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ABSTRACT

The Gibbs Centroid Sampler is a software package
designed for locating conserved elements in bio-
polymer sequences. The Gibbs Centroid Sampler
reports a centroid alignment, i.e. an alignment that
has the minimum total distance to the set of
samples chosen from the a posteriori probability
distribution of transcription factor binding-site
alignments. In so doing, it garners information
from the full ensemble of solutions, rather than
only the single most probable point that is the target
of many motif-finding algorithms, including its
predecessor, the Gibbs Recursive Sampler.
Centroid estimators have been shown to yield
substantial improvements, in both sensitivity and
positive predictive values, to the prediction of RNA
secondary structure and motif finding. The
Gibbs Centroid Sampler, along with interactive
tutorials, an online user manual, and information
on downloading the software, is available at: http://
bayesweb.wadsworth.org/gibbs/gibbs.html.

INTRODUCTION

The identification of transcription factor binding sites
(TFBSs) in the promoters of genes is a critical step in the
delineation of the genetic regulatory network of an
organism. A number of motif discovery algorithms have
been developed over the past decade and a half, for the
detection of cis-regulatory sites (1). Most of these
algorithms depend, in one way or another, on finding an
optimal alignment of motif sites. In this article, we
describe the web server for an improved motif discovery
algorithm, the Gibbs Centroid Sampler, which finds a
centroid alignment. The centroid alignment is the align-
ment that has the minimum total distance to the set of
samples chosen from the a posteriori probability

distribution of TFBS alignments. By focusing on the
region of solution space containing the most posterior
probability, rather than on the single solution that is most
probable, this approach significantly enhances the pre-
dictive power of the algorithm. In computational experi-
ments using simulated proteobacterial and yeast data (2),
the centroid sampler showed improved specificity and
positive predictive value over algorithms that report an
optimal solution.

The Gibbs Centroid Sampler is an improved version of
the Gibbs Recursive Sampler (3), which has been used
extensively in the identification of TFBSs (4–8), and has
been available at our Web site for some time (3,9). The
software currently available at the Web site retains all of
the features of the previous versions, including searches
for multiple motif types, multiple instances (sites) of a
motif, palindromic motifs, motifs of varying widths and a
heterogeneous background frequency model (see (3) for
descriptions of these and other features). The users’
choices of options are entered through a web form,
described below, and the output is returned to the user via
e-mail. In addition to the new algorithmic features, the
Web site has been updated to include extensive tutorials
on the use of the Gibbs sampling software for prokaryotic
phylogenetic footprinting and for the analysis of prokary-
otic co-expression data.

The Gibbs Centroid Sampler

A key feature of most sequence-based Gibbs sampling and
expectation maximization algorithms (10,11), is the use of
a probabilistic score that is maximized. Typically, the
alignment that has the maximum of this score is reported
to the user. Previous versions of the Gibbs Sampler used
the posterior probability of the alignment, called the MAP
(maximum a posteriori probability) (12), as a measure of
the quality of the alignment, and thus the alignment that
produced the highest posterior probability (i.e. the MAP
alignment) was returned. The reported MAP was calcu-
lated as the logarithm of the alignment probability minus
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the logarithm of an empty or background alignment.
Thus, the reported value was a measure of the extent to
which a particular alignment was better than background.

The use of methods such as this, which seek to obtain
global or local optimal solutions to inference problems, is
common in computational biology. Typically, however,
the probability of even the best arrangement of motif sites
is extremely small. That is, since motif detection is a high-
dimensional problem, from a Bayesian viewpoint, the data
likelihood will contain an immense number of terms, of
which the optimal solution is simply one. From this
perspective, the question arises, ‘How representative is the
optimum when its probability is very small compared to
the overall probability mass?’

It has been shown in RNA secondary structure
prediction (13) and TFBS discovery algorithms (2,14)
that reliance on the optimal solution can be misleading
and can adversely affect prediction accuracy. Specifically,
Ding et al. (13,15) showed that centroid estimates reduced
errors in RNA secondary structure prediction by 30%,
while simultaneously improving sensitivity, and Newberg
et al. (2) showed similar substantial improvements over
algorithms finding local optima for TFBS discovery in
sequences from phylogenetically closely related species.
Centroid solutions garner information from the full
ensemble of solutions, while MAP solutions focus
exclusively on the single most probable point.

The centroid sampling algorithm

The user supplies to the algorithm a collection of
sequences in FASTA format and enters several para-
meters, such as motif widths, as described below. The
centroid algorithm begins in a manner similar to previous
Gibbs sampling algorithms. It is initialized with a,
typically random, alignment. From this alignment, motif
models are calculated (12). The sampling procedure then
proceeds through the following steps:

(i) A sequence is selected, and the probability of each
possible number of sites, up to the maximum
specified by the user, is calculated based on the
current model;

(ii) the number of sites is sampled;
(iii) the predicted positions and types of the sites are

sampled based on their probabilities, calculated as
described by Thompson et al. (3);

(iv) the motif models are updated based on the sampled
sites in all sequences.

An iteration of the algorithm consists of the completion
of Steps 1–4 for each sequence. In previous versions, this
process repeated until the MAP failed to increase for a
fixed number of iterations. To obtain a sampling solution,
we allow the algorithm to repeat the above procedure
through a burn-in period, typically 2000 iterations. The
burn-in period is required for the sampler to move away
from transient effects of the particular initial conditions.
After the burn-in period, the sampler proceeds, again
through a fixed number of iterations (typically 8000).
During this sampling process, the algorithm tracks
each sampled position. The entire process (burn-in and

sampling iterations) is repeated with a number of different
random starting alignments called ‘seeds’. By default,
20 seeds are used. The samples from each seed are
accumulated, and a centroid alignment solution is
obtained from the accumulated samples; the centroid is
the alignment that minimizes the sum of the pair-wise
distances between it and each of the alignments in the
collection. Thus, the centroid is defined in terms of a
distance measure between pairs of proposed alignments.
The centroid alignment is calculated via a dynamic
programming algorithm.
In previous versions of the sampler, the model update

step (Step 4 above) was accomplished using the predictive
update method (12). The centroid sampler performs the
model update step by sampling a new model from the
posterior Dirichlet distribution of motif or background
models. Starting with the existing model �, the algorithm
draws a new model, �p, using the motif or background
counts from Dir (cþ b), where Dir is the Dirichlet
distribution, and c and b are the current count and
pseudo-count vectors. While predictive update works
when at most one new binding site is chosen between
motif model updates, it is not entirely appropriate in the
present context, where multiple binding sites are chosen
between model updates. This new model update method is
of greatest value in the identification of sites among
aligned sequences derived from multiple phylogenetically
related species (2).

The Gibbs SamplerWeb Site

The Gibbs Sampler Web site consists of three layers, each
offering an increasing number of options for control of the
sampling process. The first page, shown in Figure 1, allows
the user to input sequences, select the version of the Gibbs
Sampler, and control the basic motif parameters (16).

Figure 1. The basic Gibbs Centroid Sampler entry screen.
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While we continue to make earlier versions available for
selection on this page, in most circumstances the centroid
sampler should return better results (2). An e-mail
address, a set of sequences in FASTA format, an optional
initial guess of the total number of sites, the number of
conserved positions in the motif sites, and the maximum
allowable number of sites in any one sequence are entered
on this page. The estimate of the number of sites affects
the initial starting solution for the burn-in process. If it
is not supplied, the default of one site for each motif
type for each sequence is used. We have found this default
adequate for most datasets, and the centroid sampler is
relatively insensitive to reasonably small changes in this
value. The number of conserved positions in the motif
model(s) is a required parameter. This value sets the
minimum width of the predicted sites, although sites may
fragment to a greater width by the inclusion of non-
conserved positions (12). Motif widths for multiple models
can be entered, although it is best to use no more motif
models than is reasonable given the number of expected
TFBS types. Increasing the number of motif models
beyond the number of relevant site types should not
adversely affect the solutions, if the number of burn-in and
sample iterations is adequate (described below), because
extra models will not sample sites sufficiently to be
included in the centroid. However, as the number of
models increases, the program runtime increases
(described below). The maximum number of sites in a
single sequence is also a required parameter for the
centroid sampler. The value entered for this parameter
should be based on knowledge of the biological system
under study. For example, when analyzing bacterial
intergenic sequences for TFBSs, a value of two or three
is typically used, whereas for eukaryotic data, this number
is typically set higher. This parameter sets the maximum
for the total sum of all motif sites in any one sequence.
The sequence data can be pasted into the entry window or
uploaded from a file. Each entry field has an associated
hyperlink, which leads to a page describing the required
data format. From this entry screen, default options will
be automatically selected for the sampling parameters.
The defaults for the centroid sampler include the use of
a heterogeneous background model (16), 20 random seeds,
a burn-in period of 2000 iterations and a sampling period
of 8000 iterations.

Control of sampling parameters

Selection of the ‘Show Advanced Options’ link opens a
page with several more options (Figure 2). Most of these,
such as options for palindromic models, fragmentation,
the Wilcoxon signed-rank test and the number of random
seeds, are available for all sampling modes (site, motif,
recursive and centroid) and have been described earlier
(3,9) New options for controlling the behavior of the
centroid sampler are now also presented on this page. The
‘Burn-in Period’ and ‘Samples’ fields control the numbers
of burn-in and sampling iterations for each seed; these
fields are disabled when non-centroid sampling modes are
selected. Initially, when the centroid sampler is selected,
the ‘Burn-in Period’ and ‘Samples’ fields contain default

values. We have found the defaults of 2000 iterations for
burn-in and 8000 sampling iterations to be broadly
applicable for prokaryotic or eukaryotic data of modest
size. However, for small datasets, in the order of 10 to
20 sequences, each of5200 nucleotides, our experience has
shown that the burn-in and sample iterations can be
reduced (to 1000 and 4000, respectively) without
adversely affecting the results. Conversely, for large
datasets (450 sequences, each of 5000 to 10,000 nucleo-
tides) where the TFBS are likely short and not well
conserved, as is common in eukaryotic sequences, the
number of iterations should be increased for both
parameters.

It is important to note a difficulty that can arise when
the centroid sampler is used with multiple motif models;
specifically, the non-indentifiability of models from finite
mixtures, stemming from label switching (17) among the
various restarts of the algorithm. Gibbs sampling is
inherently a stochastic procedure; in order to avoid
being trapped in regions of low probability, the sampling
process is restarted a number of different times with
different starting seeds. When multiple motif models are
used, the separate seeds can converge to similar solutions,
with different orderings of the motif models. For example,
in the case of two motif models, a particular seed
may converge to a set of sites for model A and sites for
model B. Another seed may converge to the same overall
collection of sites, but with the sites previously labeled as

Figure 2. The Gibbs Centroid ‘Advanced options’ entry page.
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model A now labeled as model B, and sites previously
labeled as model B now labeled as model A. The centroid
solution is obtained by summing the number of times a
given position (i.e. site) is sampled across all restarts and
models, which means that sites from multiple models are
not separated in the output. Furthermore, different
fragmentation models (12) can be generated among the
different seed runs, giving rise to a collection of centroid
sites that differ in length, and making it difficult to
visualize the TFBSs in a more traditional probability
matrix representation.

To address these two difficulties, the selection of the
‘Align Centroid Model’ option causes the Gibbs Centroid
Sampler to use the Gibbs Recursive Sampler to align the
collection of centroid sites. In the case of multiple models,
this process will separate the sites into related groups, and
thus aid identification of the different site types. This
process can also give the user insight into which positions
in the models are highly conserved. It is important to note
that the resulting alignment is neither a MAP alignment
nor a centroid alignment of the complete set of data
sequences. It is provided only to lend additional insight
into the centroid solution.

Program output

Program output is returned via e-mail. The initial portion
of the Gibbs Centroid Sampler output is identical to that
of the other versions of the sampler, simply providing a
list of the options used for the current run, followed by a
list of the FASTA headings for the input sequences (see (3)
for an example). Following these is the list of the sites
making up the centroid model. Figure 3 shows the results
for a set of 18 Escherichia coli sequences; these sequences
are well studied, known to contain binding sites for the
cyclic AMP receptor protein (Crp) (11), and are provided as
a test dataset when the Gibbs Sampler software is down-
loaded. The results in Figure 3 were generated using the
centroid sampler with a motif width of 16, a palindromic
motif model requirement, a maximum number of sites per
sequence of two, heterogeneous background composition,
the default number of restarts (20 seeds), the default burn-in
(2000 iterations) and the default centroid sampling periods
(8000 iterations). The motif models were allowed to
fragment to a width of 24 bases.

At the top of Figure 3 is the set of sites making up the
centroid; the centroid sites are listed in upper case, and
flanking positions are in lower case. The sites correspond
well with the DNaseI footprinted sites for these sequences
(11). The variation in the length of the sites is a result of
different fragmentation models generated during the
sampling periods (mentioned above). The dynamic pro-
gram that calculates the centroid can be found elsewhere
[see the supplementary material for (2)]. The legend below
the list of sites identifies the various columns of the
output. The probability column shows the sampling
frequencies for these sites. These sampling frequencies
are an estimate of the probabilities that the cognate
transcription factors bind at the predicted sites.

The second part of Figure 3 shows an alignment of the
centroid sites. The program generates this alignment by

taking the collection of sites in the centroid, plus their
flanking sequences, and using the Gibbs Recursive
Sampler to find the best alignment among this set of
sites, with at most one site in each sequence. As such, this
is neither a centroid nor an optimal alignment. It is
provided simply to allow the user to identify different site
types (when multiple motif models were used) and to
visualize which positions are highly conserved in the
centroid sites. The format of this alignment is identical to
that of the Gibbs Recursive Sampler previously described
in (3).

Performance

The underlying algorithm for the Gibbs Centroid Sampler
and the Gibbs Recursive Sampler is a forward–backward
algorithm (7). The forward step is the most compute
intensive part of the algorithm, with runtime increasing as
the square of the length of the individual sequences; thus,
the most important factor affecting runtime is the length
of the individual sequences. Other parameters, such as

====================================================================== 
========================== CENTROID RESULTS ========================== 
====================================================================== 

    1, 1      11 tttgt GCTGGTTTTTGTGGCATCGGGCG  agaat      33  0.64 cole1 
    1, 2      54 gtgaa AGACTGTTTTTTTGATCGTTTTC  acaaa      76  0.98 cole1 
    2, 1      56 ttgat TATTTGCACGGCGTCACAC      tttgc      74  0.98 ecoarabop 
    3, 1      78 aataa CTGTGAGCATGGTCATATTTTTA  tcaat     100  0.89 ecobgirl 
    4, 1      55 tgatg TACTGCATGTATGCAAAGGACGT  cacat      77  0.82 ecocrp 
    5, 1      48 atcag CAAGGTGTTAAATTGATCACGTT  ttaga      70  0.72 ecocya 
    6, 1       5  agtg AATTATTTGAACCAGATCGCATTA cagtg      28  0.97 ecodaop 
    6, 2      67 ttgtg ATGTGTATCGAAGTGTGTTGCGG  agtag      89  0.83 ecodaop 
    7, 1      31 gtgta AACGATTCCACTAATTTATTCCA  tgtca      53  0.89 ecogale 
    8, 1      29 ctgca ATTCAGTACAAAACGTGATCAAC  ccctc      51  0.89 ecoilvbpr 
    9, 1       8 cgcaa TTAATGTGAGTTAGCTCACTC    attag      28  0.97 ecolac 
    9, 2      73 gtatg TTGTGTGGAATTGTGAGCGGATA  acaat      95  0.66 ecolac 
   10, 1      11 accgc CAATTCTGTAACAGAGATCAC    acaaa      31  0.97 ecomale 
   11, 1      31 ggctt CTGTGAACTAAACCGAGGTCATG  taagg      53  0.50 ecomalk 
   11, 2      56 atgta AGGAATTTCGTGATGTTGCTT    gcaaa      76  0.78 ecomalk 
   12, 1      41 tttgg AATTGTGACACAGTGCAAATTCA  gacac      63  0.93 ecomalt 
   13, 1      48 ttcat ATGCCTGACGGAGTTCACACTTG  taagt      70  0.79 ecoompa 
   14, 1      78 ttgtg ATTCGATTCACATTTAAACAA    tttca      98  0.89 ecotnaa 
   15, 1      15 gtgaa ATTGTTGTGATGTGGTTAACCCA  attag      37  0.53 ecouxu1 
   16, 1      53 atatg CGGTGTGAAATACCGCACAGATG  cgtaa      75  0.83 pbr322 
   18, 1      75 gaaag TTAATTTGTGAGTGGTCGCACAT  atcct      97  0.99 (tdr) 
Num Sites: 21

Column 1 :  Sequence Number, Site Number 
Column 2 :  Left End Location 
Column 4 :  Motif Element 
Column 6 :  Right End Location 
Column 7 :  Probability of Element 
Column 8 :  Sequence Description from FastA input 

====================================================================== 
======================== Aligned Centroid Sites ====================== 
====================================================================== 

------------------------------------------------------------------------- 
                          MOTIF a 

Motif model (residue frequency x 100)
____________________________________________ 
Pos. #     a   t   c   g  Info 
_____________________________ 
   1 |    19  38  19  23  0.0 
   2 |    .   90   9  .   1.0 
   3 |    .   14   4  80  1.0 
   4 |    .   90   9  .   1.0 
   5 |    19   4  .   76  0.9 
   6 |    85  .    4   9  0.9 

   8 |    28  19  28  23  0.1 
   9 |     4  42  19  33  0.2 
  10 |    47  23   4  23  0.1 
  11 |     9  19  14  57  0.4 

  13 |     4  61   9  23  0.3 
  14 |     9   4  85  .   1.4 
  15 |    71  .   .   28  0.8 
  16 |    23   4  71  .   1.1 
  17 |    66   9   4  19  0.4 
  18 |    23  33  23  19  0.0 

nonsite 28  32  16  22 
site 25  28  19  26

Figure 3. Output from the Gibbs Centroid Sampler.
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the number of sequences, the number of motif models,
the number of seeds and the number of iterations,
affect the runtime linearly. Therefore, due to the increased
number of iterations for burn-in and sampling, the
runtime of the centroid sampler is somewhat greater
than that of the Gibbs Recursive Sampler. Additional
parameters, such as the use of palindromic or direct repeat
models, while not directly affecting the runtime of the
centroid sampler, greatly improve its ability to discover
realistic TFBS by taking into account the biological
characteristics of the system under study. The program
lists the total execution time for the program as the last
line of the output.

Web-based tutorials

The Gibbs Sampler Web site contains tutorials for
prokaryotic phylogenetic footprinting (http://bayesweb.
wadsworth.org/web_help.PF.html) and for analysis of
prokaryotic co-expression data from microarray and
promoter fusion experiments (http://bayesweb.wads

worth.org/web_help_text.CE.html). Links to these pages
are provided on the main Gibbs entry pages. The tutorials
provide guidance to users for all the sampling modes
available (site, motif, recursive and centroid), and for
both the Gibbs Sampler web server and the stand-alone
version of Gibbs. Specifically, the Gibbs Sampler offers a
large array of options, some of which are used to model-
specific aspects of biological sequences, while others
are meant to control details of how the sampling is
done. The tutorials focus on the options that are useful
in modeling the biology of transcription regulation.
The particular examples presented in the tutorials
are drawn from the studies presented in (5,6,8,18).
Each tutorial gives the command line used to run the
analysis, a description of each parameter and why its
particular value was chosen, and a link that will
automatically run the data on the Gibbs Web site with
the Gibbs Centroid Sampler or with the Gibbs Recursive
Sampler. The data from the examples can also be
downloaded to be run with the stand-alone version. It is
important to note that Gibbs sampling is a stochastic
process, and thus results run from the links may differ
slightly from the examples. In addition, although the
examples in these interactive tutorials use prokaryotic
sequence data, the principles described and the reasoning
behind how to choose parameters are species-independent;
all sampling modes, including the Gibbs Centroid
Sampler, can be readily applied to the analysis of
eukaryotic sequences.

The tutorials, besides presenting detailed examples of
the use of the Gibbs software, provide insights into
the interpretation of, and biological reasoning behind,
the computational experiments. The tutorial examples
illustrate how solutions from MAP-based samplers some-
times include low probability sites in the solution. These
sites increase the MAP slightly but may be false positive
predictions. The centroid sampler avoids these low
probability predictions and is thus less likely to make
false positive predictions (2). This is illustrated in the
tutorial example, ‘Co-expression data from a microarray
study ofM. tuberculosis genes’, where the data comes from
microarray results (18) that report a set of co-expressed
genes, a subset of which are likely co-regulated by a
common transcription factor. When the Gibbs Recursive
Sampler is used on the upstream sequences from
these co-expressed genes, the results include several sites
with low probability in the MAP solution, whereas
the Gibbs Centroid Sampler avoids these low probability
sites. The fully Bayesian sampling process that is
performed by the Gibbs Centroid Sampler is more
robust at eliminating these likely false-positive predic-
tions (2) than the process employed in previous versions of
the sampler, where, once a MAP solution was found,
the sampler was allowed (as an option) to sample among
high probability sites in order to find sites which were
sampled reproducibly (i.e. the frequency solution) (3).
Since we began using centroid estimates, we have
discovered that the inclusion of steps that even
partially increase focus on MAP (or near MAP) solutions
have a detrimental impact on the correct identification
of sites.

Motif probability model 
____________________________________________ 
Pos. #    a     t     c     g   
____________________________________________ 
   1 |  0.199 0.376 0.188 0.237 
   2 |  0.026 0.852 0.102 0.021 
   3 |  0.026 0.159 0.058 0.756 
   4 |  0.026 0.852 0.102 0.021 
   5 |  0.199 0.073 0.015 0.713 
   6 |  0.805 0.029 0.058 0.107 

   8 |  0.286 0.203 0.275 0.237 
   9 |  0.069 0.419 0.188 0.324 
  10 |  0.459 0.246 0.058 0.237 
  11 |  0.113 0.203 0.145 0.540 

  13 |  0.069 0.592 0.102 0.237 
  14 |  0.113 0.073 0.794 0.021 
  15 |  0.675 0.029 0.015 0.280 
  16 |  0.242 0.073 0.664 0.021 
  17 |  0.632 0.116 0.058 0.194 
  18 |  0.242 0.332 0.231 0.194 

Background probability model 
        0.313 0.359 0.136 0.192 

16 columns 
Num Motifs: 21 
   1,  1      19 ggttt TTGTGGCATCGGGCGAGA atagc     36 1.00 F cole1 
   1,  2      63 tgttt TTTTGATCGTTTTCACAA aaatg     80 1.00 F cole1 
   2,  1      57 tgatt ATTTGCACGGCGTCACAC tttgc     74 1.00 F ecoarabop 
   3,  1      78 aataa CTGTGAGCATGGTCATAT tttta     95 1.00 F ecobgirl 
   4,  1      65 catgt ATGCAAAGGACGTCACAT taccg     82 1.00 F ecocrp 
   5,  1      52 gcaag GTGTTAAATTGATCACGT tttag     69 1.00 F ecocya 
   6,  1       9 gaatt ATTTGAACCAGATCGCAT tacag     26 1.00 F ecodaop 
   6,  2      62 cttaa TTGTGATGTGTATCGAAG tgtgt     79 1.00 F ecodaop 
   7,  1      26 ttctt GTGTAAACGATTCCACTA attta     43 1.00 F ecogale 
   8,  1      24 gttat CTGCAATTCAGTACAAAA cgtga     41 1.00 F ecoilvbpr 
   9,  1      11 aatta ATGTGAGTTAGCTCACTC attag     28 1.00 F ecolac 
   9,  2      75 atgtt GTGTGGAATTGTGAGCGG ataac     92 1.00 F ecolac 
  10,  1      16 caatt CTGTAACAGAGATCACAC aaagc     33 1.00 F ecomale 
  11,  1      31 ggctt CTGTGAACTAAACCGAGG tcatg     48 1.00 F ecomalk 
  11,  2      63 gaatt TCGTGATGTTGCTTGCAA aaatc     80 1.00 F ecomalk 
  12,  1      43 tggaa TTGTGACACAGTGCAAAT tcaga     60 1.00 F ecomalt 
  13,  1      50 catat GCCTGACGGAGTTCACAC ttgta     67 1.00 F ecoompa 
  14,  1      73 aacga TTGTGATTCGATTCACAT ttaaa     90 1.00 F ecotnaa 
  15,  1      19 aattg TTGTGATGTGGTTAACCC aatta     36 1.00 F ecouxu1 
  16,  1      55 atgcg GTGTGAAATACCGCACAG atgcg     72 1.00 F pbr322 
  18,  1      80 ttaat TTGTGAGTGGTCGCACAT atcct     97 1.00 F (tdr) 
                       ****** **** ****** 

Column 1 :  Sequence Number, Site Number 
Column 2 :  Left End Location 
Column 4 :  Motif Element 
Column 6 :  Right End Location 
Column 7 :  Probability of Element 
Column 8 :  Forward Motif (F) or Reverse Complement (R) 
Column 9 :  Sequence Description from Fast A input 

Figure 3. Continued.
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Additional features

The Gibbs Centroid Sampler can be used for the analysis
of amino-acid sequences. The link from the main Gibbs
Web site page leads to a page allowing the entry of amino-
acid sequences. The Web site also contains a link to an
online user guide, which describes the various parameters
and their input formats, has detailed descriptions of the
output and lists possible error messages and their causes.
The Gibbs Sampler Web site allows a maximum of
1000 sequences of no longer than 10,000 nucleotides in
length. Users with larger datasets are directed to use the
stand-alone version of the Gibbs Sampler.
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