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SUMMARY

Lipid droplets, which store triglycerides and choles-
terol esters, are a prominent feature of clear cell renal
cell carcinoma (ccRCC). Although their presence in
ccRCC is critical for sustained tumorigenesis, their
contribution to lipid homeostasis and tumor cell
viability is incompletely understood. Here we show
that disrupting triglyceride synthesis compromises
the growth of both ccRCC tumors and ccRCC cells
exposed to tumor-like conditions. Functionally, hyp-
oxia leads to increased fatty acid saturation through
inhibition of the oxygen-dependent stearoyl-CoA de-
saturase (SCD) enzyme. Triglycerides counter a toxic
buildup of saturated lipids, primarily by releasing the
unsaturated fatty acid oleate (the principal product of
SCD activity) from lipid droplets into phospholipid
pools. Disrupting this process derails lipid homeo-
stasis, causing overproduction of toxic saturated ce-
ramides and acyl-carnitines as well as activation of
the NF-kB transcription factor. Our work demon-
strates that triglycerides promote homeostasis by
‘‘buffering’’ specific fatty acids.

INTRODUCTION

Proliferating cancer cells exhibit an increased dependence on

biosynthetic intermediates (Vander Heiden and DeBerardinis,

2017), including fatty acids (FAs) that support the construction

of organelle and plasma membranes. To meet the demand for

elevated FA levels, FA synthase (FASN) overexpression is

commonly observed in multiple cancers (Menendez and Lupu,

2007; Ricoult et al., 2016). Palmitate, the product of FASN enzy-

matic activity, can be further modified by elongation and de-

saturation, where double bonds between carbon atoms are

introduced into long-chain FAs. Stearoyl-coenzyme A (CoA) de-

saturase (SCD), the principal enzyme responsible for desatura-

tion, is critical for sustained viability of a variety of tumor cell
2596 Cell Reports 24, 2596–2605, September 4, 2018 ª 2018 The Au
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types (Igal, 2016). By introducing a double bond into the satu-

rated FA stearate, SCD produces monounsaturated oleate, typi-

cally the most abundant intracellular FA. Although clearly impor-

tant for cell survival, activity of the oxygen (O2)-dependent SCD

enzyme can be constrained by tumor hypoxia (Figure 1A). Pe-

riods of O2 starvation, therefore, lead to a buildup of saturated

FA precursors, causing disruption of endoplasmic reticulum

(ER) membranes and apoptosis (Kamphorst et al., 2013; Young

et al., 2013). Saturated FA-induced toxicity can be alleviated

by supplying exogenous unsaturated lipids (for instance, by

increasing the availability of serum FAs), indicating that lipid up-

take is an important mechanism for maintaining homeostasis in

hypoxic cancer cells (Young et al., 2013).

Accentuated accumulation of neutral lipids in large lipid drop-

lets (LDs) is observed in a subset of tumor types, particularly

clear cell renal cell carcinoma (ccRCC). In ccRCC, this pheno-

type has been linked to genetic loss of the von Hippel-Lindau

(VHL) tumor suppressor, which causes constitutive hypoxia

inducible factor-a (HIFa) stabilization regardless of O2 availabil-

ity. We have previously shown that induction of HIF2a specif-

ically promotes lipid accumulation through upregulation of

PLIN2, the gene encoding the LD coat protein perilipin-2 (Qiu

et al., 2015). PLIN2 loss significantly represses tumor growth,

indicating that LD formation may be driven by HIF2a stabilization

and serves a cytoprotective role in ccRCC. In a separate study,

HIF-dependent repression of FA b-oxidation has also been

demonstrated to contribute to LD accumulation (Du et al., 2017).

LDs are primarily composed of cholesterol esters (CEs) and

triglycerides (TGs), and lipidomic analyses of ccRCC samples

revealed high levels of both in tumors compared with normal

kidney (Saito et al., 2016; Sundelin et al., 2012). TGs consist of

a glycerol backbone and three FAs (Figure 1E), with a significant

diversity in FA chain length and number of double bonds. Their

synthesis requires the activity of the diglyceride acyltransferase

(DGAT) enzymes DGAT1 and DGAT2, which catalyze the

condensation of fatty acyl-CoA with a diglyceride (DG) to form

TG. The two human DGAT enzymes share no homology and

have dissimilar expression patterns (Yen et al., 2008). TGs are

synthesized in the ER, but DGAT2 can also be found on the sur-

face of LDs andmay generate TGs in growing LDs in situ (Wilfling
thor(s).
commons.org/licenses/by/4.0/).
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et al., 2013). To mobilize lipid stores to provide FAs, TGs are

broken down by a series of lipases, and the released FAs can,

in principle, be used for incorporation into other lipid types,

such as phospholipids (PLs), or for mitochondrial oxidation.

Although the protective function of LDs and TG turnover have

been identified in a number of contexts (Bailey et al., 2015; Ben-

saad et al., 2014), the full scope of TG synthesis and catabolism

in tumor cells remains unclear.

Here we evaluated the consequences of limiting TG synthesis

in ccRCC. We found that concurrent inhibition of DGAT1 and

DGAT2 severely compromised in vivo tumor growth because

of increased cell death. This was replicated in cultured cells

exposed to low O2 and serum, mimicking a stressful tumor

microenvironment. Mechanistically, TGs sequester exogenous

unsaturated FAs, particularly oleate, when in ample supply.

When oleate availability becomes limiting during O2 and serum

deprivation, however, oleate is instead released into other lipid

pools. This prevents the buildup of fully saturated, toxic lipids

in cellular compartments outside of LDs. Our work reveals a dy-

namic mechanism by which TGs act as buffers for cellular lipid

homeostasis, especially under the tumor-relevant conditions of

O2 and nutrient limitation.

RESULTS AND DISCUSSION

Disruption of TG Synthesis Compromises ccRCC Tumor
Growth
Although the functional roles of CEs in cancer have been interro-

gated to some extent (Yue et al., 2014), TGs have so far remained

considerably less well studied. We investigated how direct

disruption of TG synthesis by loss of DGAT enzymes affects lipid

homeostasis. DGATs appear to carry out mutually redundant

functions in the storage of both endogenously synthesized and

exogenously derived FAs (Figure 1A). We confirmed their redun-

dancy in A498 ccRCC cells by examining the induction of neutral

lipid stores upon administration of oleic acid conjugated with

BSA versus BSA alone. Although a combination of CRISPR/

Cas9-mediated DGAT2 deletion and DGAT1 pharmacological

inhibition fully abrogated this, loss of neither DGAT individually

was sufficient (Figure S1A). This approach provides the opportu-

nity to precisely control the timing of DGAT inhibition by adding

the DGAT1 inhibitor T863 (DGAT1i) to cells with DGAT2 deletion.

Importantly, DGAT deficiency was complemented with a

CRISPR-resistant DGAT2 cDNA, restoring neutral lipid deposi-

tion (Figure S1A). To study the consequences of TG synthesis in-
Figure 1. DGAT Loss Reduces Tumor Growth and Alters Lipid Compo

(A) Diagram of fatty acid and lipid synthesis and the influence of O2 and exogeno

(B) Growth curves for A498 xenograft tumorswith induced (doxycycline chow) and

shRNA).

(C) Tumor weights after necropsy.

(D) Immunohistochemistry for cleaved caspase-3 and Ki67 in xenograft tumors c

(E) Total TG abundance derived from summing individual TG species abundance

(F) TG species binned according to the number of fully saturated FA chains pres

doxycycline-treated versus control groups.

All results are means of n = 10 tumors (2 tumors per mouse) per arm; error bars

ANOVA, as appropriate; *p < 0.05, **p < 0.01, and ***p < 0.001. ACC, acetyl-

acyltransferase; FASN, fatty acid synthase; ns, non-significant; PC, phospha

stearoyl-CoA desaturase (inhibitor); SFA, saturated FA; TG, triglyceride; UFA, un
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hibition in vivo (and employ a complementary approach), we

generated A498 cells expressing both DGAT1 and DGAT2 short

hairpin RNAs (shRNAs) under the control of a Tet-inducible pro-

moter and confirmed that these constructs effectively reduce

DGAT mRNA and protein levels upon doxycycline treatment

(Figures S1B and S1C). After implanting these cells subcutane-

ously in immunocompromised recipients and allowing tumors

to grow to an average size of 300 mm3, mice were fed with either

control or doxycycline-containing chow. A substantial reduction

in both DGAT1 and DGAT2 transcript levels (Figure S1D) and

significantly reduced tumor volume and weight was observed

(Figures 1B and 1C). Immunohistochemical staining of tumor

sections revealed increased numbers of apoptotic cells based

on cleaved caspase-3 staining and decreased numbers of

actively dividing Ki67+ cells (Figure 1D). As anticipated, TG levels

were lower in DGAT-deficient tumors compared with controls

(Figure 1E; Table S1), although the observed differences failed

to reach statistical significance. These results likely reflect the

inherent heterogeneity between cells within solid tumors with re-

gard to TG synthesis and turnover, in addition to variable O2 and

nutrient availability. Nevertheless, a pronounced increase in TGs

containing one or more saturated FAs (R1 saturated FAs [SFAs];

Figure 1F), but not those exclusively carrying unsaturated FAs (0

SFAs; Figure 1F) was observed. Thus, DGAT silencing disrupts

TG FA composition and causes both increased apoptosis and

reduced proliferation of ccRCC tumor cells in vivo.

DGAT Loss Compromises ccRCC Viability in Low O2 and
Serum
We next sought to establish exactly how TG metabolism pro-

motes tumor growth. Because solid tumors are notoriously

poorly perfused and hypoxic (Frantz et al., 2010), we specifically

focused on how serum lipid and O2 limitation results in DGAT

dependency. Of note, combined serum and O2 limitation led to

deteriorated cell viability upon DGAT knockdown (Figure 2A).

Because hypoxia limits SCD activity (Figure S2A) and reduces

cell viability in the absence of exogenous lipid supply (Kam-

phorst et al., 2013; Qiu et al., 2015), we investigated whether

enhanced sensitivity of DGAT-deficient cells to these conditions

is indeed mediated by reduced SCD function. Cells were

exposed to the SCD inhibitor CAY10566, which phenocopied

the effect of O2 deprivation (Figure 2B).

To understand the relationship between serum levels and TG

metabolism, a lipidomic comparison of A498 cells cultured in

either high (5%) or low (0.5%) serum-containing medium was
sition In Vivo

us lipid.

un-induced (control chow)DGAT1 andDGAT2 shRNAs (hereafter calledDGAT

ollected on day 5 of treatment, with accompanying quantification.

after liquid chromatography-mass spectrometry (LC-MS) quantification.

ent and the abundance of each category summed and displayed as a ratio of

represent ± SD (B, D, and F) or ± SEM (C). Statistical significance by t test or

CoA carboxylase; CE, cholesterol ester; DG, diglyceride; DGAT, diglyceride

tidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; SCD(i),

saturated FA. See also Figure S1.
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Figure 2. TGs Promote Cell Viability in Low O2 and Serum by Absorbing FA Saturation

(A) Viability of A498 cells expressing inducible shRNA against DGAT1 and DGAT2 mRNAs (DGAT shRNA), assessed after 72 hr under the indicated conditions

(hypoxia = 0.5% O2; serum deprivation = low serum, 0.5% fetal bovine serum [FBS]) by Annexin-propidium iodide (PI) flow cytometry assay.

(B) Viability of cells expressing inducible DGAT shRNAs after 72 hr under the indicated conditions (SCDi, 1 mM CAY10566) by Annexin-PI assay using flow

cytometry.

(C) Volcano plot showing fold change and significance of alterations in the lipidome of A498 cells cultured in low (0.5%) versus high (5%) serum. Lipids

with R 1.5 fold change and p % 0.05 are displayed in color to denote lipid class.

(D) Changes in FA composition or saturation of TGs, calculated by aggregating TG abundances for species containing 0, 1, or 2+ SFA chains separately. Values

are normalized to control conditions (5% serum).

(E) Lipid class-specific saturation indices (defined by (palmitate + stearate) / oleate) for A498 cells cultured under hypoxic (0.5% O2) versus normoxic conditions

(both in low serum).

(F) As (E) but with pharmacological SCD inhibition (1 mM CAY10566) instead of hypoxia.

(G) Effect of serum deprivation and DGAT shRNA on total TG abundances.

(H) Changes in FA makeup of TGs following DGAT knockdown; values were calculated by aggregating TG abundances for species containing 0, 1, or 2+ SFA

chains separately. Values were normalized to the control condition (vehicle [Veh] treatment).

(legend continued on next page)
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performed, revealing substantial remodeling of the intracellular

lipid composition. Among the most pronounced changes were

significant reductions in CEs as well as in TGs (Figure 2C).

Limiting serum in vitro led to large decreases in the abundance

of unsaturated TGs (Figure 2C) and a shift toward TG saturation

(Figure 2D), as noted for solid tumors (Figures 1E and 1F). A strik-

ing depletion in neutral lipid stores was also confirmed by boron-

dipyrromethene (BODIPY) imaging (Figure S2B), in line with

earlier observations (Bensaad et al., 2014). This indicates that,

in addition toHIF signaling, availability of exogenous serum lipids

is critical for maintaining abundant lipid stores. Increased TG

storage observed under hypoxia appears to be cytoprotective

and renders cells more resistant to subsequent hypoxia and

hypoxia-reoxygenation-mediated cytotoxicity (Bensaad et al.,

2014). Moreover, TGs may also harbor polyunsaturated FAs to

protect them against peroxidation (Bailey et al., 2015). To estab-

lish whether lipid stores ‘‘buffer’’ against lipid saturation in our

system, we determined whether any one class of lipid preferen-

tially ‘‘absorbs’’ alterations in FA saturation under hypoxia. Strik-

ingly, TG composition was affected much more profoundly than

other lipid classes (Figures 2E and S2C), including a loss of

TGs harboring unsaturated FAs and a shift toward increased

TG saturation (Figure S2D). Moreover, these changes were

only observed under low-serum conditions. When A498 cells

were exposed to pharmacological SCD inhibition instead of hyp-

oxia (Figure S2E), we observed a similar but more pronounced

increase in TG saturation (Figure 2F) as well as a stronger effect

on other lipid classes (especially DGs), the direct precursors

for TGs. This difference is most likely due to a combination of

more potent SCD inhibition by pharmacological approaches

compared with hypoxia (leading to increased FA saturation) as

well as a limited capacity of TGs to cope with the increased FA

saturation, leading to ‘‘spill-over’’ into other lipid classes. Impor-

tantly, when other ccRCC cell lines (786-O and UMRC2) were

exposed to lowO2, FA saturation was similarly most pronounced

in TGs, followed by the direct precursor DGs (Figures S2F and

S2G). This suggests that TGs have a capacity to promote cell

viability by balancing the availability of specific FAs.

Serum deprivation reduced intracellular TG abundance (Fig-

ure 2G), in keeping with the BODIPY imaging depicted in Fig-

ure S2B. As demonstrated with in vivo tumor growth (Figures

1E and 1F), DGAT silencing in vitro also caused a further

decrease in TG abundance (Figure 2G) and selective depletion

of unsaturated TGs (Figure 2H). Given that both hypoxia and

DGAT depletion cause increased saturation of the TG pool under

low-serum conditions, we asked whether combination of the two

leads to a cumulative effect; i.e., an even more saturated TG

pool. Indeed, in the setting of low serum availability, O2 depriva-

tion or pharmacological SCD inhibition increased TG saturation

(Figures 2I and 2J). Again, more potent pharmacological SCD in-

hibition (compared with hypoxia) resulted in increased TG satu-

ration relative to O2 starvation. Additional DGAT knockdown

further lowered TG levels (Figure 2G), resulting in an even more
(I) TG saturation indices for the indicated conditions. Values are relative to normo

(J) As (G) but with pharmacological SCD inhibition (1 mM CAY10566). Values are

Data are means of 3 (A, B, and D–J) or 5 (C) replicate wells and were confirmed in

t test or ANOVA, as appropriate. **p < 0.05, and ***p < 0.005. See also Figure S2
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saturated TG pool (Figures 2I and 2J). These results highlight a

protective role of LDs under serum- and O2-limited conditions

through buffering cellular FA saturation.

TGs Neutralize Excess Fatty Acid Saturation through
Release of Stored Oleate
Although the aforementioned protective role of TGs could simply

be due to their ability to sequester excess saturated FAs into

TGs, TG synthesis by DGAT enzymes is more efficient when

the substrates are unsaturated rather than saturated (Listen-

berger et al., 2003). LDs could alternatively protect cells by pref-

erentially releasing unsaturated FAs from stored TGs for use in

the production of cytosolic and membrane-associated lipids.

Because monounsaturated oleate (C18:1) is the single most

abundant FA in TG pools (Figure S3A), its mobilization during pe-

riods of unsaturated lipid deprivation should ameliorate stress by

preventing the synthesis of fully saturated, potentially toxic

lipids. A498 cells experiencing stringent conditions of low serum

and pharmacological SCD inhibition exhibited reduced total TG

levels (Figure 3A), supporting this hypothesis. To further test

this, we assessed the protective potential of oleate, which is

efficiently incorporated into TGs and, consequently, the most

abundant TG FA. A498 cells were pre-treated with oleate under

low-serum conditions before being exposed to SCD inhibition.

Oleate pre-treatment indeed promoted cell viability under these

conditions (Figure 3B), which was largely abolished upon DGAT

silencing, suggesting that it occurs through TGs.

To study the cellular fate of oleate in more detail, we designed

a washout labeling approach (Figure 3C; see STAR Methods for

information about lipid tracing). Serum-starved and, hence, LD-

depleted A498 cells were first exposed to labeled [U13C]-oleate

in the ‘‘loading’’ phase. We employed cells with DGAT2 loss

induced through CRISPR/Cas9-mediated mutagenesis (Fig-

ure S1A) to again precisely time DGAT inhibition by adding

DGAT1i. Following loading, the [U13C]-oleate tracer was

removed, and [U13C]-oleate in the TG pool was left to ‘‘wash

out,’’ allowing its fate (such as re-incorporation into other lipid

classes) to be determined. Mass spectrometry analysis of TGs

post-loading but pre-washout demonstrated that oleate was

avidly incorporated into TGs, mostly producing TGs with three

oleate FAs (Figure 3D; i.e., 33 [U13C]-18:1 versus 23 or 13

[U13C]-18:1). Similarly, BODIPY imaging of neutral lipid stores

was used to confirm that oleate loading led to abundant TG

accumulation, largely prevented by DGAT inhibition (Figure 3E).

Moreover, a non-negligible amount of [U13C]-oleate (C18:1)

was elongated to [13C18]-20:1 (i.e., a C20:1 FA with 18 13C) prior

to its incorporation into TGs like TG (56:3) (Figure 3D; data not

shown). As expected, DGAT inhibition severely limited the incor-

poration of labeled oleate into TGs.

Based on our data, we reasoned that, under conditions of

saturated FA excess, TG oleate mobilization and subsequent

re-esterification into other lipid classes enables continued pro-

duction of lipids with at least one unsaturated FA, preventing
xic untreated cells.

relative to the untreated vehicle control.

independent experiments; error bars represent SD. Statistical significance by

.
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Figure 3. 13C-Oleate Tracing Reveals a Critical Buffering Role for TG-Resident Unsaturated FAs

(A) Effect of SCDi on total TG abundances as measured by LC-MS.

(B) Effect of oleate pre-loading with or without DGAT shRNA on subsequent A498 cell survival (by Annexin-PI) during serum limitation and SCD inhibition.

(C) Schematic of the experimental workflow. DGAT2 knockout cells were serum-starved for 24 hr and then loaded for 24 hr with 10 mM [U13C]-oleate (C18:1) ±

DGAT1 inhibitor (T863, 2 mM). The medium was then replaced and the tracer removed, and cells were subjected to a 48-hr washout.

(D) TG labeling patterns after 24-hr loading with [U13C]-oleate with or without DGATi, where numbers of mono-unsaturated FA (MUFA) and FA carbons are

indicated. 13, 23, and 33 indicate whether TGs have one, two, or three oleates (includes [13C18]-20:1) conjugated to their glycerol backbones.

(E) BODIPY and DAPI staining directly after [U13C]-oleate loading with or without DGATi.

(F) Labeling patterns as assessed by incorporation of the 13C label in 18:1 and 20:1 FAs in TG, DG, PC, and PE species.

(legend continued on next page)
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the synthesis of harmful, fully saturated lipids. To evaluate the

dynamics of oleate redistribution to other lipid species, changes

in bulk [U13C18]-18:1 and [U13C18]-20:1 in TGs, DGs, and mem-

brane phospholipids, phosphatidylcholines (PCs) and phospha-

tidyl ethanolamines (PEs), were analyzed after a 48-hr washout in

low serum (Figure 3F). In accordance with total TG levels (Fig-

ure 3A) and BODIPY imaging (Figure 3E), cells loaded with

labeled oleate (0 hr, �DGAT1i) exhibited a strong reduction in

TG FA labeling over the course of the washout (48 hr). Cells

treated with DGAT1i during loading had lower labeled FA levels

to start, which were almost entirely depleted during washout

(Figure 3F). Analysis of DG, PC, and PE lipids indicated that

[U13C18] mono-unsaturated FAs (MUFAs) were incorporated

into all three classes during loading. Because the exogenous

[U13C]-oleate tracer was removed at the start of washout, we ex-

pected levels of labeled FAs in these lipids (as for TGs) to

diminish because of continuous turnover. This was evidently

the case for the DGAT1i-treated cells because at least a 2-fold

reduction in labeling was observed. Strikingly, this reduction

was not detected in untreated cells, most likely because oleate

originally loaded in the TG pool is subsequently feeding into

DG, PC, and PE lipid pools during washout. By reducing the

TG pool, DGAT inhibition prevents the subsequent flow of oleate

from TGs to other lipid classes during periods of unsaturated

lipid deprivation

Adipose triglyceride lipase (ATGL) and monoacylglycerol

lipase (MAGL) have been shown previously to play supportive

roles in cancer progression (Nomura et al., 2010; Zagani et al.,

2015), suggesting that mobilization of TG stores is critical for

tumor cell metabolism. We investigated the outcome of pharma-

cological inhibition of TG hydrolysis (Figure S3B) and did not

observe appreciable effects of disrupting ATGL or MAGL activity

on the flow of labeled oleate from TG into other lipid types (see

STAR Methods for experimental details). In contrast, inhibition

of hormone-sensitive lipase (HSL) led to accumulation of labeled

DG, in accordance with its ascribed function as a DG lipase (Fig-

ure S3B). HSL inhibition also substantially reduced the washout

of TG labeling and caused more abundant PC labeling than in

untreated cells. The effects of HSL inhibition were confirmed in

two additional ccRCC cell lines (Figure S3C), consistent with

DG’s role as a substrate for PL synthesis. Of note, in 786-O cells,

almost no labeled FAs were left in the TG pool at the end of the

washout experiment, suggesting that the FA buffering capacity

in this cell line is somewhat more limited. This is consistent

with the more pronounced saturation of the DG pool upon

cellular stress (Figure S2F) and our observation that these cells

have lower LD numbers under our conditions (data not shown).

Our findings demonstrate that oleate (and, to a lesser degree,

its elongated C20:1 product) can be released from the TG pool

to feed into other lipid classes and most likely requires HSL to

break down DGs produced by TG hydrolysis.

Based on our extensive labeling studies of TG turnover under

different growth conditions, we propose that TGs act as a buffer
(G) Model of themetabolicmechanism bywhich TGs alleviate the saturation of cer

releasing stored oleate.

Data aremeans of triplicate wells confirmed in independent experiments (A, B, and

error bars represent SD. Statistical significance by t test or ANOVA, as appropria
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for unsaturated FA (mostly oleate; Figure 3D) availability (Fig-

ure 3G). During exposure to high serum lipid and/or oleate levels,

cells store large amounts of oleate in TGs via DGAT activity.

When transitioning to a low-serum environment, TG pools shrink

because of HSL-mediated hydrolysis, and released oleate re-

plenishes other lipid species. This helps maintain a viable FA

composition when cells are additionally experiencing excess

FA saturation, as occurs during tumor hypoxia.

Compromised FA Buffering by TGs Causes Diversion of
Saturated FAs into Toxic Ceramides and Acyl-carnitines
Because ceramides are predominantly generated from

saturated FAs, and excess buildup promotes apoptosis, we

investigated their abundance following DGAT inhibition. DGAT

depletion resulted in a large increase in ceramide levels in

A498 cells treated with SCD inhibitor under serum-deprived con-

ditions (Figure 4A) and A498 xenograft tumors (Figure 4B), along

with acyl-ceramides (Figure 4C). Acyl-carnitines have recently

been shown to be elevated upon DGAT inhibition, contributing

to mitochondrial dysfunction (Nguyen et al., 2017). In line with

this, we observed elevated acyl-carnitine upon DGAT knock-

down in the context of in vitro hypoxia (Figure 4D), in vitro SCD

inhibition (Figure 4E), and in vivo xenograft tumors (Figure 4F).

These changes indicate that disrupted TG synthesis widely

affects lipid homeostasis and accumulation of toxic lipid

species.

To further evaluate the effects of decreased cellular lipid ho-

meostasis through DGAT loss, we performed both in vivo and

in vitro microarray studies. A498 tumor samples harboring

DGAT shRNA were compared with controls, and a gene set

enrichment analysis (GSEA) was performed (Figure 4G). A par-

allel analysis of A498 cells grown under 0.5% serum and

exposed to either 21% O2 or 0.5% O2 for 48 hr, with or without

induction of DGAT shRNA expression, was also performed

(Figures S4A and S4B). The expression of transcriptional tar-

gets of nuclear factor kB (NF-kB) exhibited a striking pattern

of regulation that suggests induction by lipid dysregulation.

In vivo, DGAT depletion led to a significant increase in NF-kB

target gene expression (Figure 4G). In vitro, the same gene

set was enriched by hypoxia, DGAT loss, and the combination

of these two treatments under serum deprivation (Figures S4A–

S4C). Of note, we observed a stepwise increase in many NF-kB

target gene mRNAs by sequentially combining DGAT loss and

hypoxia (Figure S4D). NF-kB is known to be engaged under

conditions of stress and excess saturated FA exposure (Van

Beek et al., 2012; Carluccio et al., 1999; Massaro et al.,

2002), regulating desaturase activity and ovarian cancer stem

cell identity (Li et al., 2017). We therefore hypothesized that

the elevated lipid saturation detected in DGAT-depleted tumors

engages the NF-kB pathway. Using a luciferase reporter, we

confirmed that both basal and tumor necrosis factor a

(TNF-a)-induced NF-kB activity was enhanced by DGAT

loss in A498 cells (Figure 4H). Importantly, NF-kB pathway
tain lipid classes (e.g., PCs) under conditions of unsaturated lipid deprivation by

D) ormeans of three independent experiments each conducted in triplicate (F);

te. *p < 0.05, **p < 0.05, and ***p < 0.005. See also Figure S3.
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Figure 4. DGAT LossModifies Lipid Homeostasis, Elevates Ceramide, Acyl-ceramide, and Acyl-carnitine Levels, and Activates NF-kB Target

Gene Expression

(A) Effect of SCD and DGAT inhibition on ceramide levels in serum-deprived A498 cells in vitro.

(B) Effect of DGAT loss on ceramides in vivo (i.e., A498 xenografts).

(C) Effect of DGAT loss on acyl-ceramides in vivo (i.e., A498 xenografts).

(D) Effect of hypoxia on the FA composition of acyl-carnitines (CARs) on serum-deprived A498 cells in vitro.

(E) Effect of DGAT loss on the FA composition of acyl-carnitines (CARs) on serum-deprived A498 cells in vitro.

(F) Effect of DGAT loss on the FA composition of acyl-CARs in A498 xenograft tumors.

(legend continued on next page)
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engagement was inhibited by the specific NF-kB inhibitor

PS-1145 (Figure 4H) as well as the proteasome inhibitor ixazo-

mib. Of note, ixazomib inhibits NF-kB by stabilizing its negative

regulator inhibitor of kB (IkB) (Mujtaba and Dou, 2011). Serum

deprivation also led to increased NF-kB reporter activity, which

was fully inhibited by administration of both PS-1145 and ixa-

zomib (Figure 4I). Collectively, our data suggest that DGAT defi-

ciency leads to broad disruption of lipid homeostasis, resulting

in unsaturated FA depletion and accumulation of saturated FAs

and, consequently, ceramides, acyl-ceramides, and acyl-carni-

tines (Figure 4J). This is accompanied by activation of NF-kB

signaling, previously documented to respond to increased

saturated FAs. Future work will delineate whether NF-kB

signaling contributes to balancing FA availability during stress-

ful conditions as a prosurvival mechanism.

Altered TG Saturation in ccRCC Patient Samples
Given the requirement for DGAT activity to survive conditions of

excess lipid saturation in our experiments, we determined

whether this is a common feature of human tumor biology. We

therefore re-analyzed published data comparing the TG compo-

sition of ccRCC patient samples and normal kidney tissues

(Saito et al., 2016). As expected, TG levels were strongly

elevated in ccRCC, as documented previously (Sundelin et al.,

2012). However, the fold change was particularly pronounced

for TGs containing one ormore SFAs, demonstrating an increase

in TG saturation (Figure 4K). This increase in ccRCC TG satura-

tion is consistent with TG regulation of FA composition in lipid

pools, as observed in our in vitro experimental system (Figures

3E and 3F). We therefore suggest that increased FA saturation

(and its buffering by TGs) occurs in tumor samples derived

from ccRCC patients.

Conclusion
Although oncogenic signaling alters cellular metabolism to pro-

mote the synthesis of macromolecules, malignant cells are

also programmed to withstand nutrient scarcity (Boroughs and

DeBerardinis, 2015). This metabolic flexibility can involve the in-

duction of scavenging pathways, such as autophagy in RAS- or

BRAF-driven cells (Yang et al., 2011) or macropinocytosis in

KRAS-driven cells deprived of glutamine (Commisso et al.,

2013). Both KRAS and hypoxia promote the uptake of extracel-

lular unsaturated lipids with similar consequences: cells become

more resistant to O2 deprivation and its associated inhibition of

FA desaturases (Kamphorst et al., 2013). Here, in the case of

LDs, hydrolysis of unsaturated TGs supplies unsaturated DGs
(G) Gene set enrichment analysis (GSEA) on RNA as assessed by microarray co

control or doxycycline chow. Normalized enrichment score (NES) allow compari

(H) Effect of DGAT shRNA, NF-kB inhibition, and proteasome inhibition on NF-kB

(I) Effect of serum deprivation on NF-kB luciferase reporter activity.

(J) Schematic of the consequences of DGAT inhibition preceding a period of uns

ceramides as well as increased incorporation of saturated FAs into the PL pool.

(K) Published data comparing the TG composition of ccRCC and normal tissue

species were binned according to the number of fully saturated FA chains presen

ratio of the abundance in normal tissue.

For (A), (D), (E), data aremeans of 5 and for (H) and (I) of 3 replicate wells, and result

means of tumors from 4 tumors. Error bars represent SD. Statistical significance

also Figure S4.
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and FAs as substrates for PL synthesis, maintaining lipid homeo-

stasis during periods of increased FA saturation. We therefore

propose that unsaturated FA storage in TGs contributes to

ccRCCmetabolic plasticity and that its inhibition may effectively

target cancer cells residing in ischemic tumor domains

(Figure 4J).
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STAR+METHODS
KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

DGAT1 Abcam ab54037; RRID: AB_869453

V5 Life Technologies R960-25; RRID: AB_2556564

KI67 Abcam ab15580; RRID: AB_443209

Cleaved Caspase3 Cell Signaling 9661; RRID: 2341188

Calnexin Cell Signaling 2679; RRID: 10827903)

Chemicals, Peptides, and Recombinant Proteins

DMEM Life Technologies 11965-084

Pen/Strep Life Technologies 15140-122

Standard FBS Gemini 900-108

[U13C]-oleate Sigma 490431

T863 DGAT1i Sigma SML0539-5MG

Matrigel Basement Membrane Matrix Corning 356234

200mg/kg doxycycline chow Harlan Labs TD04104

oleic acid- BSA mix Sigma O3008

Butylated hydroxytoluene (BHT) Sigma W218405

SPLASH lipidomix internal standard mix Avanti Polar Lipids 330707

Atglistatin Sigma SML1075

CAY10499 Cayman chemicals 10007875

JJKK048 Tocris 5206

Critical Commercial Assays

Volupac Sartorius 11729265

RNAeasy purification kit QIAGEN 74106

High Capacity RNA-to-cDNA master mix Life Technologies 4387406

TBP Taqman assay Life Technologies HS00427620_M1

ACTB Taqman assay Life Technologies HS01060665_G1

DGAT1 Taqman assay Life Technologies HS01017541_M1

DGAT2 Taqman assay Life Technologies HS01045913_M1

QiaPrep Miniprep kit QIAGEN 27104

BODIPY 493/503 Life Technologies D3922

FITC–Annexin V, PI Kit BD Biosciences 556547

Annexin-V binding buffer BD Biosciences 556454

Deposited Data

In vivo microarray study NCBI GEO GSE117774

In vitro microarray study NCBI GEO GSE117775

Experimental Models: Cell Lines

A498 ATCC HTB-44

786-O ATCC CRL-1932

Experimental Models: Organisms/Strains

NIH-III nude mice (female) 4-6 weeks old Charles River #201

Oligonucleotides

DGAT2 Crispr1: This paper N/A

Forward: caccgTGTGCTCTACTTCACTTGGC

Reverse: aaacGCCAAGTGAAGTAGAGCACA

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DGAT2 Crispr2: This paper N/A

Forward: caccgGTACATGAGGATGGCACTGC

Reverse: aaacGCAGTGCCATCCTCATGTAC

TCCTCTTGTCCCAGGAATCTGC This paper DA182

CACTCAGGATGAGGCCCTTCAG This paper DA184

GAATCTGCTCCTACCTGGGCTG This paper DA183

GTTTCTgctagcATGAAGACCCTCATAGCCGC This paper DA199

GTTTCTgcggccgcTCAATGGTGATGGTGATGATG This paper DA200

gtttctGCGGCCGCtcaGTTCACCTCCAGGACCTCAG This paper DA201

TACTGGGAGTGGCaTGCAGTGCCAT) This paper DA187

ATGGCACTGCAtGCCACTCCCAGTA). This paper DA188

Recombinant DNA

pLKO.1 Scramble Addgene 17920

shDGAT2_5 GE Dharmacon TRCN0000005195

shDGAT1_1 GE Dharmacon TRCN0000036151

Tet-pLKO-puro Addgene 21915

Tet-pLKOneo Addgene 21916

lentiCrisprv2 Addgene 98290

DGAT2 cDNA in pcDNA3.1 vector GeneCopoeia T7986

pCDH-CMV-MCS-EF1-Neo System Biosciences CD514B-1

Software and Algorithms

LipidSearch Thermo Fisher Scientific/

Mitsui Knowledge Industries

IQLAAEGABSFAPCMBFK

MAVEN http://genomics-pubs.princeton.

edu/mzroll/index.php

GraphPad Prism 7.0 GraphPad Software https://www.graphpad.com/

scientific-software/prism/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jurre

Kamphorst (jurre.kamphorst@glasgow.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Subcutaneous xenograft experiments were approved by the Animal Care and Use Committee at the University of Pennsylvania.

10 Female NIH-III nude mice (Charles River; 4–6 weeks old) were injected subcutaneously in both flanks. The injection mix contained

5 million cells in PBS, mixed 1:1 with Matrigel Basement Membrane Matrix (Corning). Tumor volume was monitored by caliper mea-

surements. After tumors reached 300 mm3, mice were split into cohorts of 5 mice receiving doxycycline chow (200 mg/kg; Harlan

Labs) or control chow (Harlan Labs) ad libitum. After experiment completion, animals were sacrificed by CO2 inhalation, and xeno-

graft tumors were dissected for downstream analyses.

Cell Lines and cell culture conditions
Authenticated (short tandem repeat profiling) human cell lines HK-2, 786-O, 769-P, A498, RCC4, RCC10, UOK101, andUMRC2were

obtained from the American Type Culture Collection. Cell lines were routinely passaged in DMEM (GIBCO) with 25 mM glucose and

2 mM L-glutamine with 5% (v/v) fetal bovine serum (FBS, GIBCO) at 37�C and 5% CO2. Cells were split at 80% confluency. All cell

lines described in this study were verified mycoplasma-negative. Experiments were performed in DMEM supplemented with 10 mM

glucose, 2 mM L-glutamine and indicated levels of FBS (Sigma). Hypoxic conditions were maintained at 0.5%O2, 37
�C and 5%CO2

in the InVivO2 Hypoxia Workstation with a Ruskinn Gas mixer Q (Baker Co.). Cell number was assessed using the Countess Cell

Counter (ThermoFisher) or estimated using packed cell volume (PCV, Sartorius Volupac), as appropriate.
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METHOD DETAILS

13C-FA tracing
For the [U13C]-oleate washout experiment, DGAT2 knockout A498 cells were seeded in 6-well plates and serum starved in DMEM

containing 0.5%dialyzed FBS for 24h. Themediumwas then replacedwith newmedium containing 10 mM [U13C]-oleate (Sigma) with

or without DGAT1i (T863, 1 mM) and incubated for 24h. The medium containing [U13C]-oleate was replaced with fresh medium (0.5%

dFBS). Cells were incubated for 48h in these conditions followed by lipid extraction as described in Lipid extraction and liquid chro-

matography - mass spectrometry (LC-MS) analysis, below. The tracing experiment was repeated three times independently with

each condition conducted in triplicate.

qRT-PCR studies
Total RNA was isolated using the RNAeasy purification kit (QIAGEN). cDNA was synthesized using the Applied Biosystems High

Capacity RNA-to-cDNA master mix. qRT-PCR was performed on a ViiA7 Real Time PCR systems from Applied Biosystems. Pre-

designed Taqman primers were obtained from Life Technologies for the following genes: TBP (HS01060665_G1), ACTB

(HS01060665_G1), DGAT1 (HS01017541_M1), and DGAT2 (HS01045913_M1).

DGAT mutant and knockdown lines
DGAT1 and DGAT2 shRNA (specified as DGAT shRNA unless stated otherwise) was achieved by expressing Dox-inducible

shDGAT2_5 (TRCN0000005195) using the Tet-pLKO-puro plasmid and shDGAT1_1 (TRCN0000036151) using the Tet-pLKO-neo.

Lentivirus was generated for each plasmid in HEK293T cells and used to infect the relevant cell line. After selection with puromycin

and G418, the knockdown of both DGAT1 and DGAT2 transcripts was confirmed by qRT-PCR (Taqman probes; ThermoFisher)

DGAT2 knockout cell lines were generated by cloning sgRNA sequences 50-TGTGCTCTACTTCACTTGGC-30 and 50-GTACATGAG

GATGGCACTGC-30 into the lentiviral vector lentiCrisprv2 (Addgene), generating lentivirus in HEK293T cells and transducing ccRCC

cell lines with 25ml of un-concentrated supernatant. After puromycin selection, single cell clones were generated by limiting dilutions

in 96 well plates. Single-cell clones were expanded and genomic DNA was isolated from a portion of the expanded cell population.

PCR of the DGAT2 locus was performed using DA182 (TCCTCTTGTCCCAGGAATCTGC) forward and DA184 CACTCAGGAT

GAGGCCCTTCAG reverse primers. PCR products were TOPO-cloned using the Zero Blunt PCR cloning kit (ThermoFisher) and

transformed into competent E. coli. For each clone, 3-6 colonies were picked and grown overnight in LB-Ampicillin. Plasmid DNA

was isolated using the QiaPrep Miniprep kit (QIAGEN) and sequenced using a nested primer DA183 (GAATCTGCTCC

TACCTGGGCTG). Clones containing mutations in both alleles were tested phenotypically by Bodipy neutral lipid staining, and

LC/MS confirmed reduced TG production (data not shown), as expected. Cells were incubated with 1:50 dilution of oleic acid-

BSA mix (Sigma; 2 mole OA/mole albumin; 100mg/ml albumin) for 16h with and without the presence of 2 mM DGAT1i

(T863, Sigma). Clonal lines with full loss of DGAT2 activity loss had complete abrogation of neutral lipid storage by oleic acid

stimulation when DGAT1 was inhibited. Rescue of DGAT2 loss was performed by cloning DGAT2 cDNA from the pcDNA3.1 vector

(GeneCopoeia) into the pCDH lentiviral expression plasmid pCDH-CMV-MCS-EF1-Neo using the primers DA199 (GTTTCTgctag

cATGAAGACCCTCATAGCCGC), DA200 (GTTTCTgcggccgcTCAATGGTGATGGTGATGATG) as well as DA199 and DA201

(gtttctGCGGCCGCtcaGTTCACCTCCAGGACCTCAG) for expression with and without V5 and Histags. gRNA sites were then

mutated to prevent cutting by Cas9 protein expressed in the mutant cell lines. Synonymous mutations were introduced using

DA187 (TACTGGGAGTGGCaTGCAGTGCCAT) and DA188 (ATGGCACTGCAtGCCACTCCCAGTA).

Flow cytometry assays
For experiments, cells were seeded in 6-well plates 24 hours before the experiment at a cell density that led to 80% confluency at the

end of the experiment. BODIPY 493/503 (Cat D3922) was purchased from Life Technologies and FITC–Annexin V, PI Kit (cat. 556547)

from BD Biosciences. Live cells were washed twice in PBS and incubated in 2 mg/ml BODIPY in PBS for 15 minutes at 37�C. After
staining, cells were washed twice in PBS and re-suspended in Annexin-V binding buffer (BD Cat 556454), passed through a cell

strainer, and analyzed on an Accuri C6 flow cytometer. For viability assays, cells were stained with FITC-Annexin V and PI according

to the manufacturer’s instructions and double-negative cells were deemed viable. Median signal intensity for each well was average

for triplicate samples to determine staining intensity.

Lipid droplet imaging
Cells were seeded on round glass coverslips of 24-well plates and supplemented with 1 mL of medium and exposed to the indicated

conditions. The medium was then aspirated, cells washed once with 1 mL room temperature PBS, fixed with 0.5 mL of 4% formal-

dehyde (Sigma) for 30 min after which excess was removed and cells washed 3x with 1 mL PBS. Cells then were incubated with

0.3mL of 1 mM BODIPY 493/503 (Life Technologies) (excitation wavelength 480nm, emission maximum 515 nm) for 15 min in the

dark, washed 2x with 1 mL PBS, incubated with 0.3 mL of 1 mg/mL DAPI (Sigma) for 15 min in the dark and washed 2x with 1 mL

PBS. Thereafter, the coverslips were mounted on glass slides using Dako Fluorescent Mounting Medium (Dako). Z stack images

were acquired using Olympus FV1000 confocal laser scanning microscope (405 nm laser for DAPI and 488 nm laser for BODIPY)

and processed with ImageJ software.
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Lipid extraction and liquid chromatography - mass spectrometry (LC-MS) analysis
For cultured cells themediumwas aspirated and cells washed 2x with 1mL room temperature PBS. The cells were placed on ice and

quenchedwith 0.75mL of methanol/PBS (1:1, v/v) at�20�C, and kept for 10min. The cells were then scraped into glass tubes (Fisher

Scientific), 0.5 mL chloroform at �20�C (Sigma) and 50 mL of 1 mg/mL methanolic butylated hydroxytoluene (BHT, Sigma) added,

followed by addition of SPLASH lipidomix internal standard mix (Avanti Polar Lipids) at 1 mL per 1*105 cells. This was vortexed for

1 min and centrifuged at 500g for 10 min. The chloroform layer was transferred to a new glass vial, dried under nitrogen gas and

stored at �20�C for further LC-MS analysis. Samples were reconstituted in chloroform/methanol (1:1 v/v) at 50 mL per 1*105 cells

prior to the LC-MS analysis.

For extraction of tumor tissues, 10-35 mg was transferred to ice-cold Precellys lysing tubes, 0.75 mL of methanol/PBS (1:1, v/v)

at �20�C and 50 mL of 1 mg/mL BHT in methanol added, and homogenized using pre-cooled Precellys Tissue Homogenizer

at�10�C. The homogenization program included 3 cycles of 30 s of shacking at 5,000 rpm and 15 s pause per cycle. Further sample

treatment was as for cultured cells, with addition of 0.5 mL chloroform at�20�C and internal standard mix at 10 mL per 10 mg tissue.

Samples were reconstituted at a concentration of 200 mL per 10 mg of tissue in chloroform/methanol (1:1 v/v) prior to the LC-MS

analysis.

Lipidomic analysis was performed using a Q Exactive orbitrap mass spectrometer coupled to a Dionex UltiMate 3000 LC system

(Thermo Scientific). The LC parameters were as follows: 4 mL of sample was injected onto a 1.7 mm particle 1003 2.1mm ID Waters

Acquity CSH C18 column (Waters) which was kept at 50�C. A gradient of (A) water/acetonitrile (40:60, v/v) with 10 mM ammonium

formate and (B) acetonitrile/2-propanol (10:90, v/v) with 10 mM ammonium formate at a flow rate of 0.3 mL/min was used. The

gradient ran from 0% to 40% B over 6 min, then from 40% to 100% B in the next 24 min, followed by 100% B for 4 min, and then

returned to 0% B in 2 min where it was kept for 4 min (40 min total). Lipids were analyzed in both positive and negative mode.

The electrospray and mass spec settings were as follows: spray voltage 3 kV (positive mode) and 3.5 kV (negative mode), capillary

temperature 300�C, sheath gas flow 50 (arbitrary units), auxiliary gas flow 7 (arbitrary units) and sweep gas flow 5 (arbitrary units). The

mass spec analysis was performed in a full MS and data dependent MS2 (Top 10) mode, with a full scan range of 300-1200 m/z, res-

olution 70,000, automatic gain control at 1x106 and a maximum injection time of 250 ms. MS2 parameters were: resolution 17,500,

automatic gain control was set at 1x105 with a maximum injection time of 120ms.

Lipase inhibitor assays
A498, 786-O or UMRC2 cells were grown in 0.5% serum (low serum) for 24h, then loaded with 10 mMU-13C oleate for 24h incubation

under low serum. Labeled oleate was washed out by growing cells under low serum for 48h with or without addition of a lipase in-

hibitor. ATGL inhibitor atglistatin (Sigma SML1075) was used at 50 mM, HSL inhibitor CAY10499 (Cayman chemicals) was used at

50 mM and MAGL inhibitor JJKK048 (Tocris) was used at 50 mM. Cells were then counted and harvested for lipidomic analysis.

Microarray experiments
For in vivo analysis of gene expression following inducible DGAT knockdown, mice bearing 300mm3 tumors from subcutaneously

injected A498 DGAT shRNA cells were fed either doxycycline- or control- chow for 5 days. The animals were then sacrificed, the

tumors harvested and RNA was extracted using the RNEasy kit (QIAGEN). RNA was then deposited with the University of Pennsyl-

vania Molecular Profiling core facility for processing, microarray analysis using the Affymetrix HTA 2.0 Chip and analysis.

Suitability of using 13C-labeled FAs to study lipid metabolism
FAs supplied to cells can be used for oxidation to generate energy, can directly be incorporated into lipids, or can first be further

matured (i.e., elongated, desaturated) prior to lipid assembly. Oxidation of 13C-labeled FAs leads to generation of 13C-acetyl-

CoA, which in turn can be used for the synthesis of new FAs. This would lead to complex labeling distributions that would complicate

interpretation of labeling patterns and hence lipid metabolic events. To determine the feasibility of using 13C-FAs to study lipid meta-

bolism, A498 cells were incubated for 6 hours with 25 mM [U13C]-stearate (C18:0) and labeling of triglycerides was assessed (Fig-

ure S5A). This short time spanwas sufficient to generate extensively labeled TGs. Notably, after correcting for natural 13C occurrence,

the majority of TG isotopologs observed were the unlabeled (M0), the M+18 isotope corresponding to the incorporation of one [U13C]-

C18:0, as well as M+36 and M+54 that result from the incorporation of 2 and 3 labeled FAs, respectively. Some minor odd-labeled

isotopes (M+19, M+37, M+55) were observed; these are most likely caused by imperfect corrections for 13C-natural abundance by

the algorithm. Importantly, no significant partial labeling was observed, demonstrating that FA synthesis from 13C-acetyl-CoA due

to FA oxidation is not detectable and does not complicate FA tracing experiments.

Fragmentation spectra of labeled TGs further confirmed that labeled FAs shorter than 18 carbons do not occur. This is arguably

best demonstrated by the MS2 pattern of TG(48:0) M+18 (one labeled FA, Figure S5B). While one could assume that TG(48:0) is

primarily made up of 3x C16:0 (palmitate), the fragmentation pattern actually reveals a mixture of FA compositions, which each com-

bination totaling 48 carbons (16:0/16:0/16:0, 16:0/18:0/14:0, 12:0/18:0/18:0). This means that these TGs have the samemass and do

not separate by LC-MS. While this should be kept in mind, it does not affect interpretation of the labeling pattern. Importantly, in

TG(48:0) M+18 and other TGs (data not shown) only [U13C]-C18:0 is observed and no shorter 13C-FAs, further demonstrating that

partial oxidation of labeled FAs does not occur in these cells.
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We did find that Labeled stearate is desaturated and elongated leading to FAs such as [U13C]-18:1 and [13C18]-20:0 as well

as longer chain FAs, as evidenced by the direct observation of their acylium ions in MS2 (FAs are observed as their acylium ions

in positive mode MS2, Figure S5C). We therefore concluded that tracing with 13C-labeled FAs is suitable for investigating the

dynamics of lipid metabolism.

QUANTIFICATION AND STATISTICAL ANALYSIS

Lipidomic data processing
Peak detection, peak area quantification, lipid identification, and alignment were performed using LipidSearch (Thermo Fisher

Scientific/Mitsui Knowledge Industries) with standard settings for Q Exactive Product Search. Data was then exported to Excel

and lipid peak areas were normalized to the peak area of the corresponding lipid internal standard using an in-house R script.

The normalized peak areas of identified lipids were used for plotting.

Volcano plots were generated using ggplot2 R package by plotting log Fold change (n = 5 for each condition) against –log P value

(Wickham, 2009). Significant changes with R 1.5-fold and p % 0.05 are indicated in color according to the figure legend.

Saturation indices for different lipid classes are represented as a ratio of total palmitate and stearate to oleate. The total level of

palmitate in individual lipid class was calculated by summing up the intensities of each palmitate-containing lipid multiplied by the

number of palmitate moieties in each lipid (i.e., total palmitate in TG = S (1*TG(16:0/18:0/18:1) + 2*TG(16:0/16:0/18:1) +3*TG(16:0/

16:0/16:0))). The same principle was used for calculation of total stearate and oleate.

For stable isotope tracing experiments MAVEN software was used. A total 13C-FA incorporation value for each lipid class was

calculated by summing up the labeling intensities for those lipids of that class that were most intensely labeled and together

contained R 80% of total label. A labeling intensity per lipid was calculated by summing up the intensities for each labeled isotope

multiplied by the number of labeled FAs for that particular isotope (i.e., total labeling = S (1*M+18 + 2*M+36 +3*M+54)).

Statistical Analysis
For bar plot, the height of the bar represents the mean of all replicates and error bars represent ± SD or ± SEM, as indicated in the

Figure Legends and Supplemental Figure Legends. Replicate numbers, statistical tests used and explanations for error bars are

indicated in the Figure Legends and Supplemental Figure Legends. Statistical significance was derived using R or GraphPad Prism

7.0 by t test or ANOVA, as appropriate; *p < 0.05, **p < 0.01 and ***p < 0.001.

DATA AND SOFTWARE AVAILABILITY

The A498DGAT shRNA in vivomicroarray experiment and the A498DGAT shRNA in vitromicroarray experiment data were deposited

at NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/) under accession numbers GEO: GSE117774 and GSE117775 respectively.
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