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REVIEW

NANOMEDICINE: will it offer possibilities 
to overcome multiple drug resistance in cancer?
Sten Friberg1 and Andreas M. Nyström2*

Abstract 

This review is written with the purpose to review the current nanomedicine literature and provide an outlook on the 
developments in utilizing nanoscale drug constructs in treatment of solid cancers as well as in the potential treatment 
of multi-drug resistant cancers. No specific design principles for this review have been utilized apart from our active 
choice to avoid results only based on in vitro studies. Few drugs based on nanotechnology have progressed to clini-
cal trials, since most are based only on in vitro experiments which do not give the necessary data for the research to 
progress towards pre-clinical studies. The area of nanomedicine has indeed spark much attention and holds promise 
for improved future therapeutics in the treatment of solid cancers. However, despite much investment few targeted 
therapeutics have successfully progressed to early clinical trials, indicating yet again that the human body is com-
plicated and that much more understanding of the fundamentals of receptor interactions, physics of nanomedical 
constructs and their circulation in the body is indeed needed. We believe that nanomedical therapeutics can allow for 
more efficient treatments of resistant cancers, and may well be a cornerstone for RNA based therapeutics in the future 
given their general need for shielding from the harsh environment in the blood stream.
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Background
Around 50 % of humans who are diagnosed with a malig-
nant tumor will die from their disease. In 2012, the actual 
figures for 40 European countries were 3.45 million 
new registered cases of various cancers and 1.75 million 
deaths from malignancies. The global incidence and mor-
tality rates are similar [1]. Despite advances in diagnosis 
and treatment, mortality from cancer still remains high. 
Approximately 90  % of the recurrences of cancers after 
the primary general therapy (endocrine as well as chemi-
cal) are caused by the genes coding for multiple drug 
resistance (MDR) [2–9].

Many cancer therapies kill the bulk cells of a tumor 
but fail to cure the patient because they do not elimi-
nate cancer stem cells (CSCs), [8, 10–22] which survive 
to generate new tumors. Virtually all anticancer therapies 

in use today are designed to target the primary tumors. 
However, it is usually not the cells in the primary tumor 
that threaten the life of the patient; it is the metastatic 
cell population. In the war against cancer, the CSCs and 
MDR must be mastered. The attacks on the CSCs can 
be direct (i.e. against the tumor cells) [2–5, 9, 23–25] or 
indirect (i.e. against in the microenvironment [26–30]) 
or intended to disrupt the communication between CSCs 
and the microenvironment [31–37].

Since its discovery in the early 1960s, nanomedicine 
has created high expectations, and nanotechnology has 
been expected to reinforce the current medical arma-
ment in clinical oncology. Unfortunately, many of these 
expectations have not been realized. In this review, we 
will attempt to analyze the present status of nanooncol-
ogy. Because some publications on the possibilities for 
nanomedicine have been overoptimistic and oversim-
plified, we have devoted ample space to present studies 
showing the difficulties and obstacles that nanooncology 
faces.
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In this review we will present:

1.	 A brief outline of future oncologic treatments of gen-
eralized solid malignancies (in contrast to hemato-
logic malignancies)

2.	 The biological background to the phenomena of 
MDR and CSCs

3.	 The factors that affect drug distribution in the human 
body

4.	 A short introduction to nanotechnology
5.	 An overview of some of the hurdles to be overcome 

by nanomedicines
6.	 Strategies likely to be employed in future general 

oncologic treatments
7.	 An inventory of drugs available today for general 

oncologic treatment
8.	 Some clinical results utilizing nanotechnology.

An outline of future oncologic treatment 
of generalized disease
CSCs in a metastatic niche (i.e. stationary) are likely to 
be protected by several cellular shields, and to reach the 
CSCs these shields have to be removed one by one, like 
peeling an onion. The general steps in combatting CSCs 
include inhibition of drug-resistance mechanisms, elimi-
nation of the protecting bulk tumor cells, instigation of 
growth in the quiescent CSCs, and re-education (in this 
context—inducing differentiation) or elimination of the 
CSCs [38]. These steps are described in more detail at the 
end of this publication.

The background to MDR AND CSCs
Definition of mdr
MDR can be defined as a state of resistance against struc-
turally and/or functionally unrelated drugs. The tumor 
cell population becomes resistant not only to the drug 
that is initially applied, but also becomes cross-resist-
ant to unrelated drugs with different mechanisms of 
action [28]. The resistance might be intrinsic in the cell 
(primary) or acquired via mutations (secondary) [39]. 
MDR is a basic cellular survival mechanism, and many 
of the genes involved are ubiquitous. During evolution, 
they have been maintained from unicellular eukaryotes 
through multicellular organisms. Bacteria use these or 
similar genes to become resistant to antibiotics, [40–44] 
insects use them to overcome pesticides, [40–42, 44–46] 
and cancer cells use them to survive the oncologist’s 
treatments.

Existance of mdr
There are numerous cellular genes involved in MDR. 
One of the better known is the ATP binding cassettes 
(ABC) [47–49], a family of more than 50 genes. Several of 

them control membrane—bound efflux pumps, capable 
of expelling molecules against a concentration gradient. 
Many of them collaborate with four of the major cellular 
signal chains; WNT, NOTCH, HEDGEHOG (Hgh), and 
NANOG (See below). Under normal conditions these 
four signal chains code for proteins involved in organ 
development. In cancer cells however they drive the cell 
population to proliferation. What may be benefical to a 
baby may be disastrous to its parents.

Wnt: ‘W’ stands for “wingless” in Drosophila. If the wnt 
signaling pathway is defective during embryogenesis in 
Drosophila, the flies do not develop wings. In humans, 
overexpression of proteins in this pathway leads to multi-
ple basal cell carcinomas in the skin [50–53].

NOTCH: Dysfunction in this developmental signal-
ing pathway results in a notch in the wings of Drosophila 
[53–56]. In humans, a dysregulated NOTCH is involved 
in the malignant progression of numerous cancers 
(breast, pancreas, lung, renal, and also malignant mela-
noma and malignant glioblastoma multiforme).

Hgh: If Hgh is dysfunctional during embryogenesis, the 
larvae of Drosophila develop spikes like a hedgehog. In 
humans, Hgh is usually constitutively active in metastatic 
niches and drives the malignant cell population to prolif-
erate [57–59].

NANOG: The term “NANOG” has nothing to do with 
the Greek word “nano” meaning dwarf. It is derived 
instead from a Celtic myth “Tir nan og” meaning “ever 
young”, indicating its role in maintaining CSCs in an 
embryonically young state. NANOG drives cell prolif-
eration to maintain pluripotency and at the same time 
blocks differentiation [60–66]. Activation of NANOG is 
also a survival mechanism for cancer cells to resist the 
immune system. High expression of NANOG in biopsies 
from human tumors is correlated with low differentia-
tion, early metastases, and poor prognosis. The collabo-
ration between WNT, NOTCH, Hgh, and NANOG, drive 
the malignant cells to become radio resistant, chemo 
resistant and immune resistant. Their crosstalk can be 
deadly for the host.

Cancer stem cells (CSCs)
Populations of both normal cells and cancer cells contain 
the following four types of cells: resting stem cells, pro-
liferating cells in transit, terminally differentiated cells 
(which are non-proliferating), and dying cells (apoptotic). 
Conventional oncologic treatment is directed against the 
three last components, which constitute the major part of 
a macroscopic tumor [67].

Even if that therapy is successful, however, the non-
proliferating stem cells still remain, and these can 
instigate proliferation at a later date causing recur-
rence of the disease [68]. Because these cells are likely 
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to be resistant to further treatment, they are usually 
fatal. There is no unanimous definition of CSCs, but 
the American Association for Cancer Research defines 
them as follows: “A cell within a tumor that possesses 
the capacity to self-renew and to cause the heteroge-
neous lineages of cancer cells that compromise the 
tumor” (http://www.aacr.org). CSCs are identified by 
the expression of markers on the cell surfaces, by sphere 
formation in 3D cultures, and by the ability to form 
growing tumors when transplanted into experimental 
animals (xenotransplantation). The other three cellular 
components in a tumor cell population are not capable 
of xenotransplantation. The occurrence and characteris-
tics of CSCs have been described in numerous publica-
tions [7, 8, 10–14, 17–22, 67, 69–87].

The analysis of cell surface markers on CSCs is per-
formed in vitro, but whether the same markers are also 
expressed in  vivo is not known. Neither is it known if 
normal stem cells express cell surface markers similar to 
those on CSCs [10, 16, 19, 88]. There is likely to exist a 
large overlap in phenotypic characteristics and metabolic 
regulators between normal stem cells and CSCs, and this 
makes it extremely difficult to design therapies that selec-
tively affect the malignant cells. This information is of 
paramount importance; if scientists can construct a ther-
apy directed against the cell surface markers on CSCs, it 
must be known—without doubt—that similar markers do 
not exist on normal stem cells. Otherwise, the side effects 
might be lethal to patients. A further complication is that 
CSCs are not universal for different types of malignan-
cies. For example, the CSCs in a brain tumor might be 
very different from those in a cancer emanating from a 
kidney, and the CSCs in the primary tumor might be dif-
ferent from the CSCs in its metastases. Also, CSC’s can 
differ from one time point to anther in the same tumor 
cell population. Moreover, the pluripotent CSCs are phe-
notypically flexible capable of evading the hosts defense 
mechanisms [67, 84, 89–91].

Characteristics of CSCs
CSCs are usually rare, and there can be as few as 1 CSC 
for every 1,000,000 bulk tumor cells [10, 38]. This means 
that CSCs can be difficult to locate because they are hid-
den in small niches and difficult to identify by any of 
today´s diagnostic methods. In the metastatic niche, the 
CSCs are:

–– Protected by their own offspring (whether these cells 
are dead or alive)

–  – Capable of evading apoptosis
–  – Self-sufficient in growth signals (when the tumor is 

larger than a critical size)

–  – Capable of limitless replication and self-renewal. Of 
the four cellular components in a malignant cell popu-
lation, only the CSCs have such potential

–  – Able to evade growth suppressors
–  – Capable of DNA repair
–  – In possession of forceful efflux pumps
–  – Initially avascular, thereby not reachable through the 

blood at early stages
–  – Able to sustain angiogenesis (when the tumor is over a 

certain size)
–  – Capable of tissue invasion
–  – Mobile
–  – Capable of cell fusion
–  – Able to create various phenotypes
–– Quiescent. Therefore, they have no or very low metab-

olism, similar to hibernating animals or dormant plant 
seeds. Quiescence or dormancy is a property of several 
different CSCs [10, 16], not only malignant CSCs.

CSCs do not seem to consist of one particular pheno-
type, but instead appear to represent a plasticity of inter-
changeable states and a variety of clones. Depending on 
the selection pressures—which are often epigenetic—one 
or two clones become dominating in a Darwinian man-
ner. CSCs present an elusive and moving target, defying 
the hopes of the patient and the efforts of the clinician.

Paradoxically, the host of the malignant cell population 
facilitates the maintenance of its own enemy: the CSCs. 
The microenvironment within the host where the CSCs 
are located not only supports and protects the CSCs, but 
it also educates the CSCs and instigates MDR. The tumor 
microenvironment is dominated by the extracellular 
matrix (ECM) [2, 87, 89, 92–98].

The ECM surrounds almost all somatic cells in higher 
organisms. It is not only a supportive scaffold but also a 
dynamic and complex environment that is able to regu-
late cell behavior. The ECM plays important roles in 
embryogenesis, cell regulation, and wound healing. The 
ECM is made up of collagen, elastin, laminin, polysaccha-
rides, and many other biological macromolecules, and 
the cellular components of the ECM include fibroblasts, 
macrophages, leucocytes, etc. In cancer patients, the 
ECM can become deregulated and disorganized in parts 
of the body, and these regions can harbor metastatic cells 
in what is known as a metastatic niche [94, 99, 100]. The 
ECM can even revert mature cancer bulk cells into pluri-
potent CSCs. The ECM, CSCs, and MDR form an axis of 
evil, and their cross-talk can be lethal to the host.

Distribution of drugs in the human body
The distribution of drugs in the human body is governed 
mainly by vascular transport, transvascular transport, 

http://www.aacr.org
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and interstitial transport through the ECM [101]. Exten-
sive reviews are found in the following publications 
[102–113].

Vascular distribution
The vascular supply in a solid malignant tumor is hetero-
geneous, and regions of hypoxia, acidity, and necrosis are 
intermixed with areas of good vascular supply [114, 115]. 
No matter where a drug or nanoparticle (NP) is extrava-
sated in a solid tumor they will have difficulties in reach-
ing all regions of that tumor [62, 116].

Transvascular distribution (or extravasation)
In order to reach their targets, all therapeutic agents 
must leave the blood circulation. This is not an easy task 
because the pores in the normal endothelium are very 
narrow. Normal vessels have 2 nm gaps in capillaries and 
up to 6  nm gaps in post-capillary venules. Correspond-
ing pores in the kidneys and the liver are 40–50 nm, and 
in the spleen they are around 150  nm. The pore size in 
experimental tumors can vary from 100 to 800 nm. Par-
ticles can be entrapped in these fenestrae, creating what 
is called the enhanced permeation and retention (EPR) 
effect [117].

Enhanced permeation and retention effect
The vascular beds in experimental animal models are 
usually malfunctioning. They are leaky and they allow 
molecules, and even cells, in the circulation to diffuse 
into the tumor. The enhanced permeability of the tumor 
vasculature in combination with lack of adequate lym-
phatic drainage leads to a prolonged half-life (reten-
tion) of the drug in a tumor [117–122]. The EPR effect 
has been utilized by polymer conjugates, micelles, and 
other NPs that are usually smaller than 200 nm in diam-
eter [123, 124]. However, there are doubts about the 
therapeutic usefulness of EPR in humans. First, there is 
no standard EPR effect; it is a highly heterogeneous phe-
nomenon varying from one type of tumor to another, 
from the primary tumor to its metastases, from one part 
of a tumor to another, and even within the same tumor at 
different times. Second, most solid tumors develop high 
interstitial pressure ranging from 5 to 40 mmHg depend-
ing on the tumor type and size. Compared to the normal 
pressure of <3 mm Hg, such high pressure can effectively 
counteract the in-flow of therapeutic agents into the 
tumor [117–120, 125].

Third, the concept that malignant tumors have leaky 
and irregular vessels is based on observations in experi-
mental tumors that have been selected for fast growth 
to save time and money for researchers. This is a gen-
eral observation for most experimental tumors, whether 
they are chemically or virally induced. The tumor volume 

doubling time (TVDT) in many experimental tumors is 
around 10  days. In humans, however, most malignant 
tumors are slow growing, often requiring years to reach 
a size of 1  cm3. The TVDTs for most human malignant 
tumors fall between 100 and 300 days [126]. Meanwhile, 
their vessels can develop slowly and be in good anatomi-
cal order with adequate lymphatic drainage. Thus, in 
humans the value of EPR for therapy of solid malignant 
tumors is doubtful [120, 127].

Passive transvascular transport is driven by the concen-
tration gradient of NPs from the efferent vessel toward 
the environment. This transport is a time-consuming 
process requiring one to a few hours. NPs have no pro-
pulsive force, and wherever they land in a body they 
arrive there through passive distribution [120, 128].

Interstitial transport
The third mode of distribution concerns molecules as 
small as oxygen. The interstitium can be vicious and 
dense, at times very time-consuming to penetrate [128].

All three steps have a profound influence on the distri-
bution of nanomedicines, and these hurdles will be dis-
cussed below under the heading “The long journey”.

Nanoparticles
Nanos is the Greek word for “dwarf”. Nanotechnology 
refers to matter with at least one dimension between 1 
and 100  nm [129, 130]. One nanometre is 10−9 meters, 
and a sheet of paper is about 100,000 nm thick. In such a 
world, materials take on different physical, chemical, and 
biological properties as a result of their small size. NPs 
are solid particles with a plethora of sizes, compositions, 
and characteristics [131, 132]. They are usually made of 
lipids, crystals of metals or silicates, proteins, or poly-
mers. NPs can have several structures, and some of the 
more common ones are depicted in Fig. 1.

NPs can be loaded with drugs, bioactive agents (like 
genes), or diagnostic tools (like radioactive tracers) [129, 
132, 133]. Thus armed, they can serve as vectors inside 
the body. These vectors can be constructed such that 
they are activated/dissolved under specific conditions 
such as acidity, temperature, or light. Such constructs 
are intended to serve dual purposes of protecting the 
host from the active agent while it is being transported 
in the body and protecting the active agent from being 
excreted by the kidneys, captured by the reticulo-
endothelial system (macrophages, antibodies, etc.), or 
degraded by the host´s normal metabolism. An exam-
ple of an oncologic therapy based on NP formulations is 
given in Fig. 2.

There are numerous well written reviews on the topic 
of nanomedicine and we point the interested reader to 
the following [28, 81, 132, 134–161].
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Fig. 1  Comparison in sizes between some nanoparticles (to the left) and some common objects (to the right).with permission from (New England 
journal of Medicine, Betty YS Kim et al. Nanomedicine 2010; 363: 2437, copyright Massachusetts Medical Society)
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Targeting of nanoparticles
So-called targeted delivery is based on functionaliza-
tion of NPs with tissue-specific ligands such as antibod-
ies, aptamers, [162] peptides, [161, 163, 164] or small 
molecules [165], and have been described in numerous 
publications [105, 129, 136, 166–179]. Targets on human 
cancer cells can be extracellular receptors on the cell sur-
faces (receptors for transferrin, estrogen, folate [180], 
etc.) or intracellular receptor (telomere [181], mitochon-
dria [182]). To clarify, in the ligand/receptor interaction, 
we refer to a ligand as the mobile partner attaching to the 
non-mobile receptor, like some structure bound to the 
surface of a cell. In order for any binding between ligand 
and target to occur, the two participants must be no 
further apart than a few nm [183]. At greater distances, 
there is no attraction. This docking is easily achieved 

in  vitro where the medium is of very low viscosity and 
where there are no mechanical obstacles. In vivo, how-
ever, the situation is much more complicated. Repeatedly, 
it has been shown that targeting of NPs does not increase 
the number of particles bound to cancer cells in vivo [3, 
21, 28, 103, 104, 107, 111, 120, 134, 136, 139, 152, 182, 
184–191]. For example, immunoliposomes armed with 
antibodies against human epidermal receptor (HER) do 
not bind to cancer cells “overexpressing” HER any more 
than non-targeted liposomes. The potential and the 
value of targeting of NPs for clinical oncology have—to 
date—been overestimated. There are fundamental laws 
of physics and materials, especially in relation to diffu-
sion, absorption, adherence, and hydrodynamics, that not 
even NPs can avoid [192]. The situation in vivo is consid-
erably more complex than in vitro making results based 

Fig. 2  Picture of a person with a tumor on one forearm. The patient is weighing 70 kg. The tumor measures 1 cm in diameter, and it weighs 1 g. 
If the patient were to be treated with general chemotherapy, then 70,000 g of his body are exposed to the drug, intended for only the malignant 
1 g. 99,9999 % of the total number of cells in the patient´s body would—in wanton—be exposed to toxicity [except the cells in the central nervous 
system (CNS)]. With “targeted therapy” the situation could be completely reversed. The following is what the procedure might be: The drug is loaded 
into a nanoparticle system (e.g. liposomes). The load also includes magnetic particles (e.g. iron based). The vectors are constructed in such a way 
that they are dissolved by temperatures exceeding +42 °C. The loaded nanoparticles are given i.v. to the patient. A magnet is attached to the skin 
near the tumor. In some time (hours), the majority of the nanoparticles will have accumulated in the tumor. Employing microwaves, the tempera-
ture in the tumor is then elevated to above +42 °C, causing dissolution of the nanoparticles. The active drug is released, exposing the tumor cells 
to high concentrations of the drug. Normal cells are spared, and side-effects from the bone-marrow, mucous membranes and the skin are avoided. 
There is a synergistic effect in utilizing hyperthermia to dissolve the vector: Most malignant tumor cells are more susceptible to elevated tem-
peratures than most normal cells. At +43 °C, the majority of malignant cells are lethally injured, whereas most of the normal cells can recover. It all 
sounds simple. But in reality, there are numerous obstacles and pitfalls on the road. In this publication, we will point to some of them
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on in  vitro studies of questionable relevance for situa-
tions in  vivo. For example “overexpression” of cellular 
targets is a relative term where the number of structures 
on the cell surface is compared between a cancer cell and 
its normal counterpart. The comparison is made under 
in  vitro conditions, but again this might be giving mis-
leading information. First, even if the cancer cells in vitro 
express 1000 times as many receptors as their normal 
counterparts do under the same conditions, the relation-
ship might be completely reversed in  vivo. Secondly, In 
vivo, there might be 1,000,000 times as many normal cells 
expressing the same receptor, all capable of capturing a 
targeted vector. The results from in  vitro analyses have 
simply underestimated the complexity of the situation. 
The receptor for transferrin is an illustrative example.

The transferrin receptor (TfR) is exposed on the surface 
of proliferating cells (recent review in Daniels et al.) [193], 
and TfR is frequently used as the target in nanooncologic 
therapy. In the human body, however, there are millions 
of normal cells expressing very high amounts of TfR. The 
disease hemochromatosis is a strong and eloquent exam-
ple of this. Hemochromatosis is a group of diseases char-
acterized by abnormal storage of iron [194]. The metal, 
which is toxic to cells in high amounts, is stored mainly 
in the skin, the heart, the pancreas, and the liver–organs 
where TfRs are abundant [195–197]. These organs are 
poisoned by the metal. The patient develops diabetes, 
and the skin is discolored brown. These two clinical fea-
tures have given the disease the nickname “bronze-dia-
betes”. The patient usually dies from either heart or liver 
insufficiency. The clinical picture of hemochromatosis 
indicates that if a NP is targeted to TfR on the membrane 
of a cancer cell, and injected intravenously, the NP can 
be hijacked by TfR expressed in normal organs. Thus the 
NP is more likely to end up in a normal organ than in a 
malignant tumor. Aiming at cancer cells with a single 
surface marker (such as TfR) results in aiming at a single 
population in a mixture of different cell populations that 
are constantly changing and moving.

Even if targeting of NPs to cancer cells in vivo can be 
inefficient, targeting of NPs to receptors on the surfaces 
of cancer cells has been effective in radiologic detection 
of cancers in humans [198], and in a few clinical cases 
targeted NPs have been effective in therapy (see below, 
Table 3) [108, 109, 113, 198–201].

The long journey
Until the development of orally formulated nanodrugs, 
the intravenous route will remain the dominating route 
for clinical administration of nanooncologic agents. From 
the entry of the therapeutic NP into the host´s blood cir-
culation, the NP faces a long journey to its intended des-
tination: the cancer cells [27, 107, 127, 186, 202]. During 

that journey, there are several barriers that need to be 
overcome. These hurdles are often neglected or disre-
garded in physiochemical evaluations of the future pos-
sibilities of nanotechnology to deliver agents to cancer 
cells. In this section, we point to a number of different 
obstacles during this long journey [127, 202].

Hurdles on the journey
Blood
While in the blood circulation, the NPs might have to cir-
culate many times before encountering the tumor. Dur-
ing these circulation passes, they might be captured by 
macrophages as part of the reticulo-endothelial system. 
These scavengers are distributed mainly in the liver, the 
spleen, the lungs, and the bone marrow. The NPs might 
remain in the blood for several hours, so they must sur-
vive numerous capillary meshes (like the lungs and kid-
neys) where they come into close contact with the host´s 
blood cells and vascular endothelium.

Thrombocytes—which are abundant in the blood—can 
capture the NPs through clotting and flocculation [68, 
203]. The coagulation system can be activated within 
seconds to entrap the NPs. The soluble factors in the 
blood (lipids, proteins, immunoglobulins, enzymes, com-
plement factors, etc.) are likely to alter the surface, the 
charge, and the size of the NPs by creating a so-called 
“corona” covering the vectors [149, 204]. This attachment 
(called “opsonization”) can not only alter the characteris-
tics of the NPs, but also the rate of release of their cargo 
[205]. Thus even at the beginning of their journey the NPs 
might begin to lose their cargo (premature delivery). It 
has been shown, for example, that liposomes loaded with 
doxorubicin and administered intravenously start to leak 
15  min after injection into the bloodstream. After 3  h, 
only about 10  % of the total administered doxorubicin 
remains inside the vector [205]. Thus, 90  % of the drug 
is liberated into the blood where it can cause toxic side 
effects in the patient. After these hours in circulation, 
the NPs still might not even have been in contact with 
the first cancer cell [206]. In this specific example, this 
effect is similar to the normal administration of doxoru-
bicin, and the slightly reduced release in blood is a strong 
contributing factor to the lower cardiotoxicity observed 
for liposomal doxorubicin compared to the free drug. 
In humans and experimental animals, 95  % of injected 
NPs end up in normal organs (liver, spleen, lungs), and 
they are randomly distributed throughout the body by 
the blood. NPs are typically modified with polymers on 
their surface to reduce their protein and lipid binding and 
thus extend their circulation half-life in vivo [207]. This is 
often achieved with the aid of a hydrophilic polymer such 
as poly(ethylene glycol). However, the coating of the sur-
face might interfere with the targeting ligands’ ability to 
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bind to their targets because the flexible polymer chains 
protruding from the NP surface might also block the 
intended ligand-receptor interaction [208, 209].

From the afferent blood capillary to a tumor cell, the 
NPs must diffuse through the ECM (interstitial trans-
port). The ECM in a solid malignant tumor is dense, 
and rigid. It might take several hours for even a small 
NP (<20  nm) to diffuse a few nm through the ECM. 
Limited penetration and uneven distribution of chem-
otherapeutics in solid tumors represent monumental 
barriers to their efficacy. Even small drug molecules 
(such as doxorubicin and paclitaxel) remain in close 
vicinity to the afferent vessels. If poor penetration of 
small molecules is observed, the penetration of consid-
erably larger NPs is even poorer. Stealth liposomes have 
been shown to remain adjacent (within 50  nm) to the 
blood vessels even 2  days after intravenous injection 
[103, 111, 154–156, 210]. The intratumoral pharma-
cokinetics/pharmacodynamics are not known for small 
molecule drugs, let alone the much larger NPs. Small 
molecules can diffuse through the ECM, but most of 
them remain localized to regions immediately sur-
rounding the blood vessels, and this leaves large areas 
of the tumor untouched by the drug [107, 108, 111, 186, 
190, 211, 212].

NPs—which are considerably larger than small mol-
ecules—can penetrate even less, and then only slowly. It 
might take several days for a medium-sized NP to travel 
from the blood vessel to a cancer cell only 200 µm away. It 
should be noted that most NPs intended for medical use 
exceed 100 nm in size. Liposomes with a size of 150 nm 
do not spread beyond 50 µm from the blood vessel [205].

Passive diffusion for an NP up to 10  nm in diameter 
through a stiff ECM is a time-consuming process, and 
at times impossible. This delay is in addition to the first 
two hurdles of the blood and the vascular wall that must 
be overcome before the ECM is even encountered. Every 
delay on the long journey can diminish the efficiency 
of an NP, and improving the intratumoral distribution 
of drugs/agents is vital for the success of nanooncology 
to overcome tumors in general and MDR in particular. 
This is not an easy task. Immunoglobulins (Ig) can serve 
as an example. IgG molecules (150,000  kDa), which are 
1/10 the size of most medical NPs, diffuse 100  nm in 
1 h, 1 mm in 2 days, and 1 cm in 7 months. The diffusion 
speed of considerably larger NPs is not going to be faster 
[21, 105, 107, 112, 113, 136, 139, 186, 201, 213].

Binding site barrier
The first NPs to extravasate create a new barrier to their 
subsequent followers into the ECM. Moreover, if the NPs 
manage to immobilize the first cancer cells they encounter, 

this creates a second barrier [113]. Thus it might not even be 
possible for NPs to reach the center of a macroscopic tumor.

Attachment to the target
When docking occurs between the ligand on the NP and 
the receptor on the cancer cell, the binding forces are 
weak and consist of secondary forces [214]. For the inter-
action to occur, the two participants must be no more 
than a few nm apart [183]. This is easily achieved in vitro. 
In vivo, however, the process is much more complicated. 
In addition, if the vector is targeted with a ligand for a 
cellular receptor, the ligand must be able to maintain its 
specificity after its long journey to the cancer cell [109, 
134].

Endocytosis
A small molecule (<1  nm) can be passively internal-
ized into cancer cells. This is not possible for NPs due 
to their considerably larger size (see Fig.  1). Thus, they 
have to enter a cell via endocytosis [199, 215–217]. For a 
fast-growing cell, this process it a matter of hours. For a 
slow-growing cell—like a human cancer cell—the whole 
process can take days [200, 218]. Next, transport through 
the cytoplasm is a life-threatening passage for an NP, and 
this part of the long journey is not a question of minutes, 
but of hours. Once, or if, the NPs reach cancer cells, they 
face the additional challenge of transport and metabo-
lism inside the cells. Cytoplasmic lysosomes are capable 
of degrading NPs, and sometimes even rendering drugs 
inert.

All of today´s cytotoxic drugs intended for clinical use 
have targets that are located inside the cells. For some 
gene therapy, the targets are inside yet another barrier, 
the nuclear membrane.

Intracellular transport
This is a complex process which has not been fully eluci-
dated [139, 201]. The diffusion rates of biological mole-
cules inside of a cell depend on several factors. One of the 
most important factors is the size of the molecule. Small 
molecules of around 0.5 nm in diameter (like a sugar) dif-
fuse rapidly at around 100  µm2  s−1. Protein molecules 
(3–5  nm) diffuse more slowly at around 3–10  µm2  s−1, 
whereas larger molecules (like vesicles >10 nm in diam-
eter) move at about 0.1  µm2  s−1. The time needed for 
a 10  nm vesicle to traverse a cell 15  µm in diameter 
amounts to several hours.

Release of actives
During its journey from entry into the bloodstream to the 
moment it reaches the first cancer cell, a major question is 
whether the vector has been able to retain its drug cargo 
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(see “pre-mature unloading”, page 10). If there is anything 
remaining of the drug/agent in the vector when arriving 
at its destination, the release from the carrier can require 
hours to days depending on the environmental conditions. 
For example, mesoporous silica NPs release only 30 % of 
their cargo over 30 h even under optimal conditions [162].

The final hurdle
In addition to the hurdles described above, some genes 
and gene products must also pass through the nuclear 
membrane. The pores in the nuclear membranes are nar-
row gates with a mesh of polymers that act as a sieve [99, 
219]. Passing these gatekeepers—which some therapeutic 
genes or gene products must do—is likely to be another 
time-consuming event. Again, because the NPs have no 
means of self-propulsion, passing through the pores is a 
slow process based on passive diffusion driven by a con-
centration gradient.

From the point of entry (the intravenous syringe) to 
the target (the cancer cell), there is a considerable dis-
tance that a therapeutic agent must travel. For a small 
NP, this is a very long journey. It is also dangerous. The 
journey might be a bit shorter in experimental animals 
than in humans, but it is still a monumental task. The 
longer this journey takes, the greater the likelihood that 
the NP will be destroyed or prematurely release its cargo. 
A rough estimate of the time required for a NP to reach 
and deliver an active cargo is, at best, around 20 h in the 
human body. During that journey, how well has that NP 
been able to maintain its cargo, its specificity, and its 
integrity?

Future therapeutic strategies
Therapy against CSCs is likely to require a combination 
of mathematics, physics, biology, chemistry, and medi-
cine. A short outline of future general oncologic therapy 
was given in the introduction of this publication. Here, 
we will give a more detailed sketch of tomorrow´s general 
oncologic therapy. It is anticipated to be very complex, 
very personal, and very expensive. CSCs represent the 
prime target, but these are an elusive and moving target.

The future war on cancer will require multifunctional 
and multistep sequential therapy. Presented below are 
some possible steps:

A.	Blocking of some of the MDR genes
B.	 Killing and removing the protecting bulk tumor cells. 

Just killing is not enough; the dead cells must be 
removed in order to expose the dormant CSCs

C.	Mobilization of the CSCs by instigating them to re-
enter the cell cycle

D.	Elimination or re-education of the now proliferating 
CSCs.

Inventory of agents/drugs available today
Agents/drugs capable of blocking the MDR genes. The 
scientific community is already in possession of drugs/
agents that can block four of the most important signal-
ing pathways involved in MDR in cancer cell populations. 
Some examples are given in Table 1. However, the poten-
tial side effects of blocking these genes are not known. It 
is also not known in what order they should be blocked, 
or for how long they must be blocked to allow for the 
next therapeutic step.

RNA‑based therapeutics
Small non-coding RNA sequences can silence gene 
expression. Several types of RNA exist, but the most 
well-known is small interfering RNA (siRNA). Several 
hundred siRNAs have been identified, and each siRNA 
molecule has the potential to inhibit thousands of genes. 
Thus the therapeutic possibilities offered by siRNA are 
enormous [4, 25, 66, 147, 171, 184, 233–255]. siRNA 
can be synthesized and tailored for specific purposes, 
and thus these agents are incredibly versatile. However, 
they have weaknesses. They are unstable, immunogenic, 
short-lived in plasma, and only function intracellular. 
The half-life in serum of siRNA are between minutes to 
an hour, and when endocytosed via nanoparticle uptake 
the siRNA must be released from the endosome in order 
to elicit its function in the cytosol. They need a protec-
tive vector, which in most applications is an NP. siRNAs 
have been shown to block MDR genes over the course of 
3–7  days in a fast-growing cell population and over the 
course of several weeks in a slow-growing population 
[153]. Patil et al. have shown in an in vivo mouse model 

Table 1  Examples of  drugs/agents capable of  affecting 
some of the MDR genes in human cancer cells

Signal chain Blocking agents Clinical status Ref.

Wnt siRNA
Curcumin/Piperin
Several other natural 

products
Resveratrol

35 clinical trials [219–224]

NOTCH siRNA
Monoclonal antibodies
Peptides
Decoys
Secretase inhibitors
Several natural com-

pounds

15 clinical trials [56]
[54, 225]
[225]
[226]
[53]
[227]

Hgh Cyclopamine (alkaloid 
from plants)

Vismodelib
Cyclosporin
Sulforaphane (Broccoli)

Several clinical trials
Clinical trials

[58, 228]
[229]
[58]
[230]

NANOG siRNA
Resveratrol

Preclinical [231]
[232]
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of drug-resistant tumor, that inhibition of tumor growth 
can be significant when combining paclitaxel with siRNA 
for the MDR1 gene coding for P-gp using a polymeric 
nanoparticle delivery system that also utilized a biotin as 
a targeting ligand. The collaboration between nanotech-
nology and RNA has created a new subspecialty: RNA-
Nananomedicine [256].

Killing the protective bulk cells
This is the primary goal of today´s oncologic therapy. 
With the genes for MDR blocked, the bulk cells will hope-
fully be more susceptible to today´s standard oncologic 
therapies. Thus, lower doses might be effective, thereby 
diminishing the side effects in the patient. What is not 
known is the time required for the body to eliminate the 
dead cancer cells [257]. This might be a time-consuming 
process during which time the MDR genes might have 
begun to function again. The necrotic cells are not likely 
to be removed by external means; the host´s scavenger 
cells must do that.

Instigating growth in dormant CSCs
Once the protective bulk cells have been removed, the 
CSCs might have been exposed but still remain qui-
escent. If so, they must be triggered to re-enter the cell 
cycle if they are to be treatable. They can be triggered 
by several already existing agents (review in Wels et al.) 
[257] thereby becoming susceptible to therapy [87, 258].

Tumor related apoptosis-inducing ligand (TRAIL) is a 
transmembrane protein of the TNF (tumor necrosis fac-
tor) gene superfamily that triggers apoptosis in cancer 
cells, but not in normal cells [215, 247, 259, 260]. Thus it 
is an ideal candidate for cancer therapy. However, TRAIL 
lacks clinical applicability because of poor solubility in 
serum and an unfavorable pharmacokinetic profile. With 
the aid of nanotechnology, some of these disadvantages 
can be eliminated.

Evaluation of therapeutic effect on CSC’s
Because CSCs are so rare, their elimination cannot be 
quantified by standard evaluation parameters such as 
tumor regression rates or retardation of tumor growth 
rates. Prolonged survival of the experimental animals is 
regarded as a more relevant parameter [15, 78, 261, 262]. 
The improvement of survival is interpreted to indicate an 
effect on the tumors´ CSCs [15, 78, 261–263].

Elimination or re‑education of the proliferating CSCs
Proliferating CSCs are highly susceptible to conventional 
chemotherapeutic drugs [6, 149]. Thus, they might be 
eliminated by low dose chemotherapy [6, 149, 150]. In 
addition, some of the agents that can block MDR genes 
(Table 1) can also eliminate CSCs. An alternative to elim-
ination of CSCs is re-education to a differentiated and 
non-proliferating level. One example given by hematolo-
gists: in patients with acute myeloid leukemia (AML), the 
administration of vitamin A (retinoic acid) prevents a 
blast crisis [264].

Several of the drugs/agents in Tables 1 and 2 need pro-
tection from the host during their transport through the 
body, and, conversely, the host might need protection 
from the drug/agent. Sometimes an NP can offer that 
dual protection. Table 2 lists some of the in vivo experi-
ments where NPs have improved the therapeutic efficacy 
of a drug or therapeutic agent. In Table  2 we included 
only publication where the therapeutic effect is measured 
prolonged survival of the experimental animals.

In addition to the examples of possibilities in Table 2 
encouraging results have been published by MacDiarmid 
and her colleagues in Australia [149, 150]. Their series of 
experiments are worth describing in detail because their 
results might serve as guidance for the future evolution 
of nanomedicine. Their experiments used bacterially 
derived minicells measuring 400  nm in diameter tar-
geted with antibodies against cell surface structures on 

Table 2  Selected examples of  investigations where  the anti-tumor agent was protected by  an NP during  transport 
through the body and where the antineoplastic effect was expressed prolonged survival

GR growth reduction, PS prolonged survival, Wt wild type

Nanoparticle Targeting ligand Therapeutic agent Tumor Animal Ref.

Polymer Biotin Paclitaxel + tariquidar “transformed murine” Mice [153]

Polymer None Dox/curcumin Four human malignancies Mice [265]

Liposome Peptide Dox Human neuroblastoma Mice [266]

Chitosan-NP mirRNA Paclitaxel Human ovarian cancer Mice [267]

Polymer Local injector Dithiazanin MGB Rats [268]

Polymer Abs, vs ABC G2 Paclitaxel + siRNA Human breast cancer Mice

Polymer None stated Dox + Mitomyzin Human breast cancer Mice [269]

Polymer Photodynamic and chemotherapy Dox Human breast cancer Mice [270]
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human cancer cells. Four human cancer cells lines were 
used: uterus sarcoma, colon cancer, colon adenocarci-
noma, and breast cancer. These cells were transplanted 
into immunodeficient (athymic) nude mice. All four 
lines were fast growing with TVDTs of 10 days or less, 
and they were likely to produce pathological vessels thus 
creating the possibility of an EPR effect. Treatment was 
carried out in two waves. First, minicells loaded with 
siRNA capable of blocking the MDR genes wnt, notch, 
and Hgh were injected intravenously into the animals. 
With these genes blocked, the second wave of minicells 
was administered 2–6 days later. This time the minicells 
carried cytotoxic drugs, including either irinotecan, or 
paclitaxel, or doxorubicin, or 5-fluorouracil. The intra-
tumoral presence of the minicells could be observed 
within 6 h after the injection of the minicells, and 30 % 
of the drug was found in the tumors compared to only 
1 % when the drug was given without the targeted vec-
tor [149, 150]. The results were astounding, and growth 
retardation was observed in all four cancer types and 
with all four cytotoxic drugs. The doses of the cytotoxic 
drugs were several thousand folds lower than the doses 

conventionally used. But even more important, survival 
of the animals was prolonged indicating that the CSCs 
in the tumor cell populations were affected. In the group 
of sequentially treated animals, all six mice survived over 
the course of the whole observation period of 110 days. 
In contrast, all of the animals in the control groups had 
succumbed in less than 50 days (Fig. 3). The critical fac-
tor in these experiments is the presence of an EPR effect 
in the tumors because the size of the minicells precludes 
transport across normal vessel walls. These results indi-
cate that (1) targeting of NP vectors can be effective, (2) 
sequential therapy by blocking the genes for MDR prior 
to anti-neoplastic therapy makes chemotherapy against 
both cancer bulk cells and CSCs more effective, and (3) 
survival of the experimental animals is prolonged. As 
encouraging and exciting as these results might be, how-
ever, they still need confirmation from a second inde-
pendent laboratory.

Clinical cases where targeted nps are considered 
to be effective
In spite of all the skepticism, objections, and criticism of 
NPs—including the hurdles in “The long journey” (see 
above)—targeting of NPs against cancer cells has been 
successful in a few clinical cases. We have identified two 
reports on clinical cases where NPs were employed in the 
oncologic treatment and where the NPs were traced in 
some patients. These are summarized in Table 3.

Davis et  al. conducted a phase I study (no effect vari-
able) for treating cutaneous malignant melanoma with 
siRNA. Biopsies from metastases from malignant mela-
noma were obtained after completion of the 21 day cycle 
(drug given on days 1, 3, 8, and 10). The siRNA was 
designed to suppress the messenger RNA in the malig-
nant cells, and the siRNA in the biopsies was measured 
with PCR technique. The study demonstrates that siRNA 
systemically administrated to humans can inhibit a spe-
cific gene in a malignant tumor.

Senzer et  al. conducted a phase I trial with genetic 
therapy (a variant of p53: SGT 53) against various malig-
nancies. They gave the treatments twice weekly for 
5  weeks, and biopsies were taken between 2 and 96  h 
after the last injection of SGT 53. Tissue samples were 
taken from cutaneous metastases from three patients 
with cutaneous malignant melanomas along with nor-
mal tissue samples. In all tumor-derived tissue, exog-
enous wtp53 was detected, but not in the normal tissue. 
These results indicate not only the tumor-targeting abil-
ity of systemically administered p53, but also the speci-
ficity for tumor tissue over normal tissue. However, in 
Senzer et  al.’s publication it is not possible to estimate 
the time required for the NP to travel from the point of 
administration to the tumor.

Fig. 3  Reversal of multidrug resistance in MDR1-overexpressing 
aggressive uterine cancer xenografts with complete survival of mice 
administrated dual sequential treatments. All minicell doses were 
administrated intravenously in nude mice with 109 minicells per dose. 
The concentrations of doxorubicin or shRNA administrated per dose 
in 109 minicells were 1011 copies of shRNA and 0.8 µg doxorubicin. 
Free doxorubicin was administrated at 150 µg/dose. Kaplan–Meier 
survival curves for the xenograft study continued for up to 120 days 
showing complete survival only in the MES-SA/Dx5 mice receiving 
sequential EGFRMinicellssMDR1 and the EGFRMinicellsDox treatment or as 
expected in mice with the doxorubicin—sensitive MES-SA xeno-
graft treated with EGFRminicellsDOX. Black, Control saline, green filled, 
EGFRMinicellshMDR1, blue filled, EGFRMinincellDox, pink filled, CMVMinicellssh-

MDR1 + EGFRMinicellDox, maroon filled, EGFRMinicellshNonsense, purple hol-
low, EGFRMinicellshNonsense + EGFRMinicellDox, red filled EGFRMinicellshMDR1 
EGFRMinicellDox, red hollow, EGFRMinicellshMDR1 + free Dox, green hollow, 
EGFRMinicellDox, Light blue filled, Free dox
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Discussion
The question posed in the title of this article cannot yet 
be answered with certainty. Tomorrow´s treatments of 
disseminated cancers face monumental obstacles, but 
possibilities also remain. The therapy is likely to be per-
sonalized, complicated, and expensive. The primary 
targets—the CSCs—are elusive, evasive, mobile, and 
changing. New therapeutic strategies and weapons are 
needed.

An overview of today´s oncologic armament reveals 
that most of the weapons needed tomorrow already 
exist today. We are in possession of the drugs needed to 
block the genes responsible for MDR, we have the agents 
needed to extinguish the bulk of cancer cells, and we also 
have the agents needed to instigate growth in dormant 
cancer cells thereby making them susceptible to therapy. 
What is missing is knowledge of the chronological order 
of multistep therapies and the means of directing the 
active agents to their targets. Nanooncology might offer 
some solutions to these problems.

The versatility of this young science is very promising 
and has created high expectations, but several significant 
obstacles remain before nanomedicine can be considered 
practical for use in the clinic. One of the main reasons 
that limit the clinical translation from proof of concept of 
a novel nanomedicine to clinical phase testing is the mat-
ter of multifunctionality. The more complex nanomedi-
cines that one constructs will undoubtable have a limited 
reproducibility in its manufacturing. An ideal drug deliv-
ery system for a MDR treatment may well include both 
a biological drug cargo and a more standard small mol-
ecule, packed in a nanoparticle system with a variation 
in size (as well as distribution of the cargo). This NP sys-
tem is then further conjugated (and complicated) with 
a targeting moiety that allows for tissue targeting. The 
position and the number of available ligands on the NP 
surface can then also vary. In concluding such a system 
with three different components will have a very different 
composition compared to the “ideal” structure and leads 
to the issue of which part of this multifactorial system 
gives rise to the highest efficacy. This aspect is indeed 
very different from the situation for a small molecu-
lar “standard” drug, and this issue is a major limitation. 

Nanomedicine holds much promise but there are still 
major areas in both basic and applied research in the area 
nanotechnology that needs to be explored to solve some 
of these problems.

Another area of specific concern is the issue of target-
ing the rare CSC’s. Small molecular therapeutics can 
indeed diffuse much more efficiently than a 100 nm NP 
systems and reach both more central parts of a tumor as 
well as reach more metastatic sites in the body. Such sites 
are also often less vascularized where small and nano-
medicine constructs relying on the EPR effect will not be 
effective.

Conclusions
Looking back at the drugs/agents available today 
(Tables  1, 2, 3 in this publication) that can halt or even 
cure various generalized cancers, the scientific com-
munity is already in possession of the weapons needed. 
What is missing is aiming and timing. The key is to posi-
tion the right drug at the right time at the right place 
and at the right concentration. If this can be achieved, 
it will represent a major step in treating a wide array of 
malignancies. In summary the relevance of in vitro based 
results are questionable still, and tomorrows cancer treat-
ment will need to be multifactorial with different drugs at 
different time points and perhaps even localized.
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Table 3  Reports on clinical cases where therapeutic NPs were traced in the patient

TfR transferrin receptor, siRNA short interfering RNA, PCR polymerase chain reaction, Ab antibody, p53 a tumor suppressor gene, ns not stated

Nanoparticle (NP) Size of NP (nm) Ligand/receptor Drug/agent Method to trace NP/ 
drug/agent

Ref.

Polymer 70 Protein/TfR siRNA PCR [236]

Liposome ns Ab/TfR p53 p53 via PCR [271]
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