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Abstract

Cellular sumoylation processes are proposed targets for anti-viral and anti-cancer therapies.

We reported that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) dysregulates

cellular sumoylation processes, contributing to its oncogenic potential in EBV-associated

malignancies. Ginkgolic acid and anacardic acid, known inhibitors of sumoylation, inhibit

LMP1-induced protein sumoylation; however, both drugs have adverse effects in hosts.

Here we test the effects of glycyrrhizic acid, a medicinal botanical extract with anti-inflamma-

tory, anti-carcinogenic, and anti-viral properties, on cellular sumoylation processes. While

glycyrrhizic acid is known to inhibit EBV penetration, its affect on cellular sumoylation pro-

cesses remains to be documented. We hypothesized that glycyrrhizic acid inhibits cellular

sumoylation processes and may be a viable treatment for Epstein-Barr virus-associated

malignancies. Results showed that glycyrrhizic acid inhibited sumoylation processes (with-

out affecting ubiquitination processes), limited cell growth, and induced apoptosis in multiple

cell lines. Similar to ginkgolic acid; glycyrrhizic acid targeted the first step of the sumoylation

process and resulted in low levels of spontaneous EBV reactivation. Glycyrrhizic acid did

not affect induced reactivation of the virus, but the presence of the extract did reduce the

ability of the produced virus to infect additional cells. Therefore, we propose that glycyrrhizic

acid may be a potential therapeutic drug to augment the treatment of EBV-associated lym-

phoid malignancies.

Introduction

Protein post-translational modifications, such as ubiquitination and phosphorylation, allow

cells to respond to both external and internal stimuli and are vital to numerous cellular events.

The modification of proteins by the small ubiquitin-like modifier or SUMO was identified in

1997 [1]. There are four characterized human SUMO isoforms (SUMO-1, -2, -3, and -4), and

SUMO-1 and SUMO-2/3 are ubiquitously expressed in the body. Protein sumoylation is simi-

lar to ubiquitination in that it is a dynamic, multi-step process. First, the translated SUMO-

pro-peptide undergoes maturation [2–5]. Second, matured SUMO is activated in an ATP-

dependent manner by the SUMO-activating enzyme [2–5]. Third, the SUMO-conjugating
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enzyme, Ubc9, recognizes the conserved sumoylation motif (CKxD/E motif, where C repre-

sents a hydrophobic amino acid) within the target protein and mediates the formation of an

isopeptide bond with the activated protein and the lysine residue within the SUMO motif of

the target protein [2–6]. De-sumoylation of the target protein is mediated by sentrin-specific

proteases or SENPs [7].

At any given time, only a small percentage of a population of a target protein is found in its

sumoylated form; however, the effect of sumoylation on the target protein can be long-lasting

[8]. The post-translational modification of a protein by SUMO can modulate a protein’s func-

tion in various ways, including its localization, its turnover, and its ability to interact with

other proteins or DNA [6,9,10]. The end result is the modulation of numerous cellular pro-

cesses, such as nuclear trafficking, cell division, DNA replication, DNA damage responses,

transcription, and chromosome segregation [11–17]. Understandably, dysregulation of

sumoylation processes are a feature of a variety of types of cancer [2,18–20].

Because sumoylation processes appear to modulate tumorigenesis, members of the SUMO

machinery have been proposed as potential targets for anti-cancer therapies [2,21]. The most

common target is the SUMO-conjugating enzyme, Ubc9, where sumoylation processes can be

inhibited by knockdown of Ubc9 or over-expression of an enzymatically inactive Ubc9 (Ubc9

C93S) [21]. In addition, the antibiotic Spectomycin B1 can bind directly to Ubc9, inhibiting

the formation of the Ubc9-SUMO intermediate [22]; however, the availability of this antibiotic

is highly limited. There is only one known SUMO-activating enzyme, which is a heterodimer

of SAE1 and SAE2, so regulating its activity or expression can also modulate sumoylation pro-

cesses. Interestingly, the botanical extracts ginkgolic acid (an alkylphenol from Ginko biloba),

anacardic acid (a structural analog of ginkgolic acid), and davidiin (an ellagitannin from Davi-
dia involucrata) bind to the SUMO-activating enzyme (SAE1/2) and impair it from interacting

with and activating the mature SUMO [23,24]. While there are additional cellular targets for

these drugs, their ability to inhibit sumoylation processes has been documented [23–25]. How-

ever, these extracts can be toxic and allergenic at therapeutic doses [26–31]. In the current

study we determined if a fourth, less toxic, botanical extract, specifically glycyrrhizic acid,

could also target the sumoylation process.

Glycyrrhizic acid is a triterpene from licorice root (Glycyrrhiza glabra in southern Europe

and Glycyrrhiza uralensis in east Asia) [32,33], which has been used for traditional medicinal

purposes for almost two thousand years. The most common use for glycyrrhizic acid is to treat

liver disease due to the ability of the drug to inhibit liver fibrosis, steatosis, and necrosis as well

as promote cell regeneration [34]. Glycyrrhizic acid is also reported to have anti-inflammatory,

anti-carcinogenic, and anti-viral properties [32,33,35,36]. Of specific interest to our lab, glycyr-

rhizic acid has been shown to have anti-viral activity to members of the Herpesviridae family

including Epstein-Barr Virus (EBV) [35,37–55].

Following an initial lytic infection, the linear viral genomes circularize, forming episomes,

and establishing life-long latent infections in hosts. Periodically, the latent virus undergoes

reactivation, resulting in the production and release of new infectious virus. EBV establishes a

life-long latent infection in over 90% of the world’s population. Latent EBV infections are asso-

ciated with distinct lymphoid malignancies, including post-transplant lymphoproliferative dis-

order (PTLD), and AIDS-associated CNS lymphomas [56,57]. These malignancies are

characterized as Type III EBV latency, which is also observed in the laboratory in lymphoblas-

toid cell lines (LCLs) that are established by EBV-mediated transformation of naïve B-cells and

exhibit sustained cellular proliferation and survival due to the constitutive activation of cellular

signaling pathways.

The principal viral oncoprotein implicated in these EBV-associated malignancies is Latent

Membrane Protein (LMP)-1, a constitutively activated integral membrane signaling protein
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that mimics the tumor necrosis factor receptor family members, such as CD40 [58]. LMP1

activates multiple signal transduction events through its extensively characterized C-terminal

activating regions, CTAR1 and CTAR2 [58–61]. We identified the first function for the less

studied CTAR3 in its ability to hijack the SUMO-conjugating enzyme and increase the sumoy-

lation of cellular proteins [62]. Our recent work documented that LMP1 also induced the

sumo promoters, increasing the intracellular pools of SUMO available for protein prost-trans-

lational modifications [63]. Together, our findings suggest that LMP1 dysregulates cellular

sumoylation processes in order to maintain viral latency, modulate innate immune responses,

and control oncogenesis [25,62,64].

Glycyrrhizic acid has been proposed to interrupt herpesvirus latency [38,39]. Because we

recently identified a role for sumoylation processes in the maintenance of Epstein-Barr virus

(a ubiquitous human γ-herpesirus) latency [25], we were interested in determining if one

mechanism by which glycyrrhizic acid interrupts herpesvirus latency is by inhibition of cellu-

lar sumoylation processes. We show here that glycyrrhizic acid, a botanical extract often used

for medicinal purposes, inhibits endogenous sumoylation processes in EBV-transformed

LCLs. These findings suggest that glycyrrhizic acid inhibits the SUMO machinery from inter-

acting with SUMO. In addition, treatment with glycyrrhizic acid induced very low levels of

EBV reactivation. Interestingly, the extract did not affect viral replication in ZTA-induced

cells, but as previously documented [46], the presence of glycyrrhizic acid decreased the capa-

bility of new virus to infect new cells. Therefore, we propose that treatment with glycyrrhizic

acid may be beneficial in the treatment of EBV-associated malignancies as well as other dis-

eases in which sumoylation processes are up-regulated.

Materials and methods

Cells

Human embryonic kidney (HEK) 293 cells, paired BL41 cells, and Raji cells were maintained

as previously described [25,62–64]. EBV-transformed LCLs were generated by the Lineberger

Comprehensive Cancer Center Tissue Culture Facility and cultured in RPMI with 10% FBS.

293 EBV WT cells were a gift from Dr. Wolfgang Hammerschmidt (Munich, Germany) and

maintained as previously described [25,65].

Plasmids/siRNA

Flag-LMP1 expression constructs have been described previously [61,66]. GFP-KAP1 was pur-

chased from Addgene. The BZLF1-expressing plasmid was a gift from Dr. Wolfgang Ham-

merschmidt [65].

Immunoprecipitation (Native)

Transfections were performed as previously described [25,64]. 48 hours post-transfection cells

were harvested, washed with PBS, and lysed in 1mL cold cell lysis buffer (RIPA; 20 mM Tris

pH 7.5, 150 mM NaCl, 1% Igepal, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate/

SDS, 1 mM ethylenediaminetetraacetic acid/EDTA) containing DNase I, benzonase, and

EDTA-free protease inhibitors. Following addition of lysis buffer, cells were further disrupted

via a series of four freeze-thaw cycles, and supernatant fluids were collected after centrifuga-

tion at 7500 x g. Supernatant fluids were then incubated with 1 ug of antibody overnight at

4˚C. Magnetic Protein G beads (Life Technologies) were added to the samples, which were

then incubated 4–6 hours at 4˚C. Beads were washed four times with cell lysis buffer and resus-

pended in 4x Laemmli (BioRad) loading buffer.

Glycyrrhizic acid inhibits sumoylation processes
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In vitro sumoylation

In vitro SUMOylation was performed using the SUMO1 Conjugation Kit from Boston Bio-

chem (K-710). The assay was accomplished with 10μM purified substrate protein UBE2K/E2-

25K (SP-200; Boston Biochem) according to the assay protocol provided with the conjugation

kit. Prior to addition of ATP, which triggers SUMOylation reaction, samples were treated with

20μM ginkgolic acid or 3mM glycyrrhizic acid with one reaction left untreated as a control.

For each reaction, a second reaction without ATP was performed as a negative control. Reac-

tions were incubated at 37˚C for 60 minutes, and then 5X SDS buffer containing DTT was

added and the samples were incubated 5 minutes at 90˚C. SDS-PAGE was performed and the

gel stained in Coomassie blue overnight. The gel was then destained in 15% isopropanol and

10% acetic acid for 2 hours before being placed in water and imaged using the ChemiDoc

Touch Imaging System (BioRad).

Western blot analysis

Western blot analyses were performed as previously described [25,62,64,67], with the excep-

tion that samples were transferred to polyvinylidene fluoride membranes (PVDF) using the

TransBlot Turbo Transfer System (BioRad). Following staining and washing with the appro-

priate primary and horseradish peroxidase-conjugated secondary antibodies, bands were visu-

alized with enhanced chemiluminescence (ECL; Advansta) reagent using the ChemiDoc

Touch Imaging System (BioRad).

Viral induction by ZTA

293 EBV WT were induced by transfection of ZTA-expression plasmids. Cells and supernatant

fluids were collected 48 hours after transfection. Total DNA was isolated from cells and super-

natant fluids as previously described [25]. The remaining supernatant fluids were added to

Raji cells. 72 hours later the percentages of GFP-positive Raji cells and the number of GFP-pos-

itive Raji cells per field of view were determined by immunofluorescence microscopy [68].

Real-time PCR

DNase-resistant encapsidated virion associated DNA was harvested and qPCR performed for

gapdh and EBV W-1 using the Bio-Rad Universal SYBR Green Supermix (Bio-Rad) as previ-

ously described [25,69–71]. Samples and experiments were run in triplicate.

Treatment of Cells

Ginkgolic acid C15:1 was purchased from Sigma and glycyrrhizic acid was purchased from

Spectrum Chemical Manufacturing Corporation. Cells were treated with varying concentra-

tions of glycyrrhizic acid (0 mM, 0.5 mM, 1 mM, 2 mM, 3 mM and 4 mM). In some experi-

ments, cells were either treated with DMSO (vehicle control) or 25 μM ginkgolic acid.

Antibodies

Anti-GAPDH (FL-335), anti-PARP (F-2), anti-Ubiquitin (A-5), anti-Myc (9E10), and anti-

caspase 3 (E-8) antibodies were purchased from Santa Cruz. Anti-SENP2 (ab131637), anti-

PIAS1 (EPR2581Y), anti-RanBP2 (ab64276), anti-SAE1 (EPR15398), anti-SUMO-1 (EP298),

and anti-SUMO-2/3 (ab233222) antibodies were purchased from Abcam. Anti-SAE2

(SAB3500487) and anti-UBC9 (SAB1309192) antibodies were purchased from Sigma.

Glycyrrhizic acid inhibits sumoylation processes
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Statistical analysis

Statistical analyses were performed using the unpaired, two-tailed, Student’s T-test. Data are

presented as means ± the standard deviation for samples run in triplicate and independent

experiments performed in triplicate. Differences were considered statistically significant when

P-values were less than 0.05.

Results

Glycyrrhizic acid decreased levels of sumoylated proteins in a dose-

dependent manner

To begin our investigation into the effect of glycyrrhizic acid on sumoylation levels, LMP1-ex-

pressing HEK 293 cells were treated with graduated amounts of glycyrrhizic acid Results

showed that as glycyrrhizic acid levels increased, levels of sumoylated proteins, depicted by the

laddering of slower migrating bands, decreased (Fig 1A). Levels of free SUMO (~12 kDa)

increased as glycyrrhizic acid levels increased (Fig 1A), which suggested that sumoylation pro-

cesses were inhibited resulting in the accumulation of free SUMO. Densitometric analysis of

repeat experiments revealed that glycyrrhizic acid treatment resulted in a consistent dose-

dependent decrease in levels of sumoylated proteins (Fig 1B).

Because of the similarities between sumoylation processes and ubiquitination processes

[6,72], the effect of glycyrrhizic acid on levels of ubiquitinated proteins was also analyzed.

Western blot analyses (Fig 1A) and densitometric analysis of repeat experiments (Fig 1B)

showed no significant changes in levels of free ubiquitin (~9 kDa) or ubiquitinated proteins

(laddering of slower migrating bands) following treatment with glycyrrhizic acid treatment.

Together these data demonstrate that glycyrrhizic acid can inhibit cellular sumoylation pro-

cesses without affecting ubiquitination processes.

To determine if the detected decrease in levels of sumoylated proteins was due to loss of the

SUMO machinery, Western blot analyses were performed to detect specific members of the

SUMO machinery for each step of the sumoylation process (Fig 1A). Findings showed that

treatment with glycyrrhizic acid did not have any effect on endogenous levels of the SUMO-

activating enzyme (the dimer of SAE1 and SAE2), the SUMO-conjugating enzyme (Ubc9), or

the de-sumoylating enzymes (SENP2). Interestingly, higher levels of treatment with glycyr-

rhizic acid did result in decreased levels of E3 SUMO-ligases (PIAS1 and RanBP2). These

results suggest that glycyrrhizic acid can modulate the expression of the SUMO-ligases but

does not have an effect on the expression of the remaining SUMO machinery.

To establish if glycyrrhizic acid could also modulate levels of sumoylated proteins in B-cells,

we used five different B-cell lines. EBV-transformed naïve B-cells (a lymphoblastoid cell line

previously established from an unidentified donor; LCLs), Raji cells, and paired BL41 cell lines

(EBV negative, EBV positive, or infected with a mutant EBV, P3HR1, that has a deletion of

EBNA2 resulting in loss of LMP1 expression [73–75]) were treated with graduated amounts of

glycyrrhizic acid. Results showed that as glycyrrhizic acid levels increased, levels of sumoylated

proteins decreased in all B-cell lines (Fig 1C). Densitometric analysis of repeat experiments

revealed that no significant changes in the decreased levels of sumoylated proteins occurred

when comparing the different B-cell lines (Fig 1B). These findings led us to propose that gly-

cyrrhizic acid inhibits sumoylation processes.

Glycyrrhizic acid affects LCL growth and survival

EBV-transformed LCLs exhibit sustained cellular proliferation and survival due to the consti-

tutive activation of LMP1. Sumoylation processes have been documented to help regulate cell
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Fig 1. Glycyrrhizic acid decreased levels of sumoylated proteins in a dose-dependent manner. A-B) LMP1-expressing HEK 293 cells

were treated with graduated doses of glycyrrhizic acid. 48 hours post-treatment, cells were harvested, lysed, denatured, and A) Western

blot analyses performed to detect SUMO-1/2/3, SAE1, SAE2, Ubc9, PIAS1, RanBP2, SENP2, and Ubiquitin levels. GAPDH was used as

a loading control. B) Densitometric analysis of repeat experiments was performed to determine relative SUMO and relative Ubiquitin

levels. Results are shown as the means ± the standard deviation of experiments performed in triplicate. C) EBV-transformed

Glycyrrhizic acid inhibits sumoylation processes
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division and cell survival [11–17], so cell growth and survival was analyzed. Total cell number,

live cell number, and the percent cell death were quantitated by Trypan Blue exclusion for

LCLs (Fig 2A), Raji cells (Fig 2B), EBV-negative BL 41 cells (Fig 2C), EBV-positive BL41 cells

(Fig 2D), and P3HR1-infected BL 41 cells (Fig 2E) treated with graduated doses of glycyrrhizic

acid. Results showed that control-treated B-cells and B-cells treated with 0.5 mM glycyrrhizic

acid exhibited similar growth and death curves. B-cells treated with 1 mM glycyrrhizic acid

exhibited a slight lag in cell growth, but no significant change in cell death when compared

with control-treated B-cells. Treatment of B-cells with 2, 3, or 4 mM of glycyrrhizic acid inhib-

ited cell growth and significantly (P < 0.05) increased cell death by 96 hours post-treatment

when compared with their control-treated counterparts. These findings suggest that glycyr-

rhizic acid can inhibit B-cell growth and induce B-cell death.

Higher doses of glycyrrhizic acid induce apoptosis

To further analyze the effect of glycyrrhizic acid on cells, Western blot analyses were per-

formed on lysates from LMP1-expressing HEK 293 cells treated with graduated doses of gly-

cyrrhizic acid to detect the cleavage of poly (ADP-ribose) polymerase (PARP) and caspase 3,

which occurs during apoptosis. Data showed that in control-, 0.5 mM-, and 1 mM-treated

cells cleaved PARP and cleaved caspase 3 were not detected (Fig 3A). Increasing levels of

cleaved PARP and cleaved caspase 3 and decreased levels of un-cleaved PARP and un-cleaved

caspase 3 were detected when cells were treated with 2, 3, or 4 mM of glycyrrhizic acid. Similar

experiments were done on a collection of B-cell lines (Fig 3B), and data confirmed that cleaved

PARP was readily detectable in LCLs, Raji cells, BL 41 EBV positive cells, and BL 41 P3HR1

cells treated with 3.0 or 4.0 mM glycyrrhizic acid. The cleavage of PARP was not detected in

BL 41 EBV negative cells. These data suggest that higher doses of glycyrrhizic acid can induce

apoptosis in HEK 293 cells and B-cells, but increased apoptosis is observed in EBV-positive B-

cells when compared with EBV-negative B-cells. While the mechanism behind the increased

PARP cleavage in the EBV-positive cells is unknown, these findings led us to propose that 2

mM of glycyrrhizic acid was the optimal dose of glycyrrhizic acid to inhibit cellular sumoyla-

tion processes in EBV-transformed B-cells, inhibiting cell growth, with modest induction of

cell death.

Glycyrrhizic acid inhibited SUMO from interacting with the sumoylation

machinery

To better understand the mechanism by which glycyrrhizic acid targets sumoylation processes,

the effect of the extract on the interaction of the SUMO machinery with SUMO was investi-

gated (Fig 4A). Native immunoprecipitations were performed to pull-down all proteins inter-

acting with myc-tagged-SUMO-1 and myc-tagged-SUMO-2/3. Results showed that the

SUMO-activating enzyme subunit 2 (SAE2), the SUMO-conjugating enzyme (Ubc9), and a

SUMO-protease (SENP2) all interacted with SUMO-1 or SUMO-2/3 in control-treated cell.

These interactions were lost when cells were treated with glycyrrhizic acid, which suggests that

glycyrrhizic acid treatment results in loss of the SUMO/SUMO-machinery interaction.

lymphoblastoid cell lines (LCLs), Raji cells, EBV-negative BL 41 cells, EBV-positive BL-41 cells, and BL41 cells infected with a mutant

strain of EBV (P3HR1) were treated with graduated doses of glycyrrhizic acid. 24 hours post-treatment, cells were harvested, lysed,

denatured, and Western blot analyses performed to detect SUMO-1/2/3 levels. GAPDH was used as a loading control. D)

Densitometric analysis of repeat experiments was performed to determine relative SUMO. Results are shown as the means ± the

standard deviation of experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0217578.g001
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Fig 2. Glycyrrhizic acid affected growth and survival. A) EBV-transformed LCLs, B) Raji cells, C) EBV-negative BL 41 cells, D) EBV-

positive BL 41 cells, and E) P3HR1-infected BL 41 cells were treated with graduated doses of glycyrrhizic acid and total cell number (left), live

cell number (middle), percent cell death (right) were determined. Results are shown as the means ± the standard deviation of a representative

experiment of samples run in triplicate and experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0217578.g002
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Fig 3. Higher doses of glycyrrhizic acid induced LCL apoptosis. A) LMP1-expressing HEK 293 cells and B) LCLs,

Raji cells, BL 41 EBV negative cells, BL 41 EBV positive cells, and BL 41 P3HR1 cells were treated with graduated doses

of glycyrrhizic acid. 48 hours post-treatment, cells were harvested, lysed, denatured, and Western blot analyses

performed to detect total and cleaved PARP, caspase-3, or GAPDH.

https://doi.org/10.1371/journal.pone.0217578.g003
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Fig 4. Glycyrrhizic acid inhibited SUMO from interacting with the SUMO machinery and was sufficient to inhibit sumoylation processes in vitro. HEK

293 cells were transfected with SAE1/2, Ubc9, SENP2, and myc-SUMO-1 or myc-SUMO-3 expression constructs and treated with A) the vehicle control or

glycyrrhizic acid and B) the vehicle control, ginkgolic acid, or glycyrrhizic acid. Native immunoprecipitations were performed to pull-down all myc-SUMO-

interacting proteins. Western blot analyses were performed to detect SAE1, Ubc9, and SENP2 in the immunoprecipitants and whole cell lysates (WCL). C)

Reactions of purified E2-25K, a ubiquitin-conjugating E3 enzyme that is a known target for sumoylation, SUMO-activating enzyme (SAE1/2), and SUMO-

conjugating enzyme (Ubc9) were incubated in the presence or absence of ATP, which is required for protein sumoylation. Reactions were treated with the

vehicle control, ginkgolic acid, or glycyrrhizic acid. Following incubation, reactions were denatured, separated by SDS-PAGE, and bands were visualized with a

Coomassie Blue stain.

https://doi.org/10.1371/journal.pone.0217578.g004
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Ginkgolic acid is known to bind to the SUMO-activating enzyme (SAE1/2) and impair it

from interacting with and activating the mature SUMO [23,24], so we compared the effect of

glycyrrhizic acid on the interaction between SUMO and SAE2, Ubc9, and SENP2 to the effect

of ginkgolic acid on these protein-protein interactions (Fig 4B). As expected, in control sam-

ples, the interaction of SAE2, Ubc9, and SENP2 with myc-SUMO-1 was detected. Treatment

of cells with either glycyrrhizic acid or ginkgolic acid resulted in the lack of SAE2, Ubc9, or

SENP2 being pulled-down with the tagged-SUMO-1. These data confirm that glycyrrhizic

acid inhibits sumoylation processes by inhibiting SUMO from interacting with the SUMO

machinery. In addition, findings suggest that glycyrrhizic acid may function similarly to gink-

golic acid by inhibiting the first step of the sumoylation process (the SUMO/SAE interaction).

Next, the ability of glycyrrhizic acid to specifically target sumoylation processes was evalu-

ated. Using an in vitro sumoylation assay, where a known target for sumoylation (E2-25K, a

class II ubiquitin-conjugating E3 enzyme) is incubated with free SUMO-1, the SUMO-activat-

ing enzyme (SAE1/SAE2), and the SUMO-conjugating enzyme (Ubc9) in the presence or

absence of ATP, which is required for protein sumoylation. Reactions were treated with the

vehicle control (DMSO), ginkgolic acid (25 uM), or glycyrrhizic acid (2 mM). Results showed

that sumoylated E2-25K was detected in control-treated reactions containing ATP (Fig 4C).

Consistent with a previous report [76–78], treatment of ATP-containing reactions with gink-

golic acid abrogated the sumoylation of E2-25K. Similarly, glycyrrhizic acid-treatment of

ATP-containing reactions also inhibited the sumoylation of E2-25K. Because no other proteins

or pathways were present in the in vitro assay, we propose that glycyrrhizic acid could specifi-

cally inhibit and was sufficient to inhibit sumoylation processes.

Glycyrrhizic acid targeted the maintenance of EBV latency

We previously identified a function for LMP1 in the maintenance of EBV latency due to the

sumoylation of the transcriptional repressor KRAB-associated protein-1 (KAP1), which binds

to and represses the lytic EBV promoters [25]. Here, we suggest that glycyrrhizic acid can

inhibit cellular sumoylation processes, so the effect of the extract in the maintenance of EBV

latency was examined. HEK 293 cells stably expressing the EBV WT bacterial artificial chro-

mosome (HEK 293 EBV BAC from Dr. Wolfgang Hammerschmidt [61]) were treated with

DMSO (vehicle Control), ginkgolic acid, or graduated doses of glycyrrhizic acid to quantitate

the spontaneous reactivation of EBV (Fig 5A). Confirming our previous report, ginkgolic acid

treatment resulted in a four-fold increase in the spontaneous reactivation of EBV [25]. Simi-

larly, treatment with glycyrrhizic acid resulted in significant (P < 0.05) increases in EBV DNA

levels when compared to control-treated cells. These findings suggest that treatment with

either glycyrrhizic acid or ginkgolic acid results in low levels of spontaneous reactivation.

To determine the effect of glycyrrhizic acid on lytic viral replication, HEK 293 EBV BAC

cells were transfected with an EBV ZTA-expression constructs to induce reactivation (Fig 5B).

24 hours post-transfection, cells were treated with DMSO (control), ginkgolic acid, or gradu-

ated doses of glycyrrhizic acid. The fold change in EBV DNA levels (relative to non-induced

reactivation control cells) were determined 48 hours post-treatment. Data revealed a 40-fold

increase in EBV DNA levels in cells following induced reactivation (Control) when compared

with cells where reactivation was not induced. Treatment of cells with glycyrrhizic acid did not

alter EBV DNA levels following an induced reactivation; however, treatment with ginkgolic

acid significantly (P< 0.05) inhibited the induced reactivation of EBV. These data suggest that

ginkgolic acid can inhibit viral replication following induced reactivation but glycyrrhizic acid

does not affect lytic replication, which is consistent with earlier reports [46,47].
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Fig 5. Glycyrrhizic acid treatment targets the maintenance of EBV latency. A) HEK 293 EBV BAC cells were

treated with DMSO, ginkgolic acid, or graduated amounts of glycyrrhizic acid. Supernatant fluids were collected 72

hours post-treatment, DNase-resistant encapsidated virion associated DNA harvested, and real time PCR performed to

quantitate EBV DNA levels and the spontaneous reactivation of the virus. Results are shown as the means ± the

standard deviation of experiments performed in triplicate. B) HEK 293 EBV BAC cells were transfected with a ZTA-

expression construct for the induced reactivation of EBV/ 24 hours post-transfection, cells were treated with DMSO,

ginkgolic acid, or graduated amounts of glycyrrhizic acid. Supernatant fluids were collected 72 hours post-transfection,

Glycyrrhizic acid inhibits sumoylation processes
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The presence of glycyrrhizic acid decreased EBV penetrance

Because glycyrrhizic acid did not affect EBV DNA levels following induced reactivation, the

ability of the produced virus to super-infect Raji cells was examined [68]. HEK 293 EBV WT

cells were transfected with an EBV ZTA-expression constructs to induce reactivation of EBV,

and cells were treated with the vehicle control or graduated doses of glycyrrhizic acid. 48 hours

post-treatment, supernatant fluids were used to super-infect Raji cells. 72 hours post-infection,

the percent GFP-positive Raji cells (Fig 5C; GLA During replication) was determined. Find-

ings showed that an average of 20–25% of Raji cells were super-infected with new virus, which

is consistent with our previous work [25]. Supernatant fluids from glycyrrhizic acid-treated

cells resulted in a significant (P < 0.05) decreases in Raji cell super-infection (Fig 5C and 5D).

To evaluate whether the presence of glycyrrhizic acid in the supernatant fluids was sufficient to

inhibit the super-infection of the Raji cells, supernatant fluids were collected from HEK 293

EBV WT cells following induced reactivation. The supernatant fluids were treated with gradu-

ated doses of glycyrrhizic acid, and the ability of the virus in these supernatant fluids to super-

infect Raji cells was determined after 72 hours (Fig 5C; GLA Post-replication). Findings

showed a dose-dependent decrease in Raji cell super-infection with post-replication glycyr-

rhizic acid treatment. In fact, no differences were detected when comparing results from

supernatant fluids treated during EBV replication with supernatant fluids treated post-EBV

replication. These results suggest that regardless to when treated, the presence of glycyrrhizic

acid decreases the ability of EBV to infect new cells, which coincides with previous reports

[46,47].

Together, these finding identify that glycyrrhizic acid can specifically inhibit sumoylation

processes in B-cells, including cells latently infected with EBV. While glycyrrhizic acid treat-

ment can result in low levels of viral reactivation, it does not affect lytic replication. However,

the presence of glycyrrhizic acid inhibits the ability of any produced virus from infecting addi-

tional cells. Therefore, our proposal that treatment with glycyrrhizic acid may be beneficial in

the treatment of EBV-associated malignancies, as well as other diseases in which sumoylation

processes are up-regulated, remains.

Discussion

One proposed therapeutic target for cancer is the sumoylation process [2,21]. Earlier, we iden-

tified a novel function for LMP1, in the dysregulation of cellular sumoylation processes during

EBV latency [25,62,64], and our recent work documented that SUMO levels are increased in

LMP1-positive lymphoma tissues [79]. Therefore, identifying mechanisms by which sumoyla-

tion processes can be inhibited may aid the treatment of LMP1-associated malignancies. Our

current findings imply that glycyrrhizic acid, a triterpene from licorice root [32,33], inhibits

cellular sumoylation processes and can be used to inhibit the growth of EBV-transformed lym-

phoblastoid cell lines and induce apoptosis. This is the first report using glycyrrhizic acid to

target sumoylation processes. In addition, these findings provide further support for the

DNase-resistant encapsidated virion associated DNA harvested, and real time PCR performed to quantitate EBV DNA

levels. Results are shown as the means ± the standard deviation of experiments performed in triplicate. C) EBV

reactivation was induced in HEK 293 EBV BAC cells with transfection of ZTA-expression constructs. Cells were

treated with graduated doses of glycyrrhizic acid (or the vehicle control) 24 hours post-transfection (GLA During

replication) or collected supernatant fluids were treated with graduated doses of glycyrrhizic acid (GLA Post-

replication). Collected supernatant fluids were used to superinfect Raji cells. The percent GFP-positive Raji cells were

determined by immunofluorescence microscopy. Results are shown as the means ± the standard deviation of samples

run in triplicate and experiments performed in triplicate. D) Representative images of random fields of view for

control- and glycyrrhizic acid-treated cells.

https://doi.org/10.1371/journal.pone.0217578.g005
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function of sumoylation in the maintenance of latency [25] and verify that glycyrrhizic acid

can inhibit EBV infection, which has been proposed due to inhibition of viral penetration

[46,47]

Here, we document that glycyrrhizic acid inhibits cellular sumoylation processes in multi-

ple cell lines. To rule out the possibility that the detected decreases in global sumoylation levels

was due to decreased expression of the SUMO machinery, we did examine the levels of the

SUMO-activating enzyme (SAE1/SAE2), the SUMO-conjugating enzyme (Ubc9), one of the

few identified SUMO-E3 ligases, and SUMO proteases (SENPs) following glycyrrhizic acid

treatment. SAE1/2, Ubc9, and SENP2 levels were not affected by the botanical extract. The

maturation (by SENPs), activation (by SAE1/2), and conjugation (by Ubc9) of SUMO to the

target protein are essential steps during the sumoylation process. Therefore, we can conclude

that the mechanism by which glycyrrhizic acid inhibits cellular sumoylation processes was not

by decreasing the levels of the essential SUMO machinery. Interestingly, higher levels of gly-

cyrrhizic acid treatment did result in decreased levels of the two examined SUMO ligases

(PIAS1 and RanBP2). The SUMO E3 ligases are thought to act as an adaptor between the

Ubc9-SUMO intermediate and the target protein, conferring specificity towards the target

proteins [72,80]. It is possible that glycyrrhizic acid-mediated decrease in levels of sumoylated

proteins may be specific to the targets of PIAS1 and RanBP2. However, it would be advanta-

geous to elucidate if the extract has similar effects on other SUMO ligases.

Treatment of cells with glycyrrhizic acid did not affect cellular ubiquitination processes,

suggesting some selectivity in targeting cellular processes. In vitro sumoylation assays showed

that glycyrrhizic acid was sufficient to inhibit protein sumoylation, which leads us to propose

that the extract can specifically target the sumoylation process. However, glycyrrhizic acid

does not exclusively target cellular sumoylation processes. Instead multiple signaling pathways

are modulated by this extract [81,82], which could provide additional advantages when used to

modulate the multitude of signal transduction pathways induced by the principal viral

oncoprotein.

Immunoprecipitation studies revealed that like ginkgolic acid, glycyrrhizic acid treatment

results in loss of the interaction between the SUMO machinery and SUMO. Ginkgolic acid is

known to target the first step of the sumoylation process [23]. Because of the observed similari-

ties when comparing glycyrrhizic acid treatment with ginkgolic acid treatment (Fig 4B and

4C), we propose that glycyrrhizic acid inhibits the SUMO-activating enzyme from interacting

with SUMO, which leads to the subsequent decreases in SUMO from interacting with Ubc9

and SENP2. While the immunoprecipitation experiments were performed in HEK 293 cells

due to their increased ability to be transiently transfected, we predict similar results would be

observed in any other cell line.

Our earlier work identified that LMP1 induced the sumoylation of KAP1 [25], a well-char-

acterized transcriptional co-repressor [83]. KAP1 also binds to and represses EBV oriLyt and

the immediate early promoters [25]. Others have shown that the SUMO E3 ligase PIAS1 can

aid the maintenance of EBV latency [84]. Specifically, caspase-3, -6, and -8 cleave PIAS1,

decreasing PIAS1 levels and increasing the spontaneous reactivation of EBV [84]. Caspase acti-

vation has also been implicated in the spontaneous reactivation a different γ-herpesvirus,

Kaposi’s sarcoma-associated herpes virus [85,86]. We did detect that higher doses of glycyr-

rhizic acid treatment resulted in increased activation of caspase-3, which corresponded with

decreased PIAS1 levels; however it did not coincide with higher levels of spontaneous reactiva-

tion of the virus. Regardless, the changes in sumoylation levels, the increased activation of the

caspases, and the decrease in PIAS1 levels could all contribute to the weakening of LMP1-me-

diated maintenance of latency, which we now show occurs following the treatment of latently

infected cells with glycyrrhizic acid. However, as shown here, which coincides with previous
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reports [46,47], the presence of glycyrrhizic acid significantly (P < 0.05) inhibits the ability of

any produced virus to infect new cells. Specifically, the presence of glycyrrhizic acid in the

environment, added during an induced reactivation or after an induced reactivation, did sig-

nificantly inhibit any produced virus from infecting new cells. Therefore, even low levels of

spontaneous reactivation would not be detrimental to the host. However, it does remain to be

determined if glycyrrhizic acid inhibits the infectivity of virus produced from cells.

Consistent with published data, our findings suggest that glycyrrhizic acid does not affect

EBV levels following induced reactivation [46,47]. Interestingly, induced reactivation was sig-

nificantly inhibited following ginkgolic acid treatment. While we previously have focused on

sumoylation processes during latent EBV infection and spontaneous reactivation [25,62–64],

others have investigated functions for sumoylation processes during lytic replication [87–97].

It has been proposed that EBV manipulates sumoylation processes during its lytic cycle in

order to provide favorable conditions for optimal replication [95]. SUMO-modified proteins

accumulate late during lytic replication [96], in part due to EBV miR-BHRF1-1-mediated

decreased levels of the SUMO-targeted ubiquitin ligase RNF4 [96]. Reconstitution of RNF4

levels coincide with reduced expression of early and late EBV proteins and impaired virus

release [96]. In addition, four lytic proteins (SM/EB2, BGLF2, BMRF1, and BVRF2) have been

shown to globally upregulate SUMO levels when expressed in cells [97]. These reports, along

with our finding that ginkgolic acid significantly inhibited induced reactivation, suggest a

function for sumoylation processes during lytic replication. However, treatment of cells with

glycyrrhizic acid did not affect the induced reactivation of EBV, which raised the question of

why these differing results were detected. It is possible that the targeting of other cellular pro-

cesses by ginkgolic acid that were not inhibited by treatment with glycyrrhizic acid was suffi-

cient to decrease EBV DNA levels following induced reactivation. Therefore, in the future, it

would be advantageous to elucidate a function for EBV-mediated increased protein sumoyla-

tion during lytic EBV infection.

For the past two decades, glycyrrhizic acid has been used clinically in China and Japan, with

satisfactory therapeutic effects [98]. It has been confirmed to be safe and non-toxic [99], and it

has inhibitory effects on many cancers, including leukemia, gliomas, colon cancer, and lung

cancer [100–111]. Here we show that glycyrrhizic acid has inhibitory effects on EBV-trans-

formed LCLs, which mimic EBV-associated lymphoproliferative diseases. While low doses of

glycyrrhizic acid did not affect LCL growth or death, levels as low as 2 mM inhibited LCL

growth and started to promote low levels of cleaved caspase 3 and PARP, which resulted in

apoptosis. Previous reports used 2.4 mM glycyrrhizic acid and found that it diminished growth

of other EBV-positive cell lines (Raji and P3HR1) [46,47]. Therefore, we propose that glycyr-

rhizic acid would have an inhibitory effect on EBV-associated lymphoproliferative diseases by

decreasing proliferation with minimal cell death.

Glycyrrhizic acid and its derivatives have been shown to have a relative lack of toxicity at

the cellular level all while inhibiting new EBV infections [47], which suggest the extract may be

an efficient and safe treatment for EBV infections. Treatment of latently infected cells with gly-

cyrrhizic acid induced low levels of viral reactivation, which would likely increase in patients

undergoing radiation and chemotherapy. We show the presence of glycyrrhizic acid results in

the decreased propensity of the virus to be able to infect other cells. Therefore, increases in

EBV DNA would not necessarily be detrimental to the host. In fact, glycyrrhizic acid treatment

could inhibit the penetration of virus that results from chemotherapy-induced EBV

reactivation.

In addition to EBV reactivation, the multi-faceted chemotherapy regime for EBV-associ-

ated lymphomas, especially in immunocompromised individuals, often results in liver toxicity

[112] or even reactivation of Hepatitis C virus (HCV) or Hepatitis B virus (HBV) [113,114].
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Glycyrrhizic acid is currently being used in Asia to inhibit liver fibrosis, steatosis, and necrosis,

inhibit the reactivation of HCV and HBV [32,33,35,36], and promote cell regeneration

[34,113,114]. It is known to reduce liver toxicity that results from chemotherapy [115–118],

even in patients diagnosed with diffuse large B-cell lymphomas and receiving CHOP (cyclo-

phosphamide, vincristine, doxorubicin, and prednisone) therapy [119]. Furthermore, glycyr-

rhizic acid can aid the intracellular delivery of other administered drugs [102,120–123].

Therefore, treatment with glycyrrhizic acid may be even more beneficial in the treatment of

EBV-associated lymphomas than just its ability to inhibit cellular sumoylation processes.

The licorice root also contains flavonoids (quercetin and isoliquiritigenin) [124], which too

have anti-cancer and anti-inflammatory properties [125–128]. While nothing is known of the

effects of isoliquiritigenin on EBV latency, quercetin was shown to reduce EBV latency [129],

inhibit EBV infection in EBV-associated gastric carcinoma cell lines [129], and have anti-can-

cer effects in in vivo xenograft animal models for EBV-positive gastric carcinomas [130]. Con-

sequently, it is likely that other components of the licorice root may also be beneficial to

modulating the EBV life-cycle, possibly through regulation of post-translational modifications.

In summary, we propose that during latent EBV infection, LMP1 dysregulates sumoylation

processes, resulting in increased protein sumoylation, which may aid tumorigenesis. Glycyr-

rhizic acid can inhibit sumoylation processes in LMP1-expressing, EBV-transformed lympho-

blastoid cell lines, blocking proliferation, increasing cell death, inducing low levels of viral

reactivation, and impeding the infection of new cells by the produced virus. Taken together

with the numerous therapeutic effects of glycyrrhizic acid, these findings identify a novel path-

way targeted by the botanical extract and identify a novel mechanism, by which EBV-associ-

ated lymphoproliferative diseases could possibly be treated.
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