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The evolutionary history of a gene helps predict its function and relationship to phenotypic traits. Although sequence con-

servation is commonly used to decipher gene function and assess medical relevance, methods for functional inference from

comparative expression data are lacking. Here, we use RNA-seq across seven tissues from 17 mammalian species to show that

expression evolution across mammals is accurately modeled by the Ornstein–Uhlenbeck process, a commonly proposed

model of continuous trait evolution. We apply this model to identify expression pathways under neutral, stabilizing, and

directional selection. We further demonstrate novel applications of this model to quantify the extent of stabilizing selection

on a gene’s expression, parameterize the distribution of each gene’s optimal expression level, and detect deleterious expres-

sion levels in expression data from individual patients. Our work provides a statistical framework for interpreting expression

data across species and in disease.

[Supplemental material is available for this article.]

Comparative genomicshas identified andannotated functional ge-
netic elements by their evolutionary patterns across species (Rubin
et al. 2000; Kellis et al. 2003; Siepel et al. 2005; Pollard et al.
2006; Lindblad-Toh et al. 2011). Current comparative studies focus
primarily on analysis of genomic sequences, relying on a well-es-
tablished theoretical framework developed from observations
that neutral sequence diverges linearly across time (Harris 1966;
Lewontin and Hubby 1966; Kimura 1968; Jukes and King 1971).
These methods allow for detection of sequence elements that
evolve slower (e.g., due to purifying selection) or faster (e.g., due
to positive selection or relaxed selective constraints) than expected
under the null model of neutral evolution.

It has long been accepted that divergence of gene regulation,
manifested by phenotypic changes in gene expression, also plays
a key role in evolution (King and Wilson 1975; Wang et al. 1996;
Pierce and Crawford 1997; Ferea et al. 1999; Fraser et al. 2010).
An evolutionary analysis of gene expression should help interpret
gene function and evolutionary processes in ways that cannot
be addressed by sequence alone: The extent of stabilizing selection
on a gene’s expression level in different tissues could reveal the one
(s) inwhich the gene plays themost important role; the strength of
evolutionary constraint on a gene’s expression level could help in-
terpret expression levels observed in clinical samples; and identify-
ing genes whose expression level is under directional (positive)
selection can help assess the basis of lineage- and species-specific
phenotypes.

Multiple studies have analyzed expression data collected
across mammalian species using various heuristic methods for de-

fining conserved and divergent expression levels (Chan et al. 2009;
Brawand et al. 2011;Merkin et al. 2012; Perry et al. 2012).However,
there is currently no consensus on a quantitative framework for ad-
dressing the functionalquestions related to evolutionof expression
levels, due in part to a lack of agreement for how to best model ex-
pression evolution in mammals. InDrosophila, studies have found
that unlike sequence evolution, divergence of gene expression lev-
els is not continuously linear across evolutionary time. Instead, it
reaches saturation due to stabilizing selective pressures, requiring
more sophisticated models than standard neutral drift models
(Bedford and Hartl 2009; Kalinka et al. 2010). In contrast, initial
gene expression studies inmammals have been hampered by small
data sets leading to inconsistent reports on the relative contribu-
tion of neutral drift and stabilizing selection within the mammali-
an lineage (Khaitovichet al. 2004;Yanai et al. 2004;Blekhmanet al.
2008; Brawand et al. 2011). Early microarray-based studies ob-
served a linear relationship between expression differences and
divergence time across primates, suggesting neutral evolution
(Enard et al. 2002; Khaitovich et al. 2004, 2005). Subsequent anal-
ysis, however, suggested that these observations were confounded
by microarrays containing only human DNA probes (Gilad et al.
2006)which, once accounted for, left fewdifferences inprimate ex-
pression levels, highlighting stabilizing selection as the dominant
mode of expression evolution. A more recent large-scale study of
expression evolution across nine mammals profiled by RNA-seq
(Brawand et al. 2011)—alleviating the limitations of hybridization
technology—noted that more closely related species indeed have
more similar expression levels (supporting a neutral model), but
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also that rates of expression evolution appear to be slow (support-
ing a major role for purifying selection). This lack of clarity on
the correct model for expression evolution has resulted in conflict-
ing usage of both pure neutral drift models (Perry et al. 2012) and
those that incorporate stabilizing selection (Brawand et al. 2011)
in comparative analyses acrossmammals, rendering different stud-
ies difficult to compare or interpret. Moreover, it has not been
substantially explored how to use such models, once fit, to draw
conclusions on gene function beyond theoretical inferences
about fitness gains and selective effects (Bedford and Hartl 2009;
Nourmohammad et al. 2017). The applicability of evolutionary
models of gene expression to gain insight about transcriptional
pathways and their relationships to healthy and disease processes
has yet to be widely explored.

Here,we use a comprehensive RNA-seq data set from17mam-
malian species and seven different tissues to characterize the pat-
tern of expression evolution across the mammalian lineage. We
find that an evolutionarymodel that incorporates stabilizing selec-
tion is most appropriate for describing mammalian expression
evolution.We further develop a framework, based on the previous-
ly proposed Ornstein–Uhlenbeck (OU) model, to parameterize the
distribution of evolutionarily optimal gene expression, and we use
this distribution to quantify the extent of stabilizing selection on a
gene’s expression, identify deleterious expression levels in patient
expression data, and detect directional selection in lineage-specific
expression programs.

Results

Expression differences between mammalian species saturate

with increasing evolutionary time

To systematically explore mammalian expression evolution, we
compiled a data set across the mammalian phylogeny spanning
17 species and seven different tissues (brain, heart, muscle, lung,
kidney, liver, testis) (Fig. 1A; Supplemental Table S1). The data set
combines published data for 12 species (Harr and Turner 2010;
Brawand et al. 2011; Merkin et al. 2012; Pipes et al. 2013; Cortez
et al. 2014; Wong et al. 2015) with data for five additional species
we newly collected here to improve phylogenetic coverage
(Methods). We focused on the 10,899 Ensembl-annotated mam-
malian one-to-one orthologs (Aken et al. 2017). We confirmed
the quality of gene annotations by realigning transcriptomes
across species and finding that 95%–99% of Ensembl’s one-to-
one orthologs were also identified as reciprocal-best alignments
by our procedure; moreover, the mean sequence identity between
Ensembl-annotated orthologs and their human counterpart de-
creases linearly with evolutionary time (Supplemental Fig. S1).
Additionally, as expected, expression profiles first cluster by tissue
and then by species, and their hierarchical clustering closely
matches the phylogenetic tree (Supplemental Figs. S2, S3).

On average, pairwise expression differences between species
(Supplemental Methods; Supplemental Fig. S4) saturate with evo-
lutionary time in a power law relationship (Fig. 1B), consistent
with evolutionary trends previously observed in Drosophila
(Bedford and Hartl 2009). For example, when comparing each spe-
cies’profile to the correspondinghumanprofile, differences initial-
ly diverge with increasing evolutionary distance, but this trend
plateaus beyond the primate lineage. This relationship is observed
in each of the five tissues for which we have expression data for all
primates (brain, heart, kidney, liver, testis) (Supplemental Fig. S5)
and is not driven by batch effects across different data sources or

by variation in the number of samples available for each species
(Supplemental Methods; Supplemental Figs. S6, S7). We observe
the same relationship when using Mus musculus as the reference
species in each of the two tissues for which we have expression
data for multipleMus species (Supplemental Figs. S8, S9).

Expression evolution can be modeled

as an Ornstein–Uhlenbeck process

The observed pattern of expression divergence corresponds to an
Ornstein–Uhlenbeck (OU) process (Fig. 1C,D), a stochastic process
initially proposed as a model for evolution of general continuous
phenotypes byHansen (1997) andhasmore recently been suggest-
ed as an appropriate model specifically for the evolution of gene
expression levels in Drosophila (Bedford and Hartl 2009).

In the context of expression levels, the OU process is a mod-
ification of a random walk, describing the change in expression
(dXt) across time (dt) by dXt = σdBt +α(θ –Xt) dt, where dBt denotes
a Brownian motion process. The model elegantly quantifies the
contribution of both drift and selective pressure for any given
gene: (1) Drift is modeled by Brownian motion with a rate σ (Fig.
1C, top), while (2) the strength of selective pressure driving expres-
sion back to an optimal expression level θ is parameterized by α
(Fig. 1C, bottom). The OU process incorporates time information
and fully accounts for phylogenetic relationships, thus allowing
us to fit individual evolutionary expression trajectories. At longer
time scales, the interplay between the rate of drift (σ) and the
strength of selection (α) reaches equilibrium and, as time increases
to infinity, constrains expression Xt to a stable, normal distribu-
tion, with a mean θ, and variance σ2/2α (Fig. 1D).

Thus far, OUmodels have primarily been used for theoretical
inferences about fitness gains and selective effects of evolving ex-
pression levels (Bedford and Hartl 2009; Kalinka et al. 2010;
Nourmohammadet al. 2017). Therehavealsobeen limitedapplica-
tions of the OUmodel for detecting selection on expression across
smaller mammalian phylogenies and incomplete gene annota-
tions (Brawand et al. 2011; Rohlfs and Nielsen 2015). However,
the complete power of using theOUmodel to characterize the evo-
lutionary history of a gene’s expression for biological insight has
yet to be fully explored.

We thus next developed applications of the OU model to
yield biologically interpretable results to evolutionary questions
about gene expression levels, gene function, and disease gene dis-
covery. First, for each tissue, we estimate from our data the asymp-
totic distribution of evolutionarily optimal expression for genes
under stabilizing selection. We demonstrate that this distribu-
tion’s OU variance (which we term “evolutionary variance”) accu-
rately characterizes how constrained a gene’s expression level is in
each tissue. Second, we compare the observed expression levels in
patient data to the optimal expression distributions estimated
from the evolutionarymodel, in order to detect potentially delete-
rious expression levels and nominate causal disease genes. Third,
we use an extension of the OU model (Butler and King 2004)
that accounts for the existence ofmultiple distributions of optimal
expression within a phylogeny to identify genetic pathways that
may be related to lineage-specific adaptations. We describe each
of these applications in turn.

The expression of most genes evolves under stabilizing selection

within the mammalian lineage

To test whether a gene’s expression is under stabilizing selection,
we used a likelihood ratio test to compare the fit with no selection
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(α=0; Brownianmotion only) (Fig. 2A, top) to onewith stabilizing
selection (α>0, OU process) (Fig. 2A, bottom). (Although we visu-
ally displaypatternsof expressionevolutionwith respect to a single
reference species [e.g., Fig. 1B], bothmodels account for evolution-
ary distances across the entire phylogenetic tree, not just the rela-
tive distance to one reference species.) Because the expression
level estimates of lowly expressed genes are associated with high
technical variation and their truebiological variation across species
are less likely to be accurately inferred (Supplemental Fig. S10A;
Silvestro et al. 2015), throughout all analyses, we focus only on
genes expressed over five transcripts per million (TPM), resulting
in between 3428 and 5822 genes for analysis, depending on the
tissue (Supplemental Methods; Supplemental Fig. S10B).

On average, the expression of 83% of genes tested (range:
77%–90%; false discovery rate [FDR] < 0.05) is better fit under a sta-
bilizing selection model (Fig. 2A, bottom; Supplemental Fig. S11),

although the expression of hundreds of genes within each tissue
appeared to be neutrally evolving (Fig. 2A, top; Supplemental
Fig. S11). The expression levels of 57% (5669/8912) of genes
were under stabilizing selection in all tissues in which they were
expressed, 39% (2722) were under stabilizing selection in only
some of the tissues where they were expressed, and only 6%
(521) were not under stabilizing selection in any of the tissues in
our study (Fig. 2B).

We assessed our sensitivity and specificity to detect genes un-
der expression-stabilizing selection using a jackknifing procedure,
where we subsampled to consider phylogenies ranging from
3 to 16 species (Supplemental Methods). As expected, the number
of genes called under stabilizing selection (i.e., rejecting the null
hypothesis) increases as more species are included (Supplemental
Fig. S12A), but does saturate at 14 species. Importantly, the dis-
cordance rate (relative to analysis of the full data set) is very low:

A C

B

D

Figure 1. Expression evolution across mammalian lineages is accurately modeled by the OU process. (A) Data overview. Phylogenetic tree of all 17 mam-
mals (left) marked by tissue types (colored dots) for which profiles are included. (∗) Newly generated data. (B) Expression divergence is not linear. Shown is
the pairwise mean squared expression distances (y-axis) between mammals and human for liver samples across evolutionary time, as estimated by substi-
tutions per 100 bp (x-axis). (Error bars) standard deviation of the mean across replicates; (solid line) nonlinear (y= axk) regression fit. (C ) OU model.
Equation describing OU model (top): (σ) rate of genetic drift; [dB(t)] Brownian motion; (θ) optimal expression level; (α) strength of selection. (Left)
Simulated trajectories of expression (y-axis) over evolutionary time (x-axis) under a Brownian motion (top) and OU (bottom) process. Ten example trajec-
tories are shown. (Right) Mean squared distance to initial value (y-axis) across time (x-axis) from 1000 simulated trajectories. (D) Distribution of optimal
expression. (Top) Illustration of the change in probability distribution of expression (y-axis) across time (x-axis) under an OU process. The distribution sta-
bilizes as time approaches infinity. (Bottom) Scatter plot of log10TPM values (y-axis) across all liver samples (x-axis) of two example genes with low (NRBP1)
and high (APOA4) variance. (Solid and dotted red lines) Estimated mean and variance, respectively, of the asymptotic (optimal) distribution of each gene’s
expression value estimated using the OU process. Note that mean and variance are calculated in log space.
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<1% of genes that are found as under selection with a subsampled
phylogeny are found to be neutral (i.e., accepting the null hypoth-
esis) with the full phylogeny (Supplemental Fig. S12B).

Evolutionary distribution of gene expression levels predict

gene function

The OU process was considered attractive when initially proposed
formodeling expression evolution inDrosophila because of its abil-

ity to distinguish neutral from stabilizing
selection. Given our finding that most
mammalian genes are under stabilizing
selection, we next explored the ability
of the OU model to estimate the stable
distribution of gene expression levels,
which we reasoned is an estimate of
thedistributionof evolutionarilyoptimal
expression. Thus we investigated the use
of the OU model’s “evolutionary vari-
ance” as a quantitative measurement of
the extent of evolutionary constraint on
a gene’s expression in each tissue. The
same jackknifing procedure as described
above showed that the OU model’s esti-
mated evolutionary variance is highly ro-
bust to subsampling, as determined by
the very low mean squared error (MSE<
0.005) when estimating variance from
subsampled phylogenies (Supplemental
Fig. S12C). In fact, when using data from
less than six species, we found the evolu-
tionary variance to be far more robust
than the sample variance, which does
not account for the phylogenetic rela-
tionships between the species (Supple-
mental Fig. S12C).

We first examined evolutionary var-
iance patterns across tissues. To control
for the number of samples in each tissue,
we refitted OU evolutionary parameters
on a subset of the data matched for the
same number of samples across tissues
(Supplemental Table S1). We found that
brain had the most genes with low vari-
ance (most constraint), and testis the
least, consistent with previous estimates
of the rate of expression evolution for
those tissues (Fig. 2C; Supplemental Fig.
S13; Chan et al. 2009; Brawand et al.
2011). Across tissues, variance was rea-
sonably correlated (mean Pearson’s r=
0.70) (Supplemental Fig. S14A). For genes
expressed across three or more tissues,
expression level and variance were mod-
estly inversely correlated across somatic
tissues (median Pearson’s r=−0.25), and
the tissue of highest expression matched
the tissue of lowest variance in 27.2%
(1263/4645) of genes (Supplemental
Fig. S14B, top); further including testis
in this analysis leads to almost no correla-
tion between expression level and vari-

ance (median Pearson’s r=−0.006) (Supplemental Fig. S14B,
bottom).

We next examined evolutionary variance patterns within tis-
sues using our full data set. To avoid biases introduced by the diver-
sity of data sources, we did not attempt to interpret absolute values
of variance but rather focused on understanding the relative rela-
tionship between genes with lower and higher variance. Using a
rank-based Gene Ontology (GO) enrichment test (Eden et al.
2009), we found that evolutionary variance and function were

BA

DC

Figure 2. Quantification of neutral and constrained selection on gene expression using the OUmodel
parameters. (A) Detection of stabilizing selection. Pairwisemean squared expression distances (y-axis) be-
tweenmammals andhuman for liver samples across evolutionary time (x-axis) for geneswhose expression
evolution fits better under a Brownianmotion (BM) process (top), indicating neutral evolution, and genes
whose expression evolution fits better anOrnstein–Uhlenbeck (OU) process (bottom), indicating the pres-
ence of stabilizing selection: (solids lines) linear regression fit for BM genes and nonlinear regression fit for
OUgenes. (B) Neutral and stabilizing selection across genes and tissues. Heatmap indicating genes (rows)
whose expression is predicted to be evolving under neutral evolution (blue) or stabilizing selection (red)
across five different tissues (columns); (gray) genes that are expressed <5 TPM. (C,D) Evolutionary vari-
ance across tissues and processes. (C) Heatmap shows estimated evolutionary variance of expression (or-
ange: low; purple: high) across genes (columns) in five tissues (rows); (gray) genes expressed <5 TPM.
(D) Bar plot of −log10 FDR values for significantly enriched GO categories of low (light gray) and high
(dark gray) variance genes within each tissue; (∗) category enriched in every tissue. (E) Relationship be-
tween sequence and expression evolution. Binned scatter plot of log(evolutionary variance) of liver ex-
pression (x-axis) versus sequence conservation, as measured by the phyloP score (y-axis). Median
variance and phyloP scores are indicated by vertical and horizontal dotted lines, respectively. Enriched
GO categories (FDR <0.001) for genes in each quadrant of the scatter plot are listed on the right.
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strongly associated, consistent with results from previous compar-
ative studies that did not use phylogenetic-based methods for esti-
mating variance (Chan et al. 2009; Yue et al. 2014): Across all
tissues, genes with low variance were enriched for housekeeping
functions (e.g., RNA binding and splicing, chromatin organiza-
tion, cell cycle), whereas those with high variance were enriched
for extracellular proteins (FDR<0.001).

Some processes were enriched in genes with low or high var-
iance only in specific tissues (Fig. 2D; Supplemental Table S2):
Among the processes with tissue-specific conservation (low
variance) were synaptic proteins in brain (FDR=0.011) and Wnt
signaling in testis (FDR=0.014); processes with high variance in-
cluded contractile fiber part in heart (FDR=0.005), oxidoreductase
activity in kidney (FDR=6.10×10−6), and lipid metabolism in
liver (FDR=2.31× 10−9). We did not find the same enriched
categories when we tested for enrichments in genes ranked by ex-
pression level. Thus, we can rely on estimates of evolutionary var-
iance as an indicator of expression constraint and gene function.

We found only amodest correlation
between expression and sequence con-
straint (Pearson’s r=−0.25) (Fig. 2E; Sup-
plemental Methods). Genes conserved
in both expression and sequence were
significantly enriched for housekeeping
processes (FDR<10−4) (Supplemental Ta-
ble S3), and genes divergent in both were
enriched for immune and inflammatory
response (FDR<10−6). Genes conserved
in sequence but divergent in expression
were enriched in transcriptional regu-
lators (FDR=3.1 ×10−5), especially those
involved in embryonic morphogenesis
(FDR=9.8 ×10−8; e.g., IRX5, HAND2,
NOTCH1). Although higher evolution-
ary variance of expression levels may
be influenced by environment, changes
in cell-type composition, and genetic
differences, our analysis supports the
hypothesis that divergence in gene regu-
lation without protein sequence diver-
gence can account for species-specific
phenotypes.

Using evolutionary distributions of gene

expression to predict deleterious levels

In analysis of rare diseases, sequence con-
servation is commonly used to prioritize
mutations in genes that are more essen-
tial and likely causal for rare diseases
when mutated (Alföldi and Lindblad-
Toh 2013; Jordan et al. 2015; Richards
et al. 2015). By analogy, we hypothesized
that expression conservation should also
be predictive of gene essentiality. Indeed,
the expression levels of genes that are
either essential in culture (Hart et al.
2014), essential in mice (Georgi et al.
2013), or haploinsufficient in humans
(Rehm et al. 2015) had significantly
lower evolutionary variance (higher con-
straint) than their nonessential or haplo-

sufficient counterparts across almost all tissues (Wilcoxon rank-
sum test P-value <0.01) (Fig. 3A), a relationship was not driven
by expression levels (Supplemental Fig. S15).

We next examined the variance of disease genes in each of
three settings: rare monogenic disease genes directly linked to
nonsyndromic autism spectrum disorder (ASD) (brain) (Banerjee-
Basu and Packer 2010), congenital heart defects (heart) (Amberger
and Hamosh 2017; Blake et al. 2017), and neuromuscular dis-
ease (skeletal muscle) (Supplemental Methods; Cummings et al.
2017). In each case, disease genes with tissue-restricted expres-
sion (>5 TPM in three or fewer tissues) (Supplemental Methods;
Supplemental Fig. S16) consistently exhibited lower variance in
the disease-relevant tissue than nondisease genes (P-value <0.05)
(Fig. 3B; Supplemental Fig. S17). In ASD-linked genes only, we
also observed significantly lower variance of ubiquitously ex-
pressed disease versus nondisease genes (Fig. 3B).

Next, we hypothesized that the parameters of each gene’s op-
timal OU distributions can predict disease genes by highlighting

A

C D

B

Figure 3. Evolutionary distribution of gene expression helps identify disease-contributing genes.
(A) Essential genes have lower evolutionary variance. Box plots show the distribution of log(evolutionary
variance) (y-axis) of genes essential in culture (top), essential in mice (middle), and haploinsufficient in
human (bottom; dark gray), and their nonessential or haplosufficient counterparts (light gray) in each
of seven tissues (x-axis): (∗∗∗) P<0.001; (∗∗) P<0.01. (B) Disease genes have lower evolutionary variance.
Box plots show the distribution of log(evolutionary variance) (y-axis) of genes linked (dark gray) and not
linked (light gray) to high-penetrance monogenic autism spectrum disorder (top), congenital heart de-
fects (middle), and neuromuscular disease (bottom) in the relevant tissue (brain, heart, and muscle, re-
spectively). (Left) Genes that are restricted in expression (>5 TPM in three or fewer tissues) in
that tissue; (right) genes that are ubiquitously expressed; (∗∗∗) P<0.001; (∗) <0.05. (C,D) Overview of us-
ing evolutionary distributions or GTEx RNA-seq distributions to identify outlier gene expression from
RNA-seq of muscular dystrophy patients. (C ) Two scoring approaches based on evolutionary distribu-
tions (left) or GTEx RNA-seq distributions (right). (D) Table shows number of significant outlier genes,
−log10FDR score, and DMD’s significance rank for all patients with muscular dystrophy when using dis-
tributions estimated from evolutionary data (left) or GTEx RNA-seq data (right).
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outlier, likely pathogenic, gene expression levels in patient data.
This is analogous to causal disease gene discovery by using conser-
vation to identify putatively pathogenic sequence mutations in
whole-exome sequencing (Choi et al. 2009; O’Roak et al. 2011).
To this end, we obtained RNA-seq ofmuscle biopsies of 93 patients
clinically diagnosed with neuromuscular disease (Methods; Sup-
plemental Table S4). For each patient sample, we calculated a
Z-score for each gene to assess how they deviate from the (optimal)
evolutionary fit for that gene’s expression in skeletal muscle, with
correction for multiple hypothesis testing (Methods; Supplemen-
tal Fig. S18A). Compared to GTEx muscle samples from 184
healthy people (The GTEx Consortium 2013), patients had, on av-
erage, 3.2-fold more dysregulated genes overall by this measure
(Wilcoxon rank-sum test P-value =2×10−9) (Supplemental Fig.
S18B), suggesting that the evolutionary parameters fit by the OU
model can be used to detect outlier expression values that are
more likely to be deleterious.

We then tested whether the OUmodel could be used to iden-
tify the causative gene in rare disease analysis. As a proof of princi-
ple, we focused on the subset of eight patients from the muscle
disease cohort who were clinically diagnosed with either Becker
or Duchenne muscular dystrophy, including confirmation of
absent or decreased dystrophin protein via immunoblotting
(Cummings et al. 2017). To compare our approach to a standard
differential expression analysis, we ranked genes by outlier expres-
sion with Z-scores defined based either on (1) comparison to the
mean and variance estimated from our evolutionary data; or (2)
comparison to a mean and variance estimated from only healthy
GTEx human data (Fig. 3C). By our evolutionary data, fewer genes
ranked as significant outliers in each patient (median: 4, range:
0–32), and the DMD gene ranked as either the top or second most
aberrantly expressed gene in six of eightpatients, each showing sig-
nificant underexpression (FDR<10−3) (Fig. 3D). In comparison,
scoring in reference toGTEx expressiondata didnot yield such spe-
cific results: A median of 14.5 genes were outliers (range: 0–250),
only four of eight patients were called as significantly underex-
pressing DMD (FDR<10−3), and its significance in these patients
ranked between 1 and 50. This difference in specificity likely re-
flects more accurate estimates of healthy (tolerable) variance
when using evolutionary versus human data: Although estimates
of mean expression are highly concordant between the two meth-
ods (Supplemental Fig. S19, left), expression variances were almost
always larger when estimated using the evolutionary data set
(Supplemental Fig. S19, right), reflecting the longer period of
time each gene had to fully explore the space of physiologically ac-
ceptable expression levels. Thus, using human GTEx distributions
resulted in many more false-positive genes that appear to be aber-
rantly expressed. Conversely, using the OU model’s estimate of
evolutionary mean and variance of optimal gene expression helps
detect dysregulation of the actual disease gene and could aid novel
disease gene discovery. Importantly, in contrast tomethods for dif-
ferential expression between patient and healthy controls, this
method does not require a control population and can be conduct-
ed for an individual patient sample.

Amultivariate OUmodel can be applied to detect lineage-specific

expression changes

Finally, we explored the use of the OUmodel to detect directional
selection in gene expression. We used an extension of the model
that accounts formultiple selection regimes across a single phylog-
eny bymodeling the distribution of expression level as a multivar-

iate normal distribution whose mean and variance are estimated
for each (predefined) subclade (Fig. 4A; Butler and King 2004;
Rohlfs et al. 2014). A previous application of this extended OU
model identified more than 9000 expression changes across the
mammalian phylogeny (Brawand et al. 2011), but the analysis re-
lied on a smaller phylogeny and thus focused on identifying spe-
cies-specific shifts in gene expression that unfortunately could
be easily confounded by environmental causes or technical effects.

We leveraged our more comprehensive phylogenetic cover-
age and focused on detecting shifts in expression consistent in di-
rection and magnitude across entire subclades of three or more
species, whose samples were collected and sequenced across mul-
tiple sources to mitigate nongenetic confounders. We identified
“differential gene expression” across the tree based on the ap-
proach suggested by Butler and King (2004) (Methods): For each
gene, we applied the standard univariate OU model, which uses
a single optimum for all species, as well as the extendedOUmodel,
which uses two optima—one for the ancestral distribution and one
for the distribution within the clade of interest—and assigned the
best OU model using goodness-of-fit tests. As a conservative mea-
sure, we retained only those genes that also changed at least two-
fold between subclades and had a mean expression level of at
least 1 TPM in one of the subclades.

We first assessed the power of this approach to detect lineage-
specific expression at increasing phylogenetic distances by testing
for differential expression changes in liver samples shared across
all primates (branch length=0.121), rodents (branch length=
0.177), laurasians (branch length=0.407), or lagomorphs (branch
length= 0.575).We construct our data set so that we test for shared
differential expression changes across three species within the
clade of interest against eight comparing species and, to avoid con-
founders from batch effects, we choose the three species of interest
such that the data for each was obtained from a different source
(Supplemental Methods; Supplemental Table S1). As expected,
we find that the number of differentially expressed genes detected
monotonically decreases with increasing distancewithin the clade
of interest, ranging from 470 genes in the primate clade to 327 in
the lagomorph clade (Supplemental Fig. S20A). Unfortunately, our
false discovery rates for this analysis, estimated by shuffling species
expression data (Methods), ranged from 54% to 78%.

To improve our power to detect differential expression, we
turned to our full data set and tested for differential expression
within the primate clade (OUprimates, 5–7 primates versus 8–10
comparing species) and rodent clade (OUrodents, 3–5 rodents versus
10–12 comparing species) (Fig. 4B). Even with this larger phyloge-
ny, our FDRs ranged from 18% to 52%, suggesting that future stud-
ies on differential expression should rely on larger phylogenies.
The varying enrichment sizes across tissues are likely largely driven
by differences in sample sizes; when using a data set matched for
sample sizes across tissues, the percentage of expressed genes
that are differentially expressed is fairly consistent across tissues
(Supplemental Fig. S20B).

Despite the modest power of our analysis, we were able to
achieve FDR<30% in liver (primates: FDR=0.18; rodents: FDR=
0.27) and testis (primates: FDR=0.29; rodents: FDR=0.29),
as well as in the primate clade for lung (FDR=0.26) and brain
(FDR=0.18) (Supplemental Fig. S21), and we further examined
these sets of differentially expressed genes. For example, in liver,
we identified 640 and 794 genes with lineage-specific expression
changes in primates and rodents, respectively, highlighting
specific metabolic processes diverging in regulation in each
clade. The expression levels of lineage-specific genes deviated
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significantly from expectation only if there was clade-specific se-
lection (Fig. 4C). Because of the larger set of differentially ex-
pressed genes compared to previous applications, we could
identify functional enrichments among lineage-specific genes
(Supplemental Table S5). We found primate-specific down-regula-
tion of genes related to a number of lipid metabolic processes in
the liver (FDR=1.88×10−11). These processes include peroxisom-
al functions (FDR=2.45×10−8), fatty acid metabolism (FDR=
1.52×10−8), and lipid transport (FDR=3.36×10−3) (Fig. 4D),

and contain known regulators of lipid metabolism such as the
LDL receptor (LDLR) (Brown and Goldstein 1979), hepatic lipase
(LIPC) (Guerra et al. 1997), and the transcription factor PPARA
(Kersten 2014). Thus, the expression of multiple pathways may
have diverged at the ancestral primate branch, consistent with ob-
servations thathuman lipidemia is notwell-modeledbymicewith-
out further genetic modification (von Scheidt et al. 2017). In
other examples, genes involved in regulation of immune response
were down-regulated across rodent livers (FDR=6.97×10−4), and

BA

C

D

Figure 4. Multivariate OU process enables detection of lineage-specific expression changes. (A) Multivariate OU process. Simulated trajectories of ex-
pression (y-axis) over time (x-axis) under a multivariate OU process. Trajectories in gray are sampled from the same distribution (N0) across time, while
trajectories in orange start at the same ancestral distribution (N0) but evolve under a new distribution (N1) after a speciation event. (B) Three tested hypoth-
eses of expression evolution: from left: the univariate OUall model, in which gene expression evolves under a single stabilizing regime across the phylogeny
(black), and two multivariate OU models, OUprimates and OUrodents, in which gene expression evolves under the ancestral regime (black) and a new regime
in the specified subclade (orange). (C) Lineage-specific expression in liver. Pairwise mean squared expression distances in liver samples (y-axis) between a
reference species (labeled black point) and each of the othermammals for genes assigned to each of three testedOUmodels. (Black points) species evolving
under ancestral distribution; (labeled orange points) species evolving under new regime after the lineage split; (solid line) nonlinear regression fit for species
evolving under ancestral distribution. (D) Example processes enriched for lineage-specific expression. Heatmaps show column-normalized expression (red:
high; blue: low) from genes (columns) with lineage-specific expression patterns in three enriched GO categories (FDR <0.05): lipid transport in liver (left),
immune regulation in liver (middle), and microtubule movement in testis (right).
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microtubule-based movement genes (FDR=2.82×10−3) and sper-
matogenesis (FDR=2.82×10−2) were down-regulated across pri-
mates in testis (Fig. 4D), reflecting the known rapid evolution of
immune-related (Kosiol et al. 2008; Areal et al. 2011; Yue et al.
2014) and reproduction-related genes (Swanson et al. 2001;
Torgerson et al. 2002), respectively.

Discussion

Here, we combined a large data set of comparative gene expression
profiles across mammals with systematic analysis and showed that
the divergence of gene expression of one-to-one mammalian
orthologs saturates across evolutionary time, and that this can be
modeled well by an OU process. We further showed how to use
the OUmodel to query for gene function, assess candidate disease
genes for deleterious levels of expression, and identify lineage-spe-
cific evolution of expression.

As with any comparative species analysis, artifacts introduced
from batch effects, or errors in ortholog or transcript annotation
maybias our data. However, the evolutionary patternsweobserved
are not solely driven from a single batch as each data source com-
prises of species that span the entire phylogenetic tree. Additional-
ly, our use of only one-to-one mammalian orthologs helps to
mitigate errors in orthology assignment, and we confirm that the
sequence identity of our annotated transcripts diverges linearly
across evolutionary time, and thus is not driving the observed ex-
pression evolution patterns.

The nonlinear pattern of expression evolution is accurately
modeled by the previously proposed OU process (Hansen 1997),
amodelwhich incorporates bothneutral drift and stabilizing selec-
tion. Although we find that stabilizing selection plays a dominant
role in expression evolution within the mammalian lineage, we
note that the appropriate model is dependent on evolutionary dis-
tance: Within the primate lineage, we do find that expression dif-
ferences diverge near-linearly, corroborating original studies that
proposed a neutral model of expression evolution (Enard et al.
2002; Khaitovich et al. 2004); but at larger evolutionary distances,
stabilizing selectionhas increasinglybigger effects, as hasbeennot-
ed in more recent RNA-seq studies in mammals (Brawand et al.
2011) and Drosophila (Bedford and Hartl 2009; Nourmohammad
et al. 2017).

Importantly, although the OU process accurately models our
data, there are additional factors thatmayconstrainagene’s expres-
sion. These factors include (1) lower bound on gene expression by
definition (i.e., 0 TPM); (2) upper limits of gene expression; (3)
selectivepressures on agene inone tissue that have constraining ef-
fects on the same gene’s expression in other tissues; and (4) selec-
tive pressure on one gene that form trans effects on expression
constraints on other genes. Although cases (1) and (2) represent a
small percentage of all genes tested in our study, especially with
our filter for genes expressed >5 TPM, we are unable to separate
geneswhoseexpression is constraineddue to indirect selective forc-
es, as in cases (3) and (4), from expression levels under direct selec-
tive pressure using our current data. Nevertheless, the OU model
remains an important quantitative tool for describing evolutionary
histories of gene expression and lays groundwork for further inter-
rogation into the mechanisms by which expression evolves.

Although previous studies using the OUmodel with gene ex-
pression data have focused on theoretical aspects of expression
evolution, we now show how to use the OU model to estimate
the distributions of optimal gene expression levels and answer
physiologically and clinically relevant questions about gene func-

tion, including detecting deleterious expression levels from indi-
vidual patient data. Because our data are derived from a variety
of sources that may influence the accuracy of our estimates of evo-
lutionary distributions, we are careful to only analyze relative evo-
lutionary variances (e.g., rank-based GO enrichment tests) or
construct subsets of our data set for analysis that avoid batch ef-
fects (e.g., testing for shifts in expression across multiple species,
each collected from different sources). However, when directly
using evolutionarymean and variance estimates for our disease ex-
pression analysis, we find that our estimates outperform healthy
human data in specifically identifying outlier expression of a dis-
ease gene. This suggests that evolutionary estimates are robust to
technical variance and can ultimately be provided across a variety
of tissue types to aid with scientific and clinical discovery.

We finally apply a multivariate OU model (Butler and King
2004; Rohlfs et al. 2014) to identify lineage-specific expression
changes across clades of species in our data. Although we improve
upon previous studies that relied on smaller data sets, evenwith 17
species, we are unable to reach an FDR below 18%, andwe uncover
fewer differential expression changes shared across more evolu-
tionarily distant clades. This suggests that future studies investigat-
ing lineage-specific expression will require data sampled from
larger phylogenies and would perform better when detecting line-
age-specific expression changes shared across closely related spe-
cies. We also note that a drawback of this approach is that the
tested hypotheses must first be constructed (e.g., primates versus
nonprimates; rodents versus nonrodents), and the best-fitting
model may not be truly reflective of the underlying evolutionary
history. Future investigations on directional selection on expres-
sion in natural and experimental settings will help to refine the
best hypotheses to be tested under this approach.

Looking forward, we anticipate that the OUmodel can be fur-
ther developed for other biological queries, for example, testing for
stabilizing selection across pathways of genes or paralog families,
estimating ancestral expression states, or being applied to other
transcribed regions such as short or long noncoding RNAs. As
shown by our analysis, characterizations of expression across addi-
tional tissue types and species under varied developmental and en-
vironmental contexts will provide increased power and further
insight into the evolution of gene expression and the relationship
between genotype and phenotype.

Methods

RNA-seq for evolutionary data set

RNA samples from dog and rabbit tissues were commercially ob-
tained from Zyagen. RNA samples from ferret tissues were a kind
gift from John Englehardt (University of Iowa). RNA samples
from opossum tissues were a kind gift from Paul Samollow
(Texas A&M). RNA samples from armadillo tissues were a kind
gift from JasonMerkin and Christopher Burge (MIT). All tissue col-
lectionwas approved by IACUCand carried out in accordancewith
respective institutional guidelines. RNA-seq libraries were prepared
as described in Levin et al. (2010) (Supplemental Methods).
Samples were sequenced on an Illumina HiSeq 2000 sequencer,
to a minimum depth of 35 million reads.

Alignment and expression quantification

RSEM v1.2.12 (Li and Dewey 2011) was used with default parame-
ters to align reads to the transcriptomeof each species and to quan-
tify TPM of each gene.

Chen et al.

60 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.237636.118/-/DC1


Normalization of gene expression values

Gene expression values (log10TPM) were normalized using TMM
normalization (Robinson and Oshlack 2010) from the Bioconduc-
tor package edgeR (Robinson et al. 2010). Briefly, TMMnormaliza-
tion assumes that the majority of genes are not differentially
expressed (DE) between samples and estimates a scaling factor be-
tween a pair of samples such that the trimmedmean of log expres-
sion ratios (trimmed mean of M values [TMM]) is equal to 1. It is
reasonable to assume that the majority of genes between pairs of
species are not DE, because even between distant mammals,
such as human and opossum, Pearson’s correlation of expression
level in a given tissue is >0.75.

Fitting OU process parameters

BM and OUmodels were fit to normalized expression values using
the R package ouch (Butler and King 2004) with default parameters.
P-values for each gene were calculated using a likelihood ratio test
comparing the OU (alternative hypothesis) to the BM (null hy-
pothesis) model, and then corrected for multiple hypothesis test-
ing using the Benjamini–Hochberg FDR procedure (Benjamini
and Hochberg 1995).

Samples for neuromuscular disease data set

The cohort of neuromuscular disease patient RNA-seq described in
this study is a superset of that described in Cummings et al. (2017)
(dbGaP accession phs000655.v3.p1) and 30 additional patients.
Tissues were procured under Institutional Review Board (IRB)-
approved protocols at the National Institute of Neurological
Disorders and Stroke (Protocol #12-N-0095), Newcastle University
(CF01.2011), Boston Children’s Hospital (03-12-205R), University
College London (08ND17), UCLA (15-001919), and St. Jude Child-
ren’s Research Hospital (10/CHW/45). Patients consented to
these protocols in clinic visits prior to biopsy. Patient muscle
biopsies were collected as described in Cummings et al. (2017)
and sequenced using the same protocol as in the GTEx project
(Supplemental Methods; The GTEx Consortium 2013).

Alignment and expression quantification of human muscle data

GTEx BAM files were downloaded from dbGaP under accession ID
phs000424.v6.p1 and realigned after conversion to FASTQ files
with Picard SamToFastq. Both patient andGTEx readswere aligned
using STAR 2-Pass v.2.4.2a (Dobin et al. 2013) using hg19 as the ge-
nome reference. Expression was quantified with RNA-SeQC v1.1.8
(DeLuca et al. 2012) using GENCODE v19 annotations.

Detecting outlier expression in patient samples

Genes expression values (log10TPM)were first normalized by TMM
normalization (Robinson andOshlack 2010) to the human skeletal
muscle expression values from the evolutionary data set. For each
gene in each patient sample, a Z-score was calculated using the as-
ymptotic mean and variance estimated from the evolutionary
data. Z-scores were only calculated for genes that were assessed
to fit better under the OU rather than the BMmodel and whose as-
ymptoticmeanwas estimated to be 5 TPM or higher. Z-scores were
converted to P-values and then corrected for multiple hypothesis
testing using the Benjamini–Hochberg FDR procedure. We used
an FDR threshold of 0.01 to initially define significance. Of those,
we removed another 330 genes that scored as a significant outlier
in >25% of the GTEx samples. As a comparator, Z-scores were
also calculated using the sample mean and variance estimated
from healthy human GTEx samples. To ensure comparability be-
tween the two methods, we only calculated Z-scores for genes

that were not filtered out at any steps during the evolutionary
method above.

Detecting lineage-specific expression programs

In all lineage-specific differential expression analyses, P-values
were calculated using a likelihood ratio test comparing each of
the OU models to the BM model and then adjusted for multiple
hypothesis testing using the Benjamini–Hochberg FDR procedure.
For each gene, Akaike and Bayesian Information Criterion (AIC
and BIC) scores were calculated on all models that were significant
against the null to determine the best-fitting model. Both scores
agreed for the best-fitting model in all cases. To estimate the
FDR, we performed the same procedure in each tissue using shuf-
fled expression data, inwhich the expression data fromone species
is randomly reassigned to a different species. (In a related method
[Brawand et al. 2011; Rohlfs and Nielsen 2015], Q-values are de-
rived by directly testing the alternative hypothesis θsubclade≠
θancestral against the null hypothesis θsubclade = θancestral and adjust-
ed for multiple hypothesis testing. However, we found that this
stringent approach resulted in an even larger burden of multiple
testing.) We performed GO enrichment analysis on each set of
up- and down-regulated genes separately, using a background set
of genes with mean expression of at least 1 TPM across all species
in the appropriate tissue.

Data access

RNA-seq raw data from this study (from rabbit, dog, ferret, and
opossum) have been submitted to the NCBI Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE106077. Processed expression data and evolu-
tionary expression distributions for all one-to-one mammalian
orthologs in each tissue context are available at https://portals.
broadinstitute.org/evee/.
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