10, 40 sucrose g/L in TY 
media (1.4 % tryptone, 0.8 
% yeast extract) 

Polystyrene multi dishes Increased expression of genes that positively 
regulate biofilm formation (gtfB, gtfC, comDE, 
ftf, gpbB, and spP) 

[78] 

Sucrose S. mutans In vitro 1 % sucrose in tryptone 
yeast-extract broth 
containing 1 % starch 

Saliva-coated hydroxyapatite 
(sHA) discs 

Increased expression of genes involved in 
extracellular polysaccharide matrix formation 
(gtfB) 

[80] 

Sucrose S. mutans In situ 5 % sucrose in Schaedler 
broth 

Methacrylate-based mounting 
material embedded with intact 
human third molars 

Increased expression of gtfB, gtfD, and ftf genes [76] 

Sucrose S. mutans In vitro 0.45–2.40 % (w/v) sHA discs Increased the accumulation and virulence of 
biofilms 

[81] 

Sucrose +
raffinose 

S. mutans In vitro 0.002 % (w/v) sucrose +
0.25 % raffinose (w/v) 

sHA discs Increased cell surface hydrophobicity by the 
reaction of Gtf-I (sucrose) 
Contributed to the aggregation of extracellular 
DNA in the biofilm (raffinose) 

[82] 

Sucrose Candida albicnas 
+ C. tropicalis 

In vitro 5 % Microtiter plates Promoted the production of a floccular and 
fibrillar layer, which mediated adhesion and 
subsequent biofilm formation 

[83] 

Sucrose S. mutans In vitro 1–5 % sHA discs Upregulated expressions of genes related to 
exopolysaccharide formation (gtfB, gtfC, and 
gtfD), glycolysis (ldh), and acid tolerance (atpD) 

[10] 

Sucrose Actinomyces israelii 
S. sanguinis 
S. mitis 
Fusobacterium 
periodonticum 
Tannerella 
forsythia 
Prevotella 
melaninogenica 
Eubacterium 
saburreum 
S. mutans 

In situ – Titanium surfaces – [84] 

Sucrose S. mutans In vitro 37.5, 75.0, 375, 750 mM Titanium surfaces – [85] 
Lactose S. mutans In vitro 2–5 % (w/v) Polystyrene plates Increased expression of biofilm-related genes 

(gtfB, gtfC, gtfD, ftf, brpA, and SMU.1039) 
[86]  

Fig. 3. Regulation of oral biofilms by sweeteners. (A) Enhancement of oral biofilm formation by sucrose. The Gtf of Streptococcus mutans degrades sucrose to produce 
glucan, which contributes to the accumulation of polysaccharides. Additionally, organic acids produced during fermentation metabolism contribute to reducing the 
pH of the oral environment, which leads to demineralization and the dental caries process. (B) Inhibition of oral biofilm formation by bulk and non-nutritive 
sweeteners. Non-fermentable sugars, including bulk sweeteners and non-nutritive sweeteners, cannot be utilized by S. mutans as a substrate for biofilm matrix 
synthesis. In addition, bulk sweeteners and non-nutritive sweeteners inhibit biofilm- and virulence-related gene expression, leading to a non-cariogenic biofilm with 
low levels of polysaccharide. Information obtained from the literature [6,26–28,32,87]. EPS, extracellular polymeric substances; Gtf, glucosyltransferase. 

G.-J. Jeong et al.                                                                                                                                                                                                                                



Biofilm 7 (2024) 100171

6

4.2. Inhibition of oral biofilm formation by bulk and non-nutritive 
sweeteners 

Sugar substitutes are often used to prevent caries. However, the 
mechanisms underlying the inhibition of oral biofilm formation and 
plaque reduction due to the use of sugar substitutes have not been fully 
elucidated. Bulk and non-nutritive sweeteners have been shown to 
reduce oral biofilm formation and activity by suppressing the expression 
of biofilm- and virulence-related genes (Fig. 3) [26–28,87]. In addition, 
unlike sucrose, bulk and non-nutritive sweeteners cannot be utilized by 
S. mutans as a substrate for biofilm matrix synthesis, resulting in reduced 
biofilm formation [32]. The details of mechanisms involved in biofilm 
inhibition by sweeteners, especially bulk and non-nutritive sweeteners, 
are listed in Table 2. 

Xylitol at 5 % was found to inhibit early-stage (8 h) biofilms (formed 
in a medium containing 0.3 % sucrose) of S. mutans, S. sanguinis, and 
A. naeslundii [31]. This result was attributed to reduced 
polysaccharide-mediated cell adhesion upon xylitol usage without a 
reduction in exopolysaccharide production. Both 1 and 4 % D-tagatose 
were found to inhibit biofilm formation in S. mutans exposed to sucrose 
at a level much higher than that of xylitol [26]. D-tagatose inhibited Gtf, 
and thus reduced the production of water-insoluble glucans from su-
crose. Hence, the formation of S. mutans biofilms was inhibited by 
restricting the access to released free D-fructose. In another study, xylitol 
and sorbitol were found to inhibit mono- and poly-microbial biofilm 
formation by S. mutans and C. albicans under sucrose-free conditions 
[32]. In contrast, the inclusion of 1 % sucrose was found to attenuate the 
inhibitory effects of xylitol and sorbitol on biofilm development. This 
was attributed to the fact that oral bacteria prefer hexose sugars over 
sugar alcohols such as xylitol and sorbitol. In a real-time monitoring 
study of biofilm formation, xylitol and erythritol were found to inhibit 
S. mutans biofilm formation in media containing 1 % sucrose [33]. 
Xylitol and erythrol strongly inhibited the initial biofilm formation, but 
not the biofilm at 10 h. However, the quantity of RNA in the biofilm after 
10 h was much lower than that in the control group. This was due to the 
sugar alcohol starving bacterial cells, resulting in lower RNA levels in 
the biofilm. Rubusoside is another non-nutritive sweetener that was 
found to affect cariogenic characteristics and expression of 

virulence-related genes in S. mutans biofilms [27]. When S. mutans was 
exposed to each medium supplemented with 1 % rubusoside, 1 % xylitol, 
and 1 % sucrose, the presence of rubusoside was found to result in a 
lower level of acid production compared to the presence of sucrose and 
xylitol and reduce the level of biofilm accumulation and viability. 
Rubusoside also inhibited the expression of virulence-related genes such 
as atpF, spaP, gbpB, gtfB, gtfC, gtfD, ftf, ldh, comD, and vicR. Raffinose 
inhibited the biofilm formation of non-oral pathogens such as Escherichia 
coli, Staphylococcus aureus, Rhodococcus qingshengi, Clostridium tropical, 
and Bacillus amyloliquefaciens [87]. In particular, raffinose at 1 μM or 
higher was also shown to inhibit the formation of mixed biofilms of 
S. aureus and P. aeruginosa. In particular, raffinose was found to inhibit 
S. mutans biofilm (formed in a medium supplemented with 10 μM su-
crose) formation and Gtf-related gene expression [28]. In addition, 10 % 
acesulfame-K and 7.5 % sucralose inhibited the biofilm formation of 
Porphyromonas gingivalis, an anaerobic periodontal pathogen, and 
showed bactericidal activity against bacteria within the biofilm [88]. 
Stevioside also inhibited the formation of mixed biofilms of C. albicans 
and S. mutans and acid production [29]. Stevioside facilitated the 
metabolic utilization of galactose and intracellular polysaccharides 
while reducing that of sucrose. In addition, the presence of stevioside 
was also found to inhibit the transformation of C. albicans, which re-
duces pathogenicity. The artificial sweetener acesulfame-K reduced the 
expression of genes encoding Bap (biofilm-associated protein) as well as 
genes encoding Csu pili (related to twitching motility) in Acinetobacter 
baumannii [30]. In particular, acesulfame-K decreased the twitching 
motility of A. baumannii in a dose-dependent manner. These results 
showed that acesulfame-K could be employed as a therapeutic agent by 
reducing A. baumannii biofilm development and twitching motility. 

4.3. Combined use of sweeteners to target microbial biofilm formation 

Due to the biofilm-forming capabilities of some bacteria, such as 
Enterococcus faecium, S. aureus, Klebsiella pneumoniae, A. baumannii, 
P. aeruginosa, and Enterobacter spp., it may be challenging to treat in-
fections caused by these ESKAPE bacterial strains [89]. These patho-
genic biofilms are enclosed by EPS, which protects cells from 
antimicrobial agents [20]. Limited penetration of drugs due to the 

Table 2 
Inhibition of oral biofilm formation by bulk and non-nutritive sweeteners.  

Product Studied microorganism Testing 
method 

Active 
concentration 

Surface material Mechanism References 

Xylitol Streptococcus mutans 
S. sanguinis 
Actinomyces naeslundii 

In situ 5 % Hydroxyapatite discs – [31] 

D-tagatose S. mutans In vitro 1, 4 % Plastic discs Interfered with glucosyltransferase (Gtf) activity [26] 
Sorbitol 
Xylitol 

Candida albicans + S. 
mutans 

In vitro 10 % 96-well plates – [32] 

Erythritol 
Xylitol 

S. mutans In vitro 1, 2, 5 % 16-well electronic 
microtiter plates 

Modified the expression levels of gbpB, gtfB, gtfC, and gtfD 
genes that were important in polysaccharide-mediated 
adherence of S. mutans 

[33] 

Rubusoside S. mutans In vitro 1 % 24-well microtiter 
plates 

Downregulated virulence gene expression (gtfB, gtfC, gbpB, 
ldh, and comD) 

[27] 

Raffinose Staphylococcus aureus +
Pseudomonas aeruginosa 

In vitro 1–1000 μM Polystyrene 
microtiter plates 

– [87] 

Raffinose S. mutans In vitro 1000 μM Saliva-coated 
hydroxyapatite discs 

Inhibited Gtf-related gene expression [28] 

Acesulfame- 
K 
Sucralose 

Porphyromonas gingivalis In vitro 10 % 
acesulfame-K 
7.5 % sucralose 

96-well plates – [88] 

Stevioside C. albicans + S. mutans In vitro 1 % 24-well microplate 
plates 

Decreased sucrose metabolism and increased galactose and 
intracellular polysaccharide metabolism in S. mutans 
Decreased genes related to glycosylphosphatidylinositol- 
modified proteins and secreted aspartyl proteinase family in 
C. albicans 

[29] 

Acesulfame- 
K 

Acinetobacter baumannii In vitro 
Ex vivo 

8.85 % Glass microscope 
slides 
Porcine skins 

Disabled virulence behaviors such as biofilm formation, 
motility, and the ability to acquire exogenous antibiotic- 
resistant genes 

[30]  
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presence of EPS within the biofilm contributes to high levels of tolerance 
to conventional antibiotics [90]. To address this issue, a treatment 
strategy has been developed in which biofilm-dispersing and antimi-
crobial agents are co-administered [91]. The biofilm-dispersing agent 
effectively dispersed the biofilm and thus facilitated the penetration of 
antimicrobial agents into bacterial cells [92]. Moreover, this combina-
tion therapy not only produces a greater antibacterial effect at a lower 
dose but also reduces the possibility of the emergence of 
multidrug-resistant bacteria [7]. The combination of sweeteners and 
antimicrobial agents this way was also effective in controlling several 
other pathogenic biofilms as well, including oral biofilms (Table 3). 

The combination of xylitol and lactoferrin exhibited a cooperative 
inhibitory effect on P. aeruginosa biofilms [34]. Here, lactoferrin treat-
ment destabilized P. aeruginosa cell membrane through iron chelation. 
The combination with xylitol produced a synergistic effect, as mem-
brane destabilization by lactoferrin enhanced the penetration of xylitol 
into bacterial cells. The combination of xylitol and ursolic acid was also 
found to significantly inhibit biofilm formation by S. mutans and 
S. sobrinus via synergistic interactions [7]. This combination also pre-
vented the pH from falling below 5.5, effectively preventing tooth 
demineralization. The combination treatment with ribose and xylitol 
inhibited S. mutans and S. sobrinus biofilms more effectively than 
treatment with ribose or xylitol treatment alone [35]. Moreover, 
ribose-xylitol combination treatment also significantly downregulated 
biofilm formation and expression of dextran-dependent aggrega-
tion-related genes (gpbC and dblB) compared to treatment with ribose or 
xylitol alone. The combination of xylitol and bacteriophages inhibited 
biofilm formation as well through the release of DNA and proteins from 
a mixed biofilm of P. aeruginosa and Klebsiella pneumoniae [93]. This 
finding was attributed to the bacteriophages facilitating the penetration 
of xylitol by destroying the cell layers. In combination with the zwit-
terionic molecule betaine and sugar alcohol erythritol, the 
betaine-erythritol complex was found to induce spontaneous detach-
ment of S. mutans biofilm from the surface [36]. The anionic site of 
betaine binding erythritol, and the remaining cationic site allowed the 
complex to be transferred to the negatively charged exopolysaccharide 
of S. mutans biofilm. In addition, the hydroxyl group of the sugar alcohol 
interfered with hydrogen bonding between the hydroxyl groups of the 
exopolysaccharide, which was promoted by the formation of a complex 
with the zwitterion. Combined treatment with xylitol and isothiazolones 
showed a synergistic inhibitory effect on early biofilm formation by 
S. aureus and P. aeruginosa [94]. Furthermore, a combination of xylitol 
and erythritol showed cooperative inhibitory effects against cariogenic 
biofilms of S. mutans, S. sobrinus, and Scardovia wiggsiae [95]. The 
combination with a high xylitol ratio effectively inhibited the growth of 
S. sobrinus and S. wiggsiae, whereas the combination with a high eryth-
ritol ratio effectively inhibited the growth of S. mutans. 

4.4. Applications of sweeteners as formulation forms to target microbial 
biofilms 

New types of antibacterial substances in forms such as conjugates 
and nanoparticles have been developed to combat biofilm infections. 
Nanoparticles can easily interact with microorganisms owing to their 
small sizes and high surface-area-to-volume ratios [96,97]. In addition, 
they can also serve as carriers of antibacterial agents for drug adminis-
tration [39,98]. Nanoparticles loaded with sweeteners have been 
developed to improve biofilm penetration of xylitol [37]. These sweet-
ener formulations were found to effectively control mono- or 
poly-microbial biofilms, the mechanisms of which are described in 
Table 4. 

A coordination compound composed of zinc chloride and erythritol 
effectively eliminated mature S. mutans biofilms [38]. The antibiofilm 
activity of the zinc-erythritol complex was attributed to the facilitation 
of zinc penetration into mature biofilms by erythritol. Poly-
lactic-co-glycolic acid (PLGA) nanoparticles incorporating xylitol have 
also been shown to exert antibiofilm activities against the 
poly-microbial biofilms of S. aureus and P. aeruginosa [37]. PLGA 
nanoparticles containing xylitol showed high levels of biofilm activity 
by enhancing the penetration of S. aureus and P. aeruginosa biofilms into 
EPS. In a study synthesizing non-nutritive decorated gold nanoparticles, 
aspartame-decorated gold nanoparticles showed stronger antibacterial 
and antibiofilm effects against Carbapenem-resistant Enterobacteriaceae 
than gold nanoparticles decorated with saccharin, sucralose, and ace-
sulfame [39]. Gold nanoparticles decorated with aspartame showed an 
antibacterial effect by accumulating reactive oxygen species in bacteria 
and improving internal membrane permeability. In addition, the inhi-
bition of biofilm formation by aspartame was also observed, indicating 
that the antibiofilm activity of aspartame-gold nanoparticles may be due 
to the decoration of aspartame. 

Table 3 
Combinatorial applications of sweeteners with antimicrobials to target pathogenic biofilm.  

Sweeteners Other product Studied microorganism Mechanism References 

Xylitol Lactoferrin Pseudomonas aeruginosa Inhibited the ability of biofilms to respond to environmental iron restriction [34] 
Xylitol Ursolic acid Streptococcus mutans 

S. sobrinus 
Exhibited antibiofilm activity while preventing tooth demineralization by raising the pH above 
the threshold of 5.5 

[7] 

Ribose Xylitol S. mutans 
S. sobrinus 

Inhibited the expression of dextran-dependent aggregation-responsible genes [35] 

Xylitol Bacteriophages Klebsiella pneumoniae + P. 
aeruginosa 

Promoted bacteriophage host penetration by xylitol [93] 

Erythritol Betaine S. mutans Reduced adhesive forces of the biofilms due to an increase in solubility of exopolysaccharides [36] 
Xylitol Isothiazolone P. aeruginosa 

S. aureus 
– [94] 

Erythritol Xylitol S. mutans 
S. sobrinus 

– [95]  

Table 4 
Applications of sweeteners as formulation forms to target pathogenic biofilm.  

Formulation 
type 

Studied 
microorganism 

Mechanism References 

Zinc-erythritol 
complex 

Streptococcus mutans Removed mature 
biofilms due to metal 
ions and the 
coordination properties 
of sugar alcohols 

[38] 

PLGA/xylitol 
nanoparticles 

Pseudomonas 
aeruginosa +
Staphylococcus aureus 

Penetrated the biofilm 
matrix as compared to 
the xylitol solution and 
hence facilitated the 
release of the drug 
inside the biofilm 
matrix 

[37] 

Aspartame-gold 
nanoparticles 

Carbapenem-resistant 
Enterobacteriaceae 

Inhibited biofilm 
formation from the 
decoration of aspartame 

[39]  
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5. Conclusion and future perspectives 

The use of nutritive as well as non-nutritive sweeteners has increased 
in food, beverage, and pharmaceutical industries in recent years to 
enhance palatability. On the other hand, with technological advances, 
evidence suggests that excessive dietary sugar consumption, in 
conjunction with unhealthy nutrition and physical activity habits, can 
have detrimental health consequences [99,100]. In particular, dietary 
sugars promote the growth of aciduric and acidogenic bacteria, which 
form acids from sugars and thus lead to tooth demineralization and 
dental cavities when used regularly. Additionally, dietary sugars facili-
tate the synthesis of EPS by bacteria, thereby contributing to biofilm 
antimicrobial tolerance. Therefore, bulk and non-nutritive sweeteners 
have gained popularity as alternatives to dietary sugars in this regard. 
Furthermore, numerous studies have also indicated that bulk and 
non-nutritive sweeteners show antibacterial effects that reduce viru-
lence and inhibit biofilm formation. With a growing number of studies 
on antibiofilm activities of bulk and non-nutritive sweeteners, a variety 
of alternative formulations for use in industry have also been developed. 
Solutions include combining bulk sweeteners or non-nutritive sweet-
eners with antimicrobials as well as formulations, all of which were 
found to boost antibiofilm activities against microbial pathogens. Future 
perspectives that will assist in improving our understanding of the 
mechanism of action of sweeteners on microbial biofilms are summa-
rized as follows.  

• To determine the mechanism of actions involved, it will be necessary 
to establish structure-activity relationships for sweetener-mediated 
regulation of biofilms and virulence-regulating proteins.  

• Encapsulating sweeteners in nanomaterials may allow for targeted 
applications for the elimination of microbial biofilms.  

• Most of the studies on sweetener-enhanced biofilm development 
have been conducted in vitro. However, in vivo research is also 
required to imitate the host environment and elucidate the influence 
of host factors on biofilm activity.  

• Because the majority of nutritive and non-nutritive sweeteners 
contain hydroxyl groups, which act as a good reducing and capping 
agent [99,101,102], nanoparticle production utilizing these sweet-
eners as a reducing and capping agent is required to broaden their 
antibiofilm action against oral and non-oral biofilm-forming micro-
bial pathogens.  

• Due to the presence of poly-microbial interactions in the host system, 
antibiofilm and antivirulence activities must be performed utilizing 
poly-microbial pathogens in vitro or in vivo for future applications in 
the host system. 
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