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Abstract. It has been reported that dipeptidyl peptidase‑4 (DPP4) 
inhibition protects against acute lung injury (ALI). Anagliptin 
is a novel selective inhibitor of DPP4 but its role in ALI has 
not been studied. The present study aimed to investigate the 
effects of anagliptin on lipopolysaccharide  (LPS)‑induced 
human pulmonary microvascular endothelial cell (HPMVEC) 
injury, as well as its underlying mechanism. HPMVECs were 
exposed to LPS in the presence or absence of anagliptin 
co‑treatment. MTT assay was used to evaluate cell viability 
and nitric oxide  (NO) production was detected using a 
commercial kit. DPP4 and pro‑inflammatory cytokine expres‑
sion levels, apoptosis and migration were assessed via reverse 
transcription‑quantitative PCR, western blotting, TUNEL 
staining and wound healing assay, respectively. Western blot 
analysis was performed to assess expression levels of proteins 
involved in NF‑κB signaling, cell apoptosis and migration, 
as well as high mobility group box 1 (HMGB1)/receptor for 
advanced glycation end products (RAGE). LPS decreased 
cell viability and NO production, but elevated expression 
of DPP4 in HPMVECs. LPS promoted pro‑inflammatory 
cytokine expression, NF‑κB activation and cell apoptosis, but 
inhibited cell migration and phosphorylated‑AKT/endothelial 
NO synthase expression. Anagliptin co‑treatment significantly 
restored all of these effects. Mechanistically, the upregula‑
tion of HMGB1/RAGE expression induced by LPS was 
markedly blocked by anagliptin. In conclusion, anagliptin alle‑
viated inflammation, apoptosis and endothelial dysfunction in 
LPS‑induced HPMVECs via modulating HMGB1/RAGE 

expression. These data provide a basis for use of anagliptin in 
ALI treatment.

Introduction

Acute lung injury (ALI) is a diffuse inflammatory reaction in 
the lung caused by various internal and external pathogenic 
factors, such as sepsis, pneumonia and trauma (1,2). ALI, which 
is characterized by respiratory distress, refractory hypoxemia 
and respiratory failure, is the primary cause of death in criti‑
cally ill patients with sepsis at present (3). Bacterial infection, 
shock, severe trauma, sepsis and other factors induce the 
occurrence of ALI (4). Although the rapid development of 
medical technology has provided better treatment of ALI, the 
specific mechanism underlying its pathogenesis has not been 
fully elucidated and there is a lack of effective drug treatments 
in clinical use (5,6).

Dipeptidyl peptidase‑4 (DPP4), also known as CD26, is a 
widely expressed serine membrane‑anchored peptidase that 
exists on the surface of various types of cell (7). Its expres‑
sion level varies from cell to cell (8,9). In different organs 
and tissues (such as lung, muscle and heart), DPP4 activity 
is associated with its presence in the microvasculature (10). 
Clinical and experimental research over the past 30 years has 
demonstrated the involvement of DPP4 in various physiolog‑
ical processes and diseases of immune system (11,12). Recent 
experimental studies have shown that DPP4 inhibition protects 
the lungs against severe injury and relieves associated respira‑
tory disease, including COVID‑19 caused by SARS‑CoV‑2 
and Middle East respiratory syndrome (MERS) caused by 
MERS coronavirus  (13‑17), suggesting that DPP4 inhibi‑
tors may be used to decrease LI. A previous study proposed 
that the DPP4 inhibitor Saxagliptin attenuates lipopolysac‑
charide (LPS)‑induced oxidative stress, inflammation and 
apoptosis (18). Another DPP4 inhibitor, vildagliptin, has been 
demonstrated to alleviate pulmonary fibrosis in LPS‑induced 
LI by inhibiting endothelial‑to‑mesenchymal transition in 
pulmonary microvascular endothelial cells (PMVECs) (19).

Anagliptin, a novel selective inhibitor of DPP4, was 
licensed for clinical treatment of type 2 diabetes mellitus in 
2012 (20). Anagliptin has been shown to alleviate inflammation 
and endothelial cell injury. For example, anagliptin prevents 
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H2O2‑induced apoptosis of human umbilical vein endothe‑
lial cells (21). Anagliptin ameliorates high glucose‑induced 
endothelial dysfunction via suppression of NLR family pyrin 
domain containing 3 inflammasome activation (22). Anagliptin 
inhibits neointimal hyperplasia via endothelial cell‑specific 
modulation of superoxide dismutase‑1/Ras homolog family 
member A/JNK signaling in the arterial wall  (23). Recent 
comprehensive review articles indicated that DPP4 inhibi‑
tors (anagliptin, vildagliptin and sitagliptin) developed and 
marketed for their beneficial effects display multipotency in 
the management of various types of pulmonary disease (14,24). 
Seys et al (17) demonstrated that anagliptin displays a stronger 
anti‑inflammatory action than sitagliptin. Another study 
suggested that anagliptin improves LI in mice under chronic 
stress, potentially by mitigating vascular inflammation (25). 
However, whether anagliptin relieves LPS‑induced human (H)
PMVEC injury remains to be elucidated.

In the present study, the effect of anagliptin on viability, 
inflammation, apoptosis and endothelial dysfunction of 
HPMVECs exposed to LPS, along with its underlying mecha‑
nism, were investigated. The present study aimed to provide a 
basis for the use of anagliptin in ALI treatment.

Materials and methods

Cell culture and treatment. HPMVECs were obtained from 
American Type Culture Collection (cat.  no.  CRL‑3244) 
and cultured in RPMI‑1640 medium supplemented with 
10% fetal bovine serum (FBS; both Gibco; Thermo Fisher 
Scientific, Inc.), 100 U/ml penicillin and 100 µg/ml strepto‑
mycin (Sigma‑Aldrich; Merck KGaA) at 37˚C with 5% CO2. 
For LPS stimulation, cells were exposed to 100 ng/ml LPS 
(Sigma‑Aldrich; Merck KGaA) at 37˚C for 24 h. For anagliptin 
treatment, cells were exposed to various concentrations of 
anagliptin (1, 10, 50 or 100 µM; Sigma‑Aldrich; Merck KGaA) 
at 37˚C for 24 h. For LPS and anagliptin co‑treatment, cells 
were sequentially exposed to 100 ng/ml LPS plus designated 
concentrations of anagliptin (10, 50 or 100 µM) at 37˚C for 
24 h.

Cell viability assessment. MTT assay (Beyotime Institute of 
Biotechnology) was utilized to detect cell viability. Briefly, 
HPMVECs were seeded into 96‑well plates (5x104 cells/well) 
and incubated at 37˚C to 90% confluence. Subsequently, cells 
were exposed to various concentrations of anagliptin (1, 10, 
50 or 100 µM) or LPS ± anagliptin for 24 h. Then, 50 µl MTT 
solution was added to each well and maintained for 3 h at 
37˚C. Cells were exposed to 150 µl DMSO and shaken on an 
orbital shaker for 15 min, then absorbance of each well was 
measured at 590 nm.

Measurement of NO production. The generation of NO 
in culture medium was measured using an NO assay kit 
(cat.  no.  S0023; Beyotime Institute of Biotechnology) in 
accordance with manufacturer's protocol. Briefly, cultured 
cells were harvested and centrifuged at 8,000 x g for 15 min at 
room temperature. The culture supernatant of cells was added 
to 96‑well plates (50 µl/well). After samples were incubated 
with 50 µl Griess Reagent for 3 min at room temperature, the 
absorbance was measured at 540 nm.

Western blot analysis. HPMVECs were lysed using RIPA 
buffer (Beyotime Institute of Biotechnology) containing cock‑
tail inhibitors (Thermo Fisher Scientific, Inc.) and quantified 
using a Bicinchoninic Acid Protein Assay kit (Abcam). Samples 
(40 µg per lane) were separated by 12% SDS‑PAGE and then 
transferred to 0.45 µM PVDF membranes (MilliporeSigma). 
After being blocked with 5% non‑fat milk for 1.5 h at room 
temperature, samples were probed with primary antibodies 
overnight at 4˚C and horseradish peroxidase‑conjugated 
secondary antibody (1:2,000; cat. no. 7074P2; Cell Signaling 
Technology, Inc.) at room temperature for 2 h. Bands were 
visualized using ECL (Beyotime Institute of Biotechnology) 
and quantified with ImageJ software (Version 6.0; National 
Institutes of Health). The following antibodies from 
Abcam or Cell Signaling Technology, Inc., were used (all 
at a dilution of 1:1,000): Anti‑DPP4 (cat.  no.  ab215711); 
anti‑p65 (cat. no. ab32536), anti‑Lamin B (cat. no. 17416S), 
anti‑phosphorylated (p)‑IκBα (cat.  no.  2859T), anti‑total 
(t)‑IκBα (cat.  no.  4812S), anti‑Bcl‑2 (cat.  no.  4223T), 
anti‑Bax (cat. no. 5023T), anti‑apoptotic protease activating 
factor‑1 (APAF‑1; cat.  no.  8969T), anti‑cleaved‑caspase3 
(cat. no. 9664T), anti‑caspase3 (cat. no. 9662S), anti‑AKT 
(cat. no. 4691T), anti‑p‑AKT (cat. no. 4060T), anti‑endothelial 
NO synthase (eNOS; cat. no. 32027S), anti‑inducible (i)NOS 
(cat. no. 20609S), anti‑high mobility group box 1 (HMGB1; 
cat. no. 6893S), anti‑receptor for advanced glycation end prod‑
ucts (RAGE; cat. no. 6996S) and anti‑GAPDH (cat. no. 5174T).

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA 
was extracted from cells using TRIzol® (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
instructions. A total of 5 µg RNA was reverse transcribed into 
cDNA using TaqMan One‑Step RT kit (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocol. Amplification was performed using SYBR Green 
PCR kit (Vazyme Biotech Co., Ltd) and ABI Prism 7500 
sequence detector (Applied Biosystems; Thermo  Fisher 
Scientific, Inc.). The following thermocycling conditions were 
used for qPCR: Initial denaturation for 10  min at 95˚C; 
followed by 40 cycles of denaturation at 95˚C for 15 sec and 
annealing/extension at 55˚C for 45 sec. The primers were as 
follows: DPP4 forward, 5'‑TCTGCTGAACAAAGGCAA 
TGA‑3' and reverse, 5'‑CTGTTCTCCAAGAAAACTGAGC‑3'; 
tumor necrosis factor (TNF)‑α forward, 5'‑CATCCAACCTT 
CCCAAACGC‑3' and reverse, 5'‑CGAAGTGGTGGTCTTGT 
TGC‑3'; IL‑1β forward, 5'‑GAGCTCGCCAGTGAAATG 
ATG‑3' and reverse, 5'‑TAGTGGTGGTCGGAGATTCG‑3'; 
IL‑6 forward, 5'‑GTCCAGTTGCCTTCTCCCTG‑3' and 
reverse, 5'‑CTGAGATGCCGTCGAGGATG‑3'; C‑C motif 
chemokine ligand 2 (CCL2) forward, 5'‑AGATCTGTGCTGAC 
CCCAAG‑3' and reverse, 5'‑GGAGTTTGGGTTTGCTTG 
TCC‑3'; and GAPDH, forward, 5'‑GCAACCGGGAAGGAAAT 
GAATG‑3' and reverse, 5'‑CCCAATACGACCAAATCAG 
AGA‑3'. Results were normalized to GAPDH expression and 
2‑ΔΔCq was used to calculate the relative change in gene expres‑
sion (26).

TUNEL staining. TUNEL assay was used to detect the apoptosis 
of HPMVECs. Briefly, after cells were fixed with 4% para‑
formaldehyde for 30  min at room temperature, apoptosis 
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was detected using a TUNEL assay kit (cat.  no.  QIA33; 
Sigma‑Aldrich; Merck KGaA) in accordance with the manufac‑
turer's instructions; 50 µl TUNEL reaction mixture was added 
for 1 h at 37˚C. The cells were treated with DAPI (2 µg/ml) to 
stain the nucleus at 37˚C for 2‑3 min. After washing twice with 
PBS, images were captured from three fields of view using 
an inverted fluorescence microscope (Olympus Corporation; 
x200 magnification).

Wound healing assay. HPMVECs were cultured in 6‑well 
plates (5x105  cells/well) to 70‑80%  confluence. The cell 
surface was scratched with a 100‑µl pipette tip to create an 
artificial wound, and medium was replaced with serum‑free 
RPMI‑1640 (Gibco; Thermo Fisher Scientific, Inc.) containing 
LPS ± anagliptin and cultured for 24 h at 37˚C. Images were 
captured at 0 and 24 h using an inverted light microscope 
(magnification, x100; Olympus Corporation). The cell migra‑
tion rate was calculated as follows: (Width at 0 h‑width at 
24 h)/width distance. The relative migration rate was obtained 
by normalizing to the untreated group.

Statistical analysis. Data are expressed as the mean ± stan‑
dard deviation and were analyzed with SPSS 21.0 software 
(IBM Corp). All experiments were performed in triplicate. An 
unpaired Student's t‑test was used for comparisons between 
two groups. One‑way analysis of variance followed by Tukey's 
post hoc test was used for multiple comparisons. P<0.05 was 
considered to indicate a statistically significant difference.

Results

DPP4 expression is increased following LPS stimulation in 
HPMVECs. HPMVECs were exposed to 100 ng/ml LPS for 
24 h to simulate ALI in vitro. Viability and NO production of 
cells significantly decreased following LPS stimulation, indi‑
cating that LPS induced HPMVEC damage (Fig. 1A and B). 
Furthermore, both protein and mRNA expression levels of 
DDP4 were significantly increased following LPS treatment of 

HPMVECs, suggesting that DDP4 expression is increased in 
LPS‑induced HPMVEC injury (Fig. 1C and D).

DPP4 inhibitor anagliptin inhibits LPS‑induced decrease 
in HPMVEC viability. Cells were stimulated with different 
concentrations of anagliptin (0, 1, 10, 50 and 100 µM) for 
24 h. Cell viability was not altered following stimulation using 
different doses of anagliptin (Fig. 2A). RT‑qPCR and western 
blot analysis were performed to detect DDP4 expression. The 
results revealed that anagliptin (10 µM) decreased mRNA and 
protein expression levels of DPP4, but this was not significantly 
different compared with the LPS‑alone group (Fig. 2B and C). 
Additionally, 50 or 100 µM anagliptin significantly decreased 
DPP4 mRNA and protein levels (Fig. 2B and C) when compared 
to the LPS‑alone group. The LPS‑induced impaired cell viability 
was rescued by co‑treatment with 50 and 100 µM anagliptin 
(Fig. 2D). These results reveal that the DPP4 inhibitor anagliptin 
suppressed the LPS‑induced decrease in HPMVEC viability.

DPP4 inhibitor anagliptin inhibits LPS‑induced inflammation 
and NF‑κB activation in HPMVECs. LPS resulted in a significant 
increase in the expression levels of pro‑inflammatory cytokines, 
including TNF‑α, IL‑1β, IL‑6 and CCL2, but 50 and 100 µM 
anagliptin significantly decreased the expression of these cyto‑
kines (Fig. 3A‑D). Activation of NF‑κB signaling induces the 
inflammatory response (27). Following LSP treatment, NF‑κB 
signaling was activated, as demonstrated by the significant 
increase in nuclear p65 expression and p/t‑IκBα and the decrease 
in cytoplasmic p65 in HPMVECs (Fig. 3E). However, following 
stimulation with 50 or 100 µM anagliptin, nuclear p65 expres‑
sion and p/t‑IκBα expression were effectively suppressed, while 
the expression of cytoplasmic p65 was upregulated (Fig. 3E).

DPP4 inhibitor anagliptin inhibits LPS‑induced apoptosis 
in HPMVECs. TUNEL staining was used to assess cell 
apoptosis. The number of apoptotic cells was significantly 
increased following LPS treatment, whereas 50 and 100 µM 
anagliptin significantly decreased this (Fig. 4A). Consistently, 

Figure 1. LPS impairs cell viability and NO production and upregulates DPP4 expression in HPMVECs. (A) HPMVECs were cultured in the presence or 
absence of 100 ng/ml LPS for 24 h, then cell viability was measured using MTT assay. (B) NO production was tested by NO assay kit. DPP4 (C) protein and 
(D) mRNA expression levels were detected by western blotting and reverse transcription‑quantitative PCR, respectively. ***P<0.001 vs. control. HPMVEC, 
human pulmonary microvascular endothelial cell; NO, nitric oxide; LPS, lipopolysaccharide; DPP4, dipeptidyl peptidase‑4.
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LPS resulted in lower Bcl2 and higher Bax, APAF‑1 and 
cleaved‑caspase‑3/caspase‑3 expression compared with 

the untreated cells (Fig. 4B). Furthermore, 50 and 100 µM 
anagliptin enhanced Bcl2 but decreased Bax, APAF‑1 and 

Figure 2. Anagliptin recovers LPS‑induced decreased cell viability and DPP4 expression in HPMVECs. (A) HPMVECs were exposed to different con‑
centrations of anagliptin, then cell viability was measured using MTT assay. HPMVECs were co‑treated with 100 ng/ml LPS in the presence or absence 
of different concentrations of anagliptin for 24 h, then DPP4 (B) protein and (C) mRNA expression levels were detected by western blotting and reverse 
transcription‑quantitative PCR, respectively. (D) Cell viability was measured using MTT assay. ***P<0.001 vs. untreated cells; #P<0.05, ##P<0.01 and ###P<0.001 
vs. LPS alone. HPMVEC, human pulmonary microvascular endothelial cell; LPS, lipopolysaccharide; DPP4, dipeptidyl peptidase‑4.

Figure 3. Anagliptin inhibits LPS‑induced inflammation and NF‑κB p65 activation in HPMVECs. HPMVECs were co‑treated with 100 ng/ml LPS in the 
presence or absence of different concentrations of anagliptin for 24 h, then mRNA levels of (A) TNF‑α, IL‑(B) 1β, (C) IL‑6 and (D) CCL2 were measured 
by reverse transcription‑quantitative PCR. (E) Protein expression of nuclear and cytoplasmic p65 and p/t‑IκBα was measured by western blotting. ***P<0.001 
vs. untreated cells; #P<0.05, ##P<0.01 and ###P<0.001 vs. LPS alone. HPMVEC, human pulmonary microvascular endothelial cell; LPS, lipopolysaccharide; 
TNF‑α, tumor necrosis factor‑α; CCL2, C‑C motif chemokine ligand 2; p‑, phosphorylated; t‑, total.
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cleaved‑caspase‑3/caspase‑3 expression levels (Fig. 4B). These 
data suggest that the DPP4 inhibitor anagliptin inhibited 
LPS‑induced apoptosis in HPMVECs.

DPP4 inhibitor anagliptin rescues migration and endo‑
thelial function and decreases HMGB1/RAGE expression 
in LPS‑treated HPMVECs. Impaired endothelial cell 

migration and NO production are primary causes of 
endothelial dysfunction  (28). LPS led to a significant 
decrease in cell migration and NO production, which 
were effectively rescued by treatment with 50 and 100 µM 
anagliptin (Fig. 5A‑C). Moreover, 50 and 100 µM anagliptin 
significantly upregulated the decreased expression levels of 
p‑AKT/AKT and eNOS and downregulated the increased 

Figure 4. Anagliptin inhibits LPS‑induced apoptosis in HPMVECs. (A) HPMVECs were co‑treated with 100 ng/ml LPS in the presence or absence of 
anagliptin for 24 h, then TUNEL staining was performed to observe cell apoptosis. (B) Protein expression levels of Bcl2, Bax, APAF‑1 and cleaved cas‑
pase3/caspase3 were detected by western blotting. ***P<0.001 vs. untreated cells; ##P<0.01 and ###P<0.001 vs. LPS alone. HPMVEC, human pulmonary 
microvascular endothelial cell; LPS, lipopolysaccharide; APAF‑1, apoptotic protease activating factor‑1.
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expression levels of iNOS induced by LPS (Fig. 5D). The 
enhanced protein and mRNA expression levels of HMGB1 
and RAGE induced by LPS exposure were also significantly 

downregulated by 50 and 100 µM anagliptin, indicating the 
inhibitory effect of anagliptin on HMGB1/RAGE expression 
levels (Fig. 5E and F).

Figure 5. Anagliptin rescues cell migration and inhibits HMGB1/RAGE expression in LPS‑induced HPMVECs. HPMVECs were co‑treated with 100 ng/ml 
LPS in the presence or absence of different concentrations of anagliptin for 24 h. (A and B) Wound healing assay was utilized to assess cell migration. 
(C) NO production was tested by NO assay kit. (D) Protein expression levels of p‑AKT/AKT, eNOS and iNOS and (E) HMGB1 and RAGE were detected by 
western blotting. (F) mRNA levels of HMGB1 and RAGE were measured by reverse transcription‑quantitative PCR. **P<0.01 and ***P<0.001 vs. untreated 
cells; #P<0.05, ##P<0.01 and ###P<0.001 vs. LPS alone. HPMVEC, human pulmonary microvascular endothelial cell; LPS, lipopolysaccharide; HMGB1, high 
mobility group box 1; RAGE, receptor for advanced glycation end products; NO, nitric oxide; p‑, phosphorylated; eNOS, endothelial NO synthase; i, inducible.
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Discussion

The alveolar capillary unit formed by PMVECs is the basic 
structure that maintains ventilation‑perfusion balance, and is 
susceptible to harmful external stimuli, such as LPS (29). LPS is 
one of the pathogenic factors leading to abnormal microcircula‑
tion in ALI (30,31). In the present study, HPMVECs were exposed 
to LPS. The results showed that LPS impaired cell viability, 
NO production and cell migration and induced inflammation, 
NF‑κB signaling activation and apoptosis. However, anagliptin 
effectively protected HPMVECs against LPS‑induced injury, 
indicating that anagliptin may be used in the treatment of ALI.

Uncontrolled inflammation is the primary pathophysi‑
ological basis of ALI (32). The activation of NF‑κB signaling 
induces inflammatory response (27). The present study verified 
that LPS induced expression of pro‑inflammatory cytokines 
and activation of NF‑κB signaling, suggesting that inflamma‑
tory responses resulted from LPS in HPMVECs. Additionally, 
the mechanism of ALI is associated with increased vascular 
endothelial apoptosis and recovery of endothelial cell viability 
is reported to improve ALI (33). The present study demon‑
strated an increase in apoptosis ratio and Bax, APAF‑1 and 
cleaved‑caspase‑3 expression levels, as well as a decrease in 
Bcl2 expression in LPS‑induced cells. As a key molecule in the 
intrinsic or mitochondrial pathway of apoptosis, APAF‑1 leads 
to caspase‑3 cleavage (34). Therefore, the impaired cell viability 
caused by LPS may induce inflammation and cell apoptosis. 
LPS decreased NO production and cell migration along with 
p‑AKT and eNOS expression, but increased iNOS expression. 
Decreased NO, which is produced by eNOS, and impaired 
endothelial cell migration are linked to endothelial dysfunction, 
which results in an imbalance in vascular homeostasis, leading 
to a prothrombotic and proinflammatory condition (35,36). The 
AKT/eNOS pathway serves a key role in endothelial mobiliza‑
tion and migration (37). The present results showed that LPS 
caused endothelial dysfunction of HPMVECs in vitro.

Anagliptin is a novel selective inhibitor of DPP4 (38). DPP4 
inhibition has been reported to prevent systemic inflammation, 
vascular dysfunction and end‑organ damage in mice with endo‑
toxemia (39). In the study of ALI, DPP4 inhibitor saxagliptin has 
been reported to decrease LPS‑induced oxidative stress, inflam‑
mation and apoptosis (18). Another DPP4 inhibitor, vildagliptin, 
ameliorates pulmonary fibrosis in LPS‑induced LI by inhib‑
iting endothelial‑to‑mesenchymal transition in PMVECs (19). 
Whether anagliptin inhibits LI is still unknown. The present 
study demonstrated that anagliptin recovered DPP4 expression, 
rescued cell viability, inhibited NF‑κB activation‑mediated 
inflammation and Bcl2/Bax/APAF‑1/caspase3‑meditaed apop‑
tosis in LPS‑treated HPMVECs. Furthermore, NO production 
and AKT/eNOS pathway‑mediated cell migration, which were 
impaired by LPS, were all markedly rescued by anagliptin. 
These data indicated that anagliptin protected HPMVECs 
against LPS‑induced injury.

HMGB1 is a typical damage‑associated molecular pattern 
protein that exerts its biological activity primarily by binding 
to RAGE. Anagliptin has been verified to suppress HMGB1 
expression (40,41). Notably, LPS binds to HMGB1 to serve a 
key role in endothelial dysfunction (42). The present results 
showed that LPS significantly upregulated HMGB1 and 
RAGE expression levels, but anagliptin effectively inhibited 

this effect. As a result, it was speculated that anagliptin may 
exert its beneficial role in LPS‑induced HPMVEC injury via 
inhibiting LPS‑mediated HMGB1/RAGE upregulation.

To the best of our knowledge, the present study is the 
first to investigate the effects of anagliptin on LPS‑induced 
ALI. Anagliptin alleviated LPS‑induced HPMVEC injury 
by the decreasing inflammation, apoptosis and endothelial 
dysfunction via inhibiting LPS‑mediated HMGB1/RAGE 
upregulation. However, the specific mechanisms involved in 
the action of anagliptin need to be clarified in subsequent 
experiments. In addition, safety evaluation and pharmaco‑
kinetic studies of anagliptin should be performed in future. 
These are limitations of the present study and comprehensive 
and in‑depth analysis will be conducted in future to provide 
further evidence for the treatment of ALI using anagliptin.
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