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Computational systems biology is empowering the study of
drug action. Studies on biological effects of chemical com-
pounds have increased in scale and accessibility, allowing inte-
grationwith other large-scale experimental data types. Here, we
review computational approaches for elucidating the mecha-
nismsof both intendedandundesirable effects of drugs,with the
collective potential to change the nature of drug discovery and
pharmacological therapy.

Empowered by advances in genomic research, target-based
drug discovery promises greater throughput with systematic
knowledge-driven approaches. Target-based drug discovery
starts by identifying genes forwhich perturbation of activity can
yield a desirable phenotype and seeks to discover or engineer
compounds that interact with these genes’ products selectively
to alter the disease state or symptoms in a positive way.
Here, we look at an important problem in target-based drug

discovery: identifying the molecular targets of chemical com-
pounds. Being able to recognize the cellular entities that a com-
pound interacts with helps identify potential therapeutic appli-
cations and undesirable effects and facilitates development of
binding assays for identifying alternative compounds with
greater specificity. High attrition rate is well recognized as a
major hurdle in the drug discovery pipeline (1–3), suggesting a
general insufficiency in the understanding of drug effects in the
initial stages. Even drugs with well establishedmechanisms can
have less understood secondary targets. Such “off-targets” can
lead to unexpected side effects and, in extreme cases, severe
adverse reactions in individuals with certain genotypes (4).
Advances in biotechnology in recent yearsmade it possible to

study genome-wide responses to genetic and chemical pertur-
bations in vivo (5–12). These studies generated unbiased phe-
notypic data that capture drug response on a systems level. The
proliferation of public databases documenting structural,
chemical, and biological activities of chemical compounds also

contributes to a diverse pool of accessible data for studying drug
effects (13, 14). Increasingly rich data sources have outgrown
the ability of humans to reason over the data in its entirety.
However, computational biology offers to reveal novel connec-
tions between chemical compounds, biological entities, and
phenotypes. Here, we will review computational approaches
in systems biology that seek to understand both intended
and undesired effects of known drugs and novel chemical
compounds.

Chemical-Genomic Expression Profiling

DNA microarrays offer the power to characterize genome-
wide changes in gene expression and have had a profound influ-
ence onmolecular biology (15). By using expression profiling to
characterize cell response to genetic and chemical perturba-
tions, associations between genes and drugs can be identified.
Comparative Analysis—In 1998, Marton et al. (16) hypothe-

sized that, because an ideal inhibitory drug inhibits the activi-
ties of its protein target specifically and completely, null
mutants in the corresponding gene should “phenocopy” wild-
type cells treated with the drug. To provide support for this
hypothesis, the authors compared the genome-wide gene
expression profiles of wild-type Saccharomyces cerevisiae cells
exposed to FK506 and cyclosporin A with that of a null mutant
of calcineurin, a protein phosphatase inactivated (indirectly) by
both drugs. They reported that the gene expression patterns of
cells treated with either compound exhibited significant corre-
lationwith those of themutants. In contrast, no correlationwas
observed between the expression profiles of drug-treated cells
and mutants deleted for a randomly selected gene. Similarly,
cells treated with 3-aminotriazole exhibited gene expression
patterns that highly correlatedwith those of null mutants in the
HIS3 gene, which encodes one of the targets of 3-aminotriazole.
Anticipating that drugs inhibiting different molecular targets
may yield similar expression patterns, the authors proposed a
“Decoder” strategy to identify the real drug target given a set of
candidate targets. Based on the authors’ hypothesis, one
expects drug treatment of null mutants in the target gene to
exhibit little expression fluctuation relative to the mutant
strain. Conversely, drug treatment of null mutants in a non-
target should yield expression patterns similar to drug treat-
ment of the wild-type strain. The authors demonstrated that
this strategy can distinguish cna and fpr1 strains, for which
deleted genes are involved in the drug action of FK506, from a
control mutant not expected to be inhibited by the drug. Itera-
tive use of the strategy to identify secondary targets was also
proposed. Cells treated with higher doses of FK506 exhibited
significant expression changes in some genes that showed no
significant expression fluctuation in cna and fpr1 mutants. A
similar off-target expression subpattern based on this set of
genes is found in gcn4mutants, indicating that Gcn4 is a possi-
ble secondary target of FK506. Treatment of gcn4mutants with
FK506 did not lead to significant expression changes in the
majority of this subset of genes relative to gcn4 mutants, sug-
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gesting that Gcn4 is implicated in a secondary FK506 response
pathway.
Similar concepts were revisited at a larger scale by Hughes et

al. (5), who described the “Rosetta” Compendium of 300
genome-wide expression profiles of genemutants or drug treat-
ments versusmock-treated cultures grown in otherwise similar
conditions. In addition to 276 null mutants of viable genes, 11
tetracycline-repressible alleles of essential genes were included.
Two-dimensional hierarchical clustering of the profiles
revealed many biologically relevant clusters. For several of the
13 experiments that involved treatment of cells with well char-
acterized drugs, drug treatment clustered with mutants impli-
cated in a targeted pathway. Examples include lovastatin/hmg2,
itraconazole/erg11, cycloheximide/yef3, hydroxyurea/rnr1, and
tunicamycin/gas1. A novel association was found between
ERG2 and the topical anesthetic dyclonine and was confirmed
in independent experiments.
Lamb et al. (17) used a similar approach to study drugmech-

anisms in mammalian species. The authors profiled the mRNA
expression of �22,000 genes in cultured human cells from sev-
eral cancer cell lines subjected to the treatment of 164 small
molecules, including Food and Drug Administration-approved
drugs. A “query signature” can be searched against these
expression data (referred to as the “Connectivity Map”) to look
for interesting connections with these compounds. The query
signature is a list of genes labeled with binary values indicating
increase or decrease of expression in a biologically interesting
condition such as chemical or genetic perturbations. A rank-
based enrichment analysis similar to that proposed in Ref. 18 is
used to compute the “connectivity score” between the signature
and each drug in the collection. Connectivity scores identified
the uncharacterized drug gedunin as an HSP90 inhibitor based
on connectivity to geldanamycin and its analogs. A conceptual
advance relative to the Rosetta Compendiumwas identification
of compounds with an expression effect opposite that of a ref-
erence profile. For example, the anti-estrogens fulvestrant,
tamoxifen, and raloxifene showed negative connectivity scores
to 17�-estradiol.
Network Reconstruction—Deletions of genes downstream of

a drug target pathway can yield expression patterns similar to
null mutants of the target, hindering target identification via
comparative analyses. Gardner et al. (19) proposed a computa-
tional approach to alleviate this problem. Adapting a technique
from a branch of engineering known as system identification,
the authors proposed network identification by multiple
regression (NIR),3 which reconstructs an approximated causal
network between genes in the drug-affected pathway from
steady-state gene expression patterns exhibited from various
perturbations. Expression is modeled as a weighted sum of
changes due to external perturbations and abundances of reg-
ulatory genes. Weights are estimated using linear regression.
The concept was tested on a nine-gene subnetwork in Esche-
richia coli. Perturbations were delivered by inducing overex-
pression of gene(s) on a plasmid, and expression was measured

using quantitative PCR. By applying the model to expression
data of cells with two genes simultaneously overexpressed, per-
turbed genes were accurately identified. Given expression data
generated from cells treated with mitomycin C, the model
identified known target recA but also flagged another operon
(umuDC).
Although NIR effectively identified primary drug targets

from expression data of a small set of genes, it was not clear if it
would work with genome-scale expression data from microar-
rays. di Bernardo et al. (20) proposed mode-of-action by net-
work identification (MNI) and applied it to 515 whole genome
expression profiles to identify drug targets in S. cerevisiae,
including profiles from the Rosetta Compendium. MNI is sim-
ilar to NIR; however, instead of requiring single gene perturba-
tions to train the network model, MNI can use generic condi-
tions such as drug treatment and environmental stress as
inputs. A recursive approach similar to expectation maximiza-
tion is used to estimate perturbations of specific genes from
steady-state expression profiles. MNI correctly identified per-
turbed genes in 8 of 11 tetracycline-regulatable alleles from the
Rosetta Compendium. The algorithm also identified genes
involved in target-associated pathways for 7 of 9 drugs with
known targets.

Chemical-Genomic Genetic Profiling

Phenotypic assays of cells under simultaneous genetic and
chemical perturbations allow systematic assessment of the
effect of genetic changes on drug response. Fig. 1 summa-
rizes chemical-genetic approaches used to study drug/target
relationships.
Drug Response of Genetic Variants—In the late 1980s,

researchers at the National Cancer Institute (NCI) developed a
drug screen to systematically characterize inhibitory effects of
chemical compounds on the growth of �60 distinct human
tumor cell lines. Most compounds were tested at five concen-
trations to determine the GI50, the concentration at which cell
growth is inhibited by 50% (21). Using these GI50 profiles for
each compound and a database associatingmolecular targets or
modulators of activity in the 60 cell lines, Weinstein et al. (22)
related molecular targets to drugs. The database included
small-scale studies as well as protein expression measured en
masse using two-dimensional PAGE. By computing correlation
of drug/target pairs for 3989 compounds and 113 targets, the
authors found clusters of similar and mechanistically related
compounds (e.g. Taxol analogs, thiosemicarbazones, and the
closely related clinical agents cisplatin and carboplatin). In
another example, the authors identified a cluster of 155 com-
pounds exhibiting highly negative correlation with targets
related to Pgp/Mdr-1 activity and significantly enriched for
Mdr-1 substrates. The approach was used to predict com-
pounds that are particularly active against mutant p53 human
tumor cells.
Brem and Kruglyak (23) studied the properties of quantita-

tive trait locus (QTL) detection from genome-wide gene
expression patterns of 104 segregants from the mating of two
genetically diverse yeast strains, lab strain BY4716 and wild-
strain RM11-1a. Perlstein et al. (10) treated these segregants
with 100 small molecule compounds and measured their

3 The abbreviations used are: NIR, network identification by multiple regres-
sion; MNI, mode-of-action by network identification; QTL, quantitative trait
locus; DAmP, decreased abundance by mRNA perturbation.
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growth at multiple time points. Hierarchical clustering of the
growth data revealed clusters of compounds that induce similar
physiological effects but lack significant structural similarity.
Linkage analysis identified 124 unique linkages between genetic
markers and loci. Seven of eight QTL “hot spots” associated
with multiple compounds are at loci reported to affect the
abundance of multiple transcripts and therefore may contain
pleiotropic regulators. Secondary assays supported the associ-
ations of two loci with distinct compounds.
A major limitation of the approach is its dependence on

informative genetic variation between parental strains. In the
study, Perlstein et al. (10) reported that five loci corresponding
to known targets are undetected in the QTLs, as no variation
exists in these genes between parental strains. For example, two
drugs used in the experiment with known molecular targets
(cycloheximide/RPL41a and RPL41b (24) and haloperidol/
ERG2) were not associated with their targets. Also, associated
loci often contain many genes, making it difficult to pinpoint
the gene responsible for the association.
Gene Dosage Assays—Phenotypic abnormality arising from

function loss of one gene copy in a diploid cell, or haploinsuffi-
ciency, is not common in wild-type organisms (25, 26). How-
ever, Giaever et al. (11) systematically identifiedmany S. cerevi-
siae genes that exhibit haploinsufficiency under certain
conditions, such as in the presence of drugs that target their
gene products. For example, heterozygous deletion strains of
six knowndrug targets exhibited haploinsufficiency in the pres-
ence of the drug that targeted them. The authors explored the

feasibility of using this phenomenon to study drug/target inter-
actions at a larger scale by growing 233 heterozygous deletion
strains competitively in the presence of tunicamycin. The
strains are tagged with molecular barcodes, facilitating quanti-
fication of relative growth rates in a mixed population of com-
peting cells. Drug-induced haploinsufficiency was observed at
three loci, one of which encodes the known target of tunicamy-
cin, ALG7. This exciting finding spurred a series of chemical-
genomic studies at increasing scales.
Lum et al. (6) screened �3500 heterozygous yeast strains in

78 compounds and reported that many known drug targets
displayed significant drug-induced haploinsufficiency. Parsons
et al. (7) conducted a genome-wide drug sensitivity screen on
�4700 viable haploid deletion strains in S. cerevisiae for 12
compounds. Employing genetic interactions previously re-
ported using synthetic genetic array analysis (27) as well as
genetic interactions selectively tested based on known targets
and pathways of the drugs, the authors performed two-dimen-
sional hierarchical clustering of the combined set of chemical-
genetic and genetic interaction profiles. Three known drug/
target pairs were found to cluster together: fluconazole with
ERG1, benomyl with TUB2, and cyclosporine A and FK506
with CNB1. They followed this up with a larger study in 2006
that encompassed 82 compounds and �5000 haploid deletion
strains (8). Cluster analyses using two-dimensional hierarchical
clustering and probabilistic sparsematrix factorization analysis
(28) revealed compounds with related drug effects such as
actin-binding agents and microtubule poisons. The similarity

FIGURE 1. Chemical-genetic approaches for studying drug/target relationships. HIP, haploinsufficiency profiling; HOP, homozygous deletion profiling;
HOPGI, HOP/genetic interactions analysis; MSP, multicopy suppression profiling.
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between the haploid deletion profiles of the breast cancer drug
tamoxifen and amiodarone suggested a common effect of cal-
ciumhomeostasis disruption thatwas novel to tamoxifen. Inde-
pendent assays provided evidence that treatment with both
drugs activated the Ca2�/calcineurin/Crz1 signaling pathway.
Hillenmeyer et al. (9) conducted the largest drug sensitivity
screening to date, testing each of �5000 haploid and �6000
heterozygous diploid deletion strains of S. cerevisiae against
178 and 354 unique conditions, respectively. These conditions
included both environmental and chemical perturbations.
Yan et al. (29) explored “decreased abundance by mRNA

perturbation” (DAmP) alleles, wherein anmRNA-destabilizing
cassette is introduced into the 3�-untranslated region of a gene
as an alternative to heterozygous gene deletions to capture drug
effects. An earlier study of 20 DAmP alleles in yeast reported
mRNA levels in these strains to be �5–50% that of wild-type
levels (30), which is lower than the typical �50% reduction in
heterozygous deletion strains and thereforemore likely to yield
detectable phenotypes. To efficiently barcode large collections
of yeast strains, the authors built a set of “Barcoders,” donor
strains with unique molecular barcodes that can be transferred
to any yeast collection en masse (29), and used them to tag
DAmP strains of 958 essential yeast genes. Relative to wild-type
controls, DAmP alleles exhibited greater sensitivity to drug
treatment compared with heterozygous deletion strains for
most drugs.
The preceding approaches reduced gene dosage to find the

drug target gene, which might be expected to exhibit increased
drug sensitivity. A complementary genetic approach is to seek
genes for which increased gene dosage increases drug resis-
tance, e.g. multicopy suppression of drug sensitivity (31, 32).
Meijer et al. (33) employed a similar approach to identify genes
mediating anti-estrogen resistance in human breast cancer
cells. The cancer cells were infected with retroviral cDNA
libraries derived from human brain and placenta and mouse
embryo. PCR amplification from the integrated construct
revealed genes that enabled proliferation in the presence of
4-hydroxytamoxifen. Thus, seven known genes and one puta-
tive gene were identified in this screen, with the cDNA of the
latter being themost abundant. Subsequent analysis confirmed
the gene to be responsible for tamoxifen resistance and desig-
nated it as BCAR4 (breast cancer anti-estrogen resistance 4).
Hoon et al. (12) integrated haploinsufficiency and homozygous
profiling withmulticopy suppression to study known and novel
compounds. Using heterozygous deletion strains for essential
genes and homozygous deletion strains for nonessential genes,
the authors found that multicopy suppression allowed them to
distinguish target from non-target genes among those genes
exhibiting haploinsufficiency for the drugs rapamycin, metho-
trexate, fluconazole, and calyculin A.
Complementation Assays—Ho et al. (34) explored another

large-scale chemical-genetic approach that diverges from con-
ventional gene dosage-altering assays. To identify targets of a
drug, drug-resistant mutants were isolated.Wheremutants are
recessive and localized to one gene, introducing a wild-type
copy of the mutated gene should restore drug sensitivity. To
apply this approach at large-scale, the authors constructed a
library of barcoded plasmids, each harboring a distinct yeast

ORF (collectively covering �90% of the genome). Plasmids for
each gene were crossed into each drug-resistant mutant strain
using synthetic genetic array technology (27). Potential drug
targets were identified among barcoded plasmids that were
highly depleted upon drug treatment. The assay revealed
known drug mechanisms for cycloheximide and rapamycin.
The sordarin-associated gene EFT2 was also identified using a
yeast strainwith highermutation rates. The novel targetMVD1
was isolated for the drugs theopalauamide and stichloroside,
and secondary analysis suggested that the drugs are likely to act
on the ergosterol pathway modulated by Mvd1 activity.
Complex Phenotypes—Although cell growth is the primary

phenotype used in genetic and chemical perturbation studies,
more complex and specific phenotypes (e.g. cell morphology
traits) can be quantified with microscopy and image analysis
(35–37). These genetic approaches can also be extended to
mammalian organisms using cell lines and gene silencing with
siRNA. Loo et al. (37) conducted image-based profiling ofHeLa
cells under the treatment of 100 compounds. Neumann et al.
(38) performed genome-wide phenotypic profiling of HeLa
cells silenced for each of �21,000 human protein-coding genes
through transfection with RNAi using time-lapse microscopy
and computational image processing to identifymitosis-related
morphological features. Among metazoans, zebrafish is highly
amenable to whole organism large-scale genetic or chemical
screens and serves as a faithful model of a variety of human
diseases (39). A screen for compounds suppressing the
zebrafish mutation gridlock, which models aortic “narrowing”
(coarctation), led to the discovery of two structurally related
compounds that can ameliorate the disease phenotype (40).
The nematode Caenorhabditis elegans is another good model
for somehumanpathways and is amenable to large-scale genet-
ics studies in vivo (41). To circumvent its extensive physical and
enzymatic xenobiotic defenses, Burns et al. (42) developed a
structure-based computational model that predicts bioavail-
ability of small molecules in the worm. The model can be used
to preselect suitable compounds prior to screening and is
expected to accelerate future screening efforts.

Drug/Protein Association Networks

Large-scale efforts in chemical and pharmacological
research have made available vast amounts of chemical-related
information in structured formats that are amenable to compu-
tational integration and analysis (43). This opens up new
opportunities for studying drug effects using systems level com-
putational methods.
Yamanishi et al. (44) constructed a bipartite interaction net-

work between compounds and targets for four classes of human
drug targets (enzymes, ion channels, G protein-coupled recep-
tors, and nuclear receptors) and designed a Euclidean space
matrix representation for the graph based on Gaussian func-
tions. They refer to this matrix as the “pharmacological feature
space.” To predict novel interactions for a protein or a com-
pound that is not within the network, two similarity measures
are used: sequence similarity between the protein and targets in
the network based on sequence alignment (45) and structural
similarity between compounds and drugs in the network based
onSIMCOMP (46). The authors used a kernel regressionmodel
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to represent mapping between structure/sequence similarities
of a new entity (compound/protein) and existing entities in the
network to its predicted vector in the Euclidean space matrix.
Weight parameters in the model are derived from the existing
network by minimizing a loss of function. Given a new protein
or compound, the trainedmodel can then be used to predict its
drug/gene interactions with entities in the network bymapping
the structure/sequence similarities back into the pharmacolog-
ical feature space. He et al. (47) proposed a similar approach
using different feature representations. The frequency of 28
functional chemical groups is used as a descriptor for com-
pounds (48), whereas protein targets are represented by a set of
features based on the concept of “pseudo amino acid composi-
tion” (49). These features include amino acid compositions as
well as summary statistics of the distribution and transition
frequency between different states in the protein sequence for
each of six biochemical and physiochemical properties. A near-
est neighbor approach is used to predict novel drug/target rela-
tionships from existing ones.
Keiser et al. (50) proposed the “similarity ensemble

approach,” which groups proteins based on the chemical simi-
larity of the ligands with which they interact. Using data
extracted from the MDL drug reports, the authors compiled a
set of 246 protein targets, each annotated with hundreds of
drug-like ligands. A similarity score between two protein tar-
gets is computed based on the Tanimoto coefficients between
all possible pairs of ligands such that one ligand is in each target
set. Among protein targets with significant similarity to ligands
associated with methadone, the authors found �-opioid recep-
tors known to be targeted by methadone. They also found M3
muscarinic receptor antagonists, suggesting an off-target rela-
tionship subsequently confirmed by binding assay. Applying
this technique to �12,000 PubChem compounds associated 30
compoundswith unexpected drug effects. The authors selected
two of these, emetine/�2-adrenergic receptors and loperamide/
neurokinin-2 receptors, and established significant binding
affinities for these off-targets in direct binding and function
assays. The same technique was used to identify newmolecular
targets for 3665 compounds, which included 878 Food and
Drug Administration-approved drugs (51). The authors
inspected 184 predictions in detail and tested 30 of them with
radioligand competition assays, of which 23 yielded low inhibi-
tion constants (Ki � 15 �M).
Campillos et al. (52) described the identification of secondary

targets for existing drugs based on the similarity of their side
effects. Terms describing side effects were extracted from drug
package inserts of 746 human-marketed drugs and mapped
onto the UMLS� (UnifiedMedical Language System) ontology.
Similarity between each drug pairwas computed by the number
of common side effects, corrected for dependences between
related terms. Comparing side effect annotations with a refer-
ence set of 502 drugswith knowndrug/target relations from the
MATADOR (53), DrugBank (14), and the Psychoactive Drug
Screening Program (PDSP) Ki (54) Databases, the authors
found an inverse logarithmic correlation between the fre-
quency of a side effect term and the likelihood that drugs with
the term share a commonprotein target. Benchmarking against
the reference set, the authors found the p values of the side

effect similarity score between drug pairs to correlate very well
with target sharing. Using a combined scoring method incor-
porating both two-dimensional Tanimoto chemical similarity
scores and side effect similarity, 2903 pairs of drugs were esti-
mated to share drug targets with a probability of �25%. The
authors tested some of the findings that were most surprising
(little chemical similarity, not known to share targets, and not
known to be in the same therapeutic category). Among the
drugs predicted to share targets with the anti-ulcer drug rabe-
prazole are two other nervous systemdrugs: fluoxetine and per-
golide. Binding assays revealed that like fluoxetine and per-
golide, rabeprazole targets the dopamine receptor D3, which
may explain some of its reported side effects. Among 20 drug
pairs tested, 13 have at least one predicted target validated by in
vitro binding assays.
As more complex organisms are studied, future screens will

inevitably assay phenotypes of greater variety and complexity,
creating new opportunities and challenges for computational
analysis. Creative aggregation andmanipulation of diverse data
such as chemical structure, genomic sequence, ontologies, and
unstructured text data should provide novel ways to under-
stand drug mechanisms from systematically collected data.
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