
INTRODUCTION

Mammalian target of rapamycin (mTOR), complexes, large 
protein kinases, are composed of multiple protein components. 
mTOR has been discovered over the late decades showing that 
its pathways are involved in various human diseases, such as 
cancer and diabetes, by regulating angiogenesis [1, 2], insulin 
resistance [3], adipogenesis [4], and immune cell activation [5]. 
In various cell types, mTOR shows its critical roles in multiple 
intracellular functions including mitochondrial metabolism, 
autophagy, cytoskeleton organization, protein synthesis and 
lipid metabolism (Fig. 1) [4, 6]. Previous works identified two 
functionally and structurally distinct types of mTOR complexes. 
Type I mTOR complex (mTORC1) is composed of mTOR, raptor, 
mLST8, PRAS40 and DEPTOR. mTORC1 has its functions 

in cell proliferation, growth through the regulation of RNA 
translation, nutrient metabolism and autophagy (Fig. 1A) [7-
10]. mTORC1 signaling pathway is controlled by the signals 
from receptor tyrosine kinase-RAS in the brain. Type 2 mTOR 
complex (mTORC2) is composed of rictor, mSIN1, Protor-1, 
mLST8 and DEPTOR [6, 11]. mTORC2 modulates cell survival 
and proliferation through the activation of AKT/PKB by direct 
interaction and the phosphorylation of AKT/PKB on Ser473 
[12]. However, the upstream signaling molecule which leads to 
mTORC2 activation is not well identified so far (Fig. 1B). These two 
types of mTOR complexes were differentially characterized on the 
basis of rapamycin sensitivity. Rapamycin is the most well-known 
inhibitor of mTOR with higher efficiency on mTORC1 compared 
to mTORC2 [6]. Although detailed regulation mechanisms of 
mTOR activity are not fully understood in the brain, mTOR 
signaling pathway and its upstream tumor suppressor genes (NF1, 
TSC1/2 and PTEN) are very closely associated with various brain 
diseases, including neurodegeneration disorders, brain tumors 
and neurological disorders in children [13-16]. In this article, we 
review the insight into the mTOR activity in neural stem cell (NSC) 
functions thereby illustrating the close relationship between 
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mTOR and the pathological events which are mainly occurred in 
brain developmental disorders and pediatric brain tumors.

ASSOCIATION OF mTOR SIGNALING WITH NSC FUNCTIONS

mTOR in stemness

Stem cells have abilities to self-renew, proliferate and differentiate 
into various lineages of cells (Fig. 2). Maintenance of pluripotency 
and decision to differentiation in various types of stem cells require 
very well controlled expression of multiple transcription factors 
(e.g. OCT4, NANOG and SOX2 in embryonic stem cells) involved 
in stemness [17-20]. Besides of the transcription factor expression, 
in various stem cell populations, mTOR-mediated intracellular 
signaling is also considered as one of the key regulators for 
modulating their stem cell functions (Fig. 2) [21, 22]. In human 
embryonic stem cells, mTOR mediated protein translation is 

essential for the regulation of the stem cell functions. During 
undifferentiated stages, mTORC1/p70S6K activity is maintained 
at lower levels compared to the level of mTORC2 in embryonic 
stem cells. Once the cells start their differentiation, mTORC1/
p70S6K mediated protein translation is increased [22]. Similarly, 
the pluripotency of human induced pluripotent stem cells (iPSCs) 
is controlled by SOX2, a transcription factor which is essential 
for the maintenance of stem cell functions both in embryonic 
stem cells and iPSCs, at an early stages of iPSC formation through 
the transcriptional repression of mTOR [21]. Additionally, 
DEPTOR, an endogenous inhibitor of mTORC1, functions as a 
novel stemness factor maintaining the cells at undifferentiated 
state through the negative regulation of mTOR activity in mouse 
embryonic stem cells modulating its pluripotency and self-renewal 
ability [23]. In the brain, mTOR activity in NSCs is implicated in 
the brain morphogenesis through the modulation of GSK3 and 

Fig. 1. Involvement of mTOR signaling 
in multiple cellular functions. Schematic 
drawing shows the components of mTO
RC1 (A) and mTORC2 (B) complexes and 
their downstream signaling targets.

Fig. 2. The functions of mTOR in NSCs. The activity 
of mTOR complexes is one of the key regulation 
factors for both the maintenance of NSC stemness 
and the process of neuronal and glial differentiation. 
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STAT3 signaling pathways [24, 25]. Although mTOR activity is 
controlled at low level in undifferentiated embryonic stem cells, 
the inhibition of mTOR activity in NSCs also causes serious 
problems through the reduction of stem cell properties in the 
brain. Previously, Ka and colleagues demonstrated that mTOR-
GSK3 signaling pathway activation is essential for the maintenance 
of neural progenitor homeostasis showing that the inactivation 
of mTOR in nestin-positive NSCs results in the smaller size of the 
brain and abnormalities in NSC self-renewal and proliferation [24]. 
Additionally, reduced proliferation and multipotency of NSCs 
are closely related to severe neurodegenerative disorders such as 
Alzheimer’s disease and Parkinson’s disease in aged brains. Recent 
study shows decreased mTOR activity in NSCs of aged brain 
compared to early stages of brains. Moreover, a recent study shows 
that the age-associated decrease in neurogenesis is mainly due to 
reduced proliferation of active NSCs and the stimulation of mTOR 
by the treatment of ketamine, a known chemical mTOR activator, 
restores their impairment in proliferation therefore enhancing 
neurogenesis in the hippocampus of aged mouse brain [26]. These 
observations strongly suggest that the fine tuning the level of 
mTOR activation is essential for the maintenance of stemness in 
various stem cell populations (Fig. 2). 

The function of mTOR signaling pathway in neurogenesis

Neuronal differentiation has to be controlled by fine tuning the 
processes of both spatial and temporal patterning of neurons for 
normal brain development. The defects in neuronal differentiation 
result in abnormal neuronal networks in the brain causing serious 
problems in the functions of cognition, movement and perception. 
In Drosophila , the hyperactivation of insulin receptor/mTOR 
pathway causes the abnormalities in the timing of photoreceptor 
differentiation by downregulation of the mTOR downstream 
transcription factor unk demonstrating that the regulation of 
mTOR activity and its downstream signaling pathway has a 
critical role for the differentiation of photoreceptors during eye 
development [27]. Similarly, mTOR hyperactivation in neural 
precursor populations also increases the abnormalities in neuronal 
differentiation in mammalians. Hyperactivation of mTORC1 
through the ectopic expression of constitutively active Rheb, 
an upstream positive regulator of mTORC1, in subventricular 
neural progenitor cells causes severe problems in neuronal cell 
migration and brain regional distribution of neuronal subtypes 
resulting in olfactory bulb heterotopia and circuit abnormalities 
[28]. Moreover, mTOR signaling pathway is implicated to the 
process of neuronal differentiation from adult NSCs as well 
[26, 29]. In aged brains, decreased neurogenesis is very well 
correlated with cognitive decline. Additionally, Enhancer of zeste 

homolog2 (Ezh2), a gene silencer which is mainly expressed in 
actively dividing NSCs involved in cortical neurogenesis, brain 
morphogenesis and adult neurogenesis, increase the activation 
of AKT-mTOR through the binding to PTEN promoter region 
and the suppression of PTEN expression in NSCs. This series of 
studies demonstrates that deregulation of mTOR activity in NSCs 
could cause serious neurological problems indicating that the 
regulation of mTOR activation in a proper level is crucial for the 
neurogenesis during brain development.

The function of mTOR signaling pathway in gliogenesis

Increasing evidence shows that the functions of glial cells are 
critical for maintaining homeostasis of neurons with important 
roles in energy metabolite supply [30] and the clearance of 
extracellular glutamate [31, 32] and potassium [33], myelination 
[34], modulation of neuronal activity and synaptic formation of 
neurons [35] in the brain. Abnormal gliogenesis is implicated 
with astrocytomas and psychiatric disorders. The effects of 
abnormalities in the function of astrocytes on rett syndrome 
are very well illustrated the studies using animal models and in 
vitro  disease models with human patient-derived iPSCs [36, 37]. 
Similarly, oligodendroglial defects are also considered as one of the 
causing factors of rett syndrome [38]. In the process of astrocyte 
differentiation, mTORC1 signaling pathway has a crucial function. 
Deficiency of Raptor, a component of mTORC1, in NSCs results 
in reduced NSC growth and inhibited astrocyte differentiation 
through the downregulation of mTOR downstream STAT3 
signaling pathway [25]. Additionally, deficiency of RAPTOR, 
a protein component of mTORC1, in neural progenitor cells 
reduces gliogenesis [25]. Similar to mTORC1, hyperactivation of 
rictor containing mTORC2 activation also increases gliogenesis in 
the brain [13].

THE IMPLICATION OF mTOR ACTIVITY IN BRAIN DEVELOP­
MENTAL DISORDERS 

Brain developmental disorders are impairments of the growth 
and the development of CNS organs. Brain diseases caused by 
developmental abnormalities include neurological disorders, 
such as autism, dyslexia, epilepsy, ADHD and mental retardation. 
Besides of these neurological disorders, brain tumors (gliomas, 
ependymomas and medulloblastomas) also have a close 
relationship with the abnormalities of brain regional NSC/
progenitor cell populations during development in children [13, 
39, 40]. In general, both developmental disorders and pediatric 
brain tumors are diagnosed in early developmental stages and 
childhood [41-44] raising a possibility that the NSC/progenitor 



180 www.enjournal.org http://dx.doi.org/10.5607/en.2015.24.3.177

Da Yong Lee

cell populations rather than differentiated brain cells could have 
an implication in disease phenotypes. Although the causing factors 
of the diseases are not fully uncovered, there are several known 
genetic factors which are commonly found in the patients with 
learning disability, autism, epilepsy and pediatric brain tumors. 
Interestingly, some of tumor suppressor genes, such as PTEN, 
TSC1/2 and NF1, in upstream of mTOR are closely associated with 
developmental disorders and pediatric brain tumors, especially 
astrogliomas [45]. 

Pediatric brain tumors 

More recently the importance of NSC/progenitor populations 
has been emphasized in the formation of pediatric brain tumors 
[39, 46]. In many types of pediatric brain tumors, including 
medulloblastomas, astrocytomas and ependymomas, histologically 
identical brain tumors are often composed of distinct subtypes 
which can be separated by their distinct gene expression patterns 
reflecting their region specific cellular origin, the embryonic brain 
region NSC/progenitors [39, 40, 46, 47]. Similarly, our previous 
study shows that brain region specific activation of mTORC2-
AKT in brainstem NSCs but not in cortical NSCs with higher 
rictor in the brainstem compared to neocortex is associated with 
the spatial patterning of astrogliomas (higher frequency in the 
brainstem compared to the neocortex) in neurofibromatosis-1 
(NF1) [13]. Moreover, previous study shows that the malignant 

astrocytomas in adult brain are also arisen from the NSCs in 
the subventricular zone of the lateral ventricle in genetically 
engineered mouse model [48]. In this regard, the determination 
of signaling pathways controlling the cellular functions of NSCs 
is essential for understanding the process of pediatric and adult 
brain tumor formation. mTORC1 complex is considered as the 
prime mediator of receptor tyrosine kinase (RTK) signaling 
through the growth factors, such as EGF and PDGF, regulating 
self-renewal, proliferation and differentiation in brain NSCs [25, 
28]. Generally, RTK activation leads to downstream activation 
of mTOR regulators, including RAS, PTEN, AKT, RHEB and 
TSC1/2. The mutations of PTEN and TSC 1/2 are often detected 
in adult and pediatric brain tumors [49, 50] (Fig. 3). Although 
the mutations of AKT and RAS are relatively rare, these signaling 
molecules can be hyperactivated by the elevation of their positive 
regulation mechanisms in pediatric brain tumors. In NF1 
associated pediatric brain tumors (gliomas), hyperactivation of 
RAS can be induced by the loss of NF1  tumor suppressor gene 
which codes neurofibromin, a negative regulator of RAS [51]. 
Similarly, the elevation of active Akt level can be induced by the 
loss of PTEN, a negative upstream regulator of Akt, in high grade 
gliomas [49]. NSC/progenitors are considered as the cellular 
origin in pediatric gliomas [46] even though the histology of 
pediatric gliomas show that tumor contains a significant number 
of GFAP-positive cells and immune cells as well. The functional 

Fig. 3. Clinical implication of mTOR upstream regulators in pediatric brain tumors and various brain developmental disorders. Receptor tyrosine 
kinase (RTK) signals induced by growth factors (GFs; e.g., EGF and PDGF) lead to the activation of mTOR through the modulation of upstream 
molecules including RAS, PTEN, AKT, RHEB and TSC1/2 in NSCs. The mTOR signal is involved in multiple NSC functions, such as NSC proliferation 
and differentiation into neurons and glial cells. The abnormalities in mTOR activity caused by mutations in PTEN, TSC1/2, RHEB and NF1 
(neurofibromin) (*) are frequently observed in the patients with pediatric brain tumors (gliomas) and neurological disorders (autism, epilepsy, mental 
retardation and ADHD).
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defects of mTOR in NSCs are closely implicated to the pediatric 
gliomagenesis. In NF1 associated pediatric glioma models, loss 
of Nf1 affects NSC proliferation and self-renewal in a gene dose-
dependent manner in vitro  [52]. Moreover, Nf1  inactivation in 
NSCs at embryonic stages is essential for astroglioma formation 
in the optic nerve and chiasm of NF1 mouse models in vivo [46]. 
Similar to NF1, the patients with Tuberous sclerosis complex 
(TSC), an autosomal dominant genetic disorder caused by the 
mutation of TSC1 /2  genes, also have another type of pediatric 
brain tumor called subependymal giant cell astrocytomas (SGCA), 
with an abnormal activation of mTOR signaling [50]. NSCs 
are mainly considered as an important cellular origin of SGCA 
instead of differentiated glia [53, 54] similar to the case in pediatric 
gliomas and medulloblastomas [39, 46]. 

Neurological disorders

Deregulation of tumor suppressors (PTEN, NF1, TSC1  and 
TSC2) also have an implication to various neurological disorders 
such as autism spectrum disorder (ASD), mental retardation, 
epilepsy, learning disability and attention deficit hyperactivity 
disorder (ADHD) in children (Fig. 3) [14, 16, 45, 55-61]. 
Neurofibromin coded by NF1 gene, which has a function as RAS 
negative regulator, is associated with learning disability and ADHD 
in children [59-61]. Even though NF1 participates in the signaling 
pathway of mTOR through RAS inhibition, NF1 associated 
neuronal defects in hippocampal and cerebellar Purkinje neurons 
are more dependent on cAMP and/or Ras-MAPK pathways rather 
than RAS-AKT-mTOR signaling pathways [62, 63]. Mutations in 
TSC1/2 and PTEN are closely associated with autism [14, 16, 45]. 
Clinical reports show that ASD is observed in 20~60% of patients 
affected by TSC [58, 64]. ASD is more commonly observed in 
TSC patients with cognitive impairment although approximately 
20% of TSC-associated ASD is still observed in individuals with 
normal intellectual ability [58, 65, 66]. TSC-associated ASD 
accounts for 1~4% of total cases of ASD [67]. Similar to TSC, 
the inactivation of PTEN, which negatively regulates PI3K/AKT 
in upstream of TSC and mTORC1, is also associated with ASD 
as well [15, 16]. Previous studies show that macrocephaly and 
epilepsy are also observed in homozygous deletion of TSC1 and 
PTEN. The inhibition of mTOR by rapamycin treatment at early 
postnatal stages improves the neurological disease phenotypes 
(macrocephaly and epilepsy) in TSC mouse models [56, 68, 69]. 
Moreover, TSC associated intellectual disability is also improved 
by the treatment of rapamycin in Tsc2+/- mouse models [57]. 
To understand the causes and the detailed processes of these 
neurological disorders, previous studies had been mostly focused 
on the identification of factors causing the malfunction of neurons 

(especially hippocampal neurons and cerebellar Purkinje cells) 
instead of other brain cells including progenitors and glial cells 
in PTEN and TSC associated ASD animal models [16, 55, 70-
72]. However, more recent studies are focused on the importance 
of NSC functions including NSC proliferation, neuronal cell 
fate decision and brain morphogenesis to better understand the 
processes of neurological disorders in children [73, 74]. 

CONCLUSION

Taken together, the studies reviewed here demonstrate that 
delicate activity balance of mTOR complexes is essential for 
both the maintenance of NSC stemness and the differentiation 
into multiple types of brain cells. Although the previous studies 
reviewed in this article demonstrate that deregulations of 
mTOR signaling in NSCs are responsible for a number of brain 
developmental disorders and pediatric brain tumors, it still 
remains a question whether mTOR signaling is also altered in 
developmental brain disorders and pediatric brain tumors without 
the genetic factors listed in this article (TSC, NF1 and PTEN 
mutations). Even though all three genetic factors are involved 
in the regulation of mTOR pathways, patients with each genetic 
factors show clearly distinct disease phenotypes from each other. 
The determination of underlying mechanisms how mTOR 
signaling can be implicated to different disease phenotypes in the 
patients with each genetic factors listed above will be the next goal 
to better understand the relation between mTOR and the diseases 
in children. So far, the studies to determine the mechanisms of 
mTOR regulation and its disease phenotypes have been mainly 
relied on genetically engineered animal models and derived 
primary cultured cells. More recently, in vitro  human disease 
modeling has begun through the formation of patient-derived 
neurons and glia from iPSCs and organogenesis of the patients 
with developmental disorders. Using these technical advances, 
finding the determinants of gene specific disease phenotypes 
in TSC, NF1 and PTEN disease models would be valuable to 
envision of effective therapies for brain developmental disorders 
and brain tumors in children.
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