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Abstract
Clinical trial efficiency, defined as facilitating patient enrollment, and reducing the 
time to reach safety and efficacy decision points, is a critical driving factor for mak-
ing improvements in therapeutic development. The present work evaluated a ma-
chine learning (ML) approach to improve phase II or proof-of-concept trials designed 
to address unmet medical needs in treating schizophrenia. Diagnostic data from the 
Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) trial were used 
to develop a binary classification ML model predicting individual patient response 
as either “improvement,” defined as greater than 20% reduction in total Positive and 
Negative Syndrome Scale (PANSS) score, or “no improvement,” defined as an in-
adequate treatment response (<20% reduction in total PANSS). A random forest al-
gorithm performed best relative to other tree-based approaches in model ability to 
classify patients after 6 months of treatment. Although model ability to identify true 
positives, a measure of model sensitivity, was poor (<0.2), its specificity, true nega-
tive rate, was high (0.948). A second model, adapted from the first, was subsequently 
applied as a proof-of-concept for the ML approach to supplement trial enrollment by 
identifying patients not expected to improve based on their baseline diagnostic scores. 
In three virtual trials applying this screening approach, the percentage of patients 
predicted to improve ranged from 46% to 48%, consistently approximately double the 
CATIE response rate of 22%. These results show the promising application of ML to 
improve clinical trial efficiency and, as such, ML models merit further consideration 
and development.
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INTRODUCTION

Schizophrenia affects ~ 1% of the global population.1 Typical 
onset during late adolescence to early adulthood, symptom 
severity, and disease progression combine to result in poten-
tial high personal, family, and societal impact.2 Schizophrenia 
presents as a cluster of symptoms in affected individuals, 
including positive symptoms, negative symptoms, and cog-
nitive impairment. Examples of positive symptoms include 
delusions and hallucinations; negative symptoms encom-
pass decreased affect, emotional withdrawal, and inability 
to experience pleasure; cognitive impairment reflects defi-
cits in attention, memory, reasoning, and processing speed. 
The introduction of antipsychotic medications in the 1950s 
represented a therapeutic breakthrough for treatment of posi-
tive symptoms. Further therapeutic improvements, such as 
reduced incidence of tardive dyskinesia and other adverse 
side effects, were achieved in the late 1980s with the second-
generation antipsychotics, commonly referred to as atypicals. 
Unfortunately, expansion of the antipsychotic formulary has 
been slow despite significant research efforts to improve un-
derstanding of this disease and identify new treatment mo-
dalities. There remains a large unmet medical need for the 
discovery and development of new therapeutics that retain 
the safety and efficacy achieved by currently available drugs, 
but specifically target the negative symptoms and cognitive 
deficits associated with schizophrenia.3

Against this backdrop of lacking novel antipsychotic med-
ication discovery, the costs of new drug development overall 
have increased dramatically. A report by the Tufts Center for 
the Study of Drug Development estimated the cost of bring-
ing a new drug to market was $2.6 billion in 2013, a 145% 
increase from 2003.4 The large attrition of drug candidates 
during clinical trials is a major contributor to the growing ex-
pense for the development of central nervous system (CNS) 
targeted drugs; success rates are poor and fall below 10%.5 
Thus, there is great need for more accurate and efficient 

processes that facilitate rapid clinical testing of potential 
CNS drugs.

An innovative example that addresses this need is the use 
of brain magnetic resonance imaging (MRI) to identify ana-
tomic and connectivity abnormalities in patients with schizo-
phrenia6–8 as a prognostic tool regarding the clinical course 
of schizophrenia.9 Furthermore, coupling MRI technology 
with machine learning (ML) analysis has shown promise to 
detect CNS diseases even at their earliest manifestation.10–15 
With respect to drug treatment, two longitudinal studies 
paired functional MRI with ML to predict treatment response 
to atypical antipsychotics based on connectivity changes 
in striatal16 and cortical regions.17 These studies evaluated 
the application of ML and MRI as a diagnostic, prognostic, 
and/or treatment response biomarker to screen patients for 
enrollment in clinical trials studying treatment efficacy in 
schizophrenia. Potential downsides of combining MRI with 
ML include the expense and inconvenience of repeated MRI 
scans, the limited availability of MRI equipment, and skilled 
practitioners of these imaging technologies.

To bypass the above concerns, an alternative to using 
MRI with ML as a treatment response biomarker is the 
development of ML models that predict or differentiate 
patient-specific treatment responses based solely on clin-
ical assessment(s). Two of the most commonly used clini-
cal assessment instruments for schizophrenia are the Brief 
Psychiatric Rating Scale (BPRS)18,19 and the Positive and 
Negative Syndrome Scale (PANSS),20 both of which are 
used extensively to assess disease severity and antipsychotic 
treatment efficacy. Modeling of the data from these scales 
has proven to be valuable, such as the research reported by 
Krekels et al., in which PANSS scores were modeled over 
time to successfully differentiate paliperidone versus placebo 
responses.21 Congruent with this approach, we hypothesized 
that an ML model could be developed and used to identify 
patients who are more likely to experience an efficacious 
response to antipsychotic therapy using clinical diagnostic 

WHAT QUESTION DID THIS STUDY ADDRESS?
Application of a machine learning (ML) approach was investigated to determine if 
previously collected, patient-specific data could be used to predict and categorize in-
dividual patient treatment response during a clinical trial assessing treatment efficacy 
in schizophrenia.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Based on three virtual trials, model application resulted in “improvement” predictions 
ranging from 46% to 48% compared to actual improvement of 22% in the CATIE trial.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
ML shows promise as a useful tool to supplement patient enrollment to thereby im-
prove clinical trial efficiency.
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data. To develop this ML model, the CATIE schizophrenia 
trial22 was chosen for its well-structured data and detailed 
assessment of clinical and functional measures of disease 
severity and patient response.23 Briefly, CATIE compared 
the efficacy and safety of atypical antipsychotic drugs: olan-
zapine, quetiapine, risperidone, clozapine, ziprasidone, to 
the typical antipsychotics perphenazine and fluphenazine 
decanoate. Among many clinical studies, CATIE is one of 
the most comprehensive and data-rich independent trials to 
examine existing therapies for schizophrenia.24

METHODS

Data collection and preparation

De-identified individual patient level clinical data from 
the CATIE trial were requested and obtained from the trial 
sponsor, the National Institute of Mental Health (NIMH). 
In addition, data from two other trials evaluating safety 
and efficacy of approved antipsychotics: A Comparison 
of Long-acting Injectable Medications for Schizophrenia 
(ACLAIMS)25 and Preventing Relapse in Schizophrenia: 
Oral Antipsychotics Compared to Injectables: Evaluating 
Efficacy (PROACTIVE)26 were obtained. For all three da-
tabases, the Indiana University Institutional Review Board 
reviewed and provided an exemption to support this research 
project.

The CATIE trial, conducted from October 2001 to 
December 2004, established regularly scheduled patient as-
sessments, and collected data for up to 18 months. Targeted 
study population enrollment was 1600 patients with col-
lection of up to 500 attributes for each individual patient. 
Eligibility requirements included participants aged between 
18 and 65 years and a previous diagnosis of schizophrenia.24 
Exclusion criteria included other cognitive disorders, such as 
schizoaffective disorder, mental retardation, pervasive devel-
opmental disorder, delirium, dementia, amnesia; a history of 
serious adverse reaction to the proposed medication; a his-
tory of only one schizophrenic episode; a history of treatment 
resistance; and women currently pregnant or breast-feeding. 
Of note, patients with tardive dyskinesia were eligible to en-
roll but were restricted from assignment to perphenazine. 
At baseline, the incidence of comorbidities within the study 
population was as follows: 11% diabetes, 14% hyperlipid-
emia, and 20% hypertension.24 We did not evaluate potential 
impact of these comorbidities on treatment response due to 
absence of comorbidity data collected over the course of the 
trial. Additionally, whereas we acknowledge potential phar-
macokinetic interactions between the antipsychotic agents 
of study and any permitted concomitant medications, anal-
ysis for such interactions was not included in the model’s 
development due to dataset limitations. Finally, an implicit 

assumption was that drug-specific therapeutic steady-state 
pharmacokinetics and stable disease applied for the duration 
of on-treatment assessments. For example, factors influenc-
ing target site drug concentration, such as protein binding, 
liver, and/or renal function, were assumed stable.

The CATIE dataset, like most clinical trial data, came 
from the NIMH as a set of individual files containing dif-
ferent patient attributes. The longitudinal data files required 
careful examination for measurement dates and/or missing 
values, as patient attributes were often measured at incon-
sistent time intervals or frequencies. A 2-week measurement 
window was used to approximate time of measurement and 
the recorded “visit day” was converted from days to months 
and then rounded to the closest whole number. Data for 
months 2, 4, and 5 were not included, as observations were 
too infrequent to contribute to the ML model identification. 
All patient attribute data were combined based on patient ID, 
with each row representing one patient and columns repre-
senting responses over time for each diagnostic instrument.

The following paragraph describes the process used to 
create the curated dataset. Of the 1894 subjects screened in 
the CATIE trial (actual enrollment was greater than the target 
enrollment of 1600), 434 subjects were excluded by CATIE 
trial authors due to concerns about the integrity of the data.24 
Of the 1460 subjects remaining, 658 did not have recorded 
outcomes at 6 months and were excluded. Finally, with inter-
est in improvement at 6 months in mind and 802 subjects re-
maining, 163 subjects who had already experienced clinical 
improvement at 3 months were excluded. This was done to 
avoid bias in model training as data from these 163 subjects, 
baseline and improved PANSS scores at 3  months, would 
have biased the model toward predicting improvement for 
similar baseline and 3 months PANSS scores without consid-
ering other features.

Subsequent to the initial work described in the preceding 
paragraph, the CATIE dataset was organized and formatted 
to support ML model development by using the R package, 
dplyr.27 Assessments from the following diagnostic evalua-
tions were included in the curated dataset: PANSS, Clinical 
Global Impression of Severity (CGI), quality of life, struc-
tured clinical interview of Diagnostic and Statistical Manual 
of Mental Disorders, Fourth Edition, neurocognitive battery, 
vital signs, and Calgary Depression Scale for Schizophrenia 
(CDSS). The various items and/or subscales within each of 
these instruments were considered. When more than 70% of 
the values for any given item were missing, that item was ex-
cluded. Imputations were not conducted for any given item. 
Data were categorized at baseline, 1 month, and 3 months of 
treatment for each patient. Based on the work of others that tra-
jectories in PANSS scores over time correlate with relapse,28 
slopes of PANSS subscales (general, positive symptoms, and 
negative symptoms) over time were calculated per patient and 
assessed for ability to improve ML model performance.
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A binary classification model ML approach was used 
such that a positive response to therapy, “improvement,” was 
defined as 20% or more reduction in total PANSS score be-
tween baseline and 6  months; whereas “no improvement” 
was defined as an inadequate treatment response (<20% re-
duction in total PANSS). The PANSS rating scale was cho-
sen as the objective response variable for its established use 
as a standard assessment of clinical efficacy in the treatment 
of schizophrenia.17,29,30 When using percent reduction in the 
PANSS score to identity treatment response, standard cutoffs 
typically range from 20% to 50%.31 We chose a cutoff of 20% 
to develop a model able to detect modest, albeit clinically 
justifiable, improvement.32

Full ML model development

The present work aimed to develop a binary classification 
ML model trained to predict treatment response (specifically, 
a 20% reduction in total PANSS score) at 6  months based 
upon patient responses at baseline, 1 month, and 3 months, 
assuming that antipsychotic exposure was consistently within 
therapeutic range. Although the CATIE trial collected data 
up to 18 months, we found that data beyond 6 months was 
too sparse to inform model training. Several classification al-
gorithms were tested and compared. These were random for-
est (RF), logistic regression, naïve Bayes, and support vector 
machine. The RF algorithm, a tree-based classifier consisting 
of multiple individual decision trees, each generated by ran-
domly subsampling the training data,33 was ultimately cho-
sen, as it had the best overall performance with respect to 
receiver operating characteristic (ROC) curve, true positive 
rate (TPR), true negative rate (TNR), and correct classifica-
tion rate (CCR), the latter three as defined below in Equations 
1–3, respectively.

Figure 1 depicts the workflow developed to build the bi-
nary, RF ML classification model (full ML model) to catego-
rize each patient’s response as either “improvement” (20% or 
more reduction in total PANSS score between baseline and 
6  months) or “no improvement” using the curated dataset 
(639 patients). Detailed description of the workflow process 
is found in Supplementary Methods.

Several classification algorithms were then tested and 
compared. These included RF, logistic regression, naïve 
Bayes, and support vector machine. An ensemble modeling 
approach was adopted using the RF algorithm, wherein a 
number of different decision trees were used to make pre-
dictions.34 Model training was performed using 5, 7, and 10-
fold cross-validation to avoid overfitting.35,36 Internal model 
validation, step 5, was conducted using the testing dataset 
(n = 192) created in step 2.

Following model development, the full ML model’s 3-
month response predictions using the testing dataset were 

compared to CATIE outcomes. Model accuracy was assessed 
using the ROC curve. Accuracy is defined as area under the 
ROC curve (ROC AUC), which relates TPR (model sensi-
tivity, plotted on the y-axis), and TNR (model selectivity, or 
sometimes referred to as specificity, plotted on the x-axis). 
The equations used to calculate TPR, TNR, and CCR are 
shown below.

Application of ML approach for clinical 
trial enrichment

To evaluate if the full ML model developed could be used 
to identify patients most likely to exhibit clinical improve-
ment with antipsychotic therapy, a second ML model was 
developed. The concept was to determine if an ML model 
provided with baseline data alone could support recruitment 
and provide feedback relatively quickly (3 months instead 
of 6  months) to identify patients most likely to experi-
ence an “improvement” in response to the antipsychotics 
of study. Thus, this so-called patient screening ML model 
differed from the full ML model in that only baseline data 
(no data at 1 and 3 months) were used to predict outcome 
at 3 months. The same workflow illustrated in Figure 1 was 
used to develop this screening model. However, patient 
numbers used to develop the screening model (n  =  1009 
before splitting into training and testing datasets) were 
larger than the first model (n = 639) because fewer patients 
were providing data as study duration reached 6  months. 
The screening model trade-off, in using only baseline data, 
meant the dataset, although larger in individual patient 
numbers, did not contain multiple measurements collected 
over time. Figure S1 compares patient numbers used for the 
two models.

To assess performance of the patient screening ML 
model, the workflow shown in Figure 2 was used to con-
duct a series of virtual clinical trials consisting of prese-
lected actual patients from the CATIE trial. Specifically, 
patients predicted not to improve at 3  months were 
excluded from enrollment. Three such virtual clinical 
trials were  conducted, all of 3  months’ duration and 
consisting of 50 patients each. The percentage of pa-
tients predicted to improve at month 3 from each virtual 
trial was then compared with actual CATIE outcomes at 
3 months.

(1)TPR =
TP

(TP + FN)

(2)TNR =
TN

(TN + FP)

(3)CCR =
(TP + TN)

(TP + FN + TN + FP)
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RESULTS

Data curation for ML analysis

The final dataset used for the full ML model developed ac-
cording to the scheme outlined in Figure 1 consisted of 639 
patients and 397 features total. Baseline patient demographic 
and clinical characteristics are summarized in Table  S1. 
Figures  S2–S6 illustrate distributions of baseline measure-
ments for several of the diagnostic evaluation instruments 
applied in CATIE. Patient classification as “improvement” 
versus “no improvement” came from data at 6  months. Of 
all 397 features, a subset of 123 features (Table S2) was se-
lected using Pearson’s correlation to provide a final patient/
feature ratio of five. Following feature selection, the dataset 
contained more patients in the “no improvement” category 
(Figure 3a). This imbalance was preserved after the random 
split into separate training and testing datasets (Figure 3b,c). 
After balancing the training set, similar proportions of 

patients were obtained in both categories for proper model 
training (Figure 3d).

Model performance

Among the several algorithms evaluated, the RF algorithm 
had the best overall performance. For this algorithm, model 
performance in the test stage yielded an accuracy of 0.7 
(ROC AUC), which was considered reasonable. In con-
trast, accuracy for the other algorithms ranged from 0.58 
to 0.65. Table  1 summarizes the RF performance for the 
full ML model training and testing stages with respect to 
ROC, TPR, TNR, and CCR. Poor performance with respect 
to TPR was likely due to the low number of patients in 
the “improvement” category within the test stage dataset. 
However, the high TNR and CCR values in the test stage 
demonstrate model ability to identify patients with “no 
improvement.”

F I G U R E  1   Five-step workflow for full machine learning (ML) model analysis to develop a binary classification model to predict treatment 
response outcome based on clinical measurements taken at baseline, 1 month, and 3 months
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As indicated in Figure  4, 8 of the 10 patient attri-
butes  with the highest contribution to predict patient 
response came from PANSS subscales measured at 
baseline.

Clinical trial enrichment

In contrast to poorly predicting patients in the “improve-
ment” category, the patient screening ML model performed 
reasonably well at predicting “no improvement” at 3 months 
(Table 2). Application of this model to the flow scheme spec-
ified in Figure 2 to enrich patient selection by excluding pa-
tients predicted not to improve led to consistent predictions 

of more than 45% of patients improving with therapy after 
3 months (Table 3). These results compare to 22% of patients 
that actually experienced improvement in the CATIE trial. 
Increased ability to identify patients with a greater propensity 
to be in the “improvement” category was attributed to high 
model specificity (TNR).

DISCUSSION

Data curation for ML analysis

Selection of data for which an ML model will be devel-
oped is a critical component of success. In addition to the 

F I G U R E  2   Schematic of workflow to assess patient screening machine learning (ML) model ability to enhance clinical trial population 
enrollment for the virtual trials



1870  |      PODICHETTY et al.

CATIE Schizophrenia trial, there are at least two other 
publicly available datasets from phase IV clinical trials 
designed to prospectively evaluate safety and efficacy of 
antipsychotics used for the treatment of schizophrenia: 
ACLAIMS25 and PROACTIVE.26 Attempts to develop an 
ML model with data from the ACLAIMS trial fell below 
suitable expectations. Specifically, the dataset yielded 
ROC results less than 0.6 in both training and testing stages 
of ML model development. This poor performance was at-
tributed to the smaller trial population (n = 311) and the 

collection of patient features, which, collectively, were not 
informative to ML model development. Interestingly, none 
of the collected features were consistent with the top 10 
features identified from the CATIE trial (Figure  4). Due 
to comparably small study size (n = 357), no attempt was 
made to develop an ML model from the PROACTIVE trial 
data. The CATIE clinical trial dataset included rich fea-
ture data from multiple cognitive and behavioral assess-
ment instruments and a large number of subjects, making 
it well-suited to support ML model development. On the 

F I G U R E  3   Patient distribution between “no improvement” and “improvement” categories of the (a) original curated dataset, n = 639; (b) 
training dataset, n = 447; (c) testing dataset, n = 192; and (d) balanced training dataset, n = 602

(a) (b)

(c) (d)

RF ROC
TPR 
(sensitivity)

TNR 
(specificity) CCR TP FP TN FN

Training 0.956 0.740 0.991 0.884 191 3 341 67

Testing 0.700 0.194 0.936 0.800 7 10 146 29

Abbreviations: CCR, correct classification rate; FN, false negative; FP, false positive; ML, machine learning; 
RF, random forest; ROC, receiver operator characteristic; TN, true negative; TNR, true negative rate; TP, true 
positive; TPR, true positive rate.

T A B L E  1   Performance of the full ML 
model during training and testing stages



      |  1871MACHINE LEARNING IN SCHIZOPHRENIA CLINICAL TRIALS

other hand, although the CATIE trial collected data up to 
18 months, we found that data beyond 6 months was too 
sparse to inform model training. This study demonstrates 
the potential of ML techniques to both query the study 
data for predictive relationships in novel and unstructured 
ways while providing a potential pathway to enrich future 
studies by deploying strategies that can enrich the patient 
population. Yet, more work remains to be done in the ap-
plication of these modeling techniques. Although ML 
models may prove to be applicable at any stage of drug 
development, our present interest was to evaluate them in 
the early stages, where proof-of-concept is the goal, rather 
than in definitive or confirmatory phase III studies.

Universally, in drug development, there is a clear advan-
tage to leveraging opportunities in trial designs that permit 
a shorter trial duration.37 Studies that require longitudinal 
patient-level data of 6 months’ duration or more are too long 

to facilitate the general framework of a quick win/quick kill 
proof-of-concept strategy.38,39 However, diseases like schizo-
phrenia often require studies of a longer duration to achieve 
meaningful changes in markers of efficacy and safety. To 
address these challenges, the probability of successfully 
predicting improvement at 18  months, using data from the 
first 6  months, was evaluated. To our disappointment, this 
approach did not meet performance requirements (ROC AUC 
was ≤0.7), which was attributed to an insufficient number of 
“improvement” cases at 18 months to support model train-
ing. Ideally, baseline information alone would be sufficient to 
predict improvement at 3 or 6 months. Addition of 1-month 
and 3-month data to baseline scores was necessary to prop-
erly train the full ML model to achieve ROC AUC greater 
than or equal to 0.7 when predicting treatment response at 
6 months. Addition of slopes describing change in each of 
the PANSS subscales (general, positive, and negative) from 

F I G U R E  4   Top 10 patient attributes most predictive of treatment response outcome. CALG, Calgary; PANSS, Positive and Negative 
Syndrome Scale

RF ROC
TPR 
(sensitivity)

TNR 
(specificity) CCR TP FP TN FN

Training 0.956 0.714 0.985 0.869 332 9 611 133

Testing 0.653 0.167 0.948 0.762 12 12 219 60

Abbreviations: CCR, correct classification rate; FN, false negative; FP, false positive; ML, machine learning; 
RF, random forest; ROC, receiver operator characteristic; TN, true negative; TNR, true negative rate; TP, true 
positive; TPR, true positive rate.

T A B L E  2   Performance of patient 
screening ML model during training and 
testing stages using only baseline data

T A B L E  3   Patient screening ML model performance during the virtual clinical trials

Virtual clinical trials
Number of patients 
enrolled

Number of patients predicted to 
improve at 3 months

Percentage of patients predicted 
to improve at 3 months

1 50 24 48

2 50 23 46

3 50 24 48

Abbreviation: ML, machine learning.
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baseline to 1 month and baseline to 3 months also improved 
accuracy of the full ML model when predicting outcome at 
6 months.

ML model development and performance

As no single algorithm fits all ML models, several were eval-
uated, including logistic regression, naïve Bayes, and support 
vector machine. The RF algorithm had the best overall per-
formance according to the criteria specified in Methods and 
shown in Table 1. A tree-based ML classification algorithm, 
such as RF, offers several advantages over other paramet-
ric models, such as logistic regression.40 First, decision trees 
do not require a specific relationship between covariates and 
outcome. Second, these algorithms require less data prepara-
tion, as features do not require scaling or centering prior to 
model training. Tree-based ML classification also requires 
fewer assumptions as it has no functional form. On the other 
hand, the approach can be susceptible to overfitting and may 
require regularization.41–44 Regularization requires adding 
constraints to simplify the model and curb risk of overfitting. 
Outcome prediction from RF is based on the most common 
outcomes from individual decision trees.

Model accuracy was assessed using ROC AUC. As binary 
classification models frequently perform better at classifying 
one category, it was no surprise when the present model per-
formed significantly better at predicting the “no improve-
ment” category. Although there are several reasons why this 
would occur, the most obvious is the reduced number patients 
who met the “improvement” definition. In other words, there 
was limited availability of outcomes from the “improvement” 
group. Two additional possibilities are high noise and low 
signal.

To optimize model performance, various split ratios for 
the training and testing populations, as well as different cross 
validation folds were explored. Split ratios of 70:30, 75:25, 
and 80:20 were tested with the 70:30 ratio yielding the high-
est number of subjects in the “improvement” category. We 
tested 5, 7, and 10-fold cross-validation folds and found the 
curated dataset able to support the more rigorous 10-fold 
cross-validation. All splits and cross-validations were ran-
domized. As described previously, the training dataset was 
balanced using the SMOTE function in R software to pre-
serve and enhance the number of “improvement” cases and 
to restrain sampling of “no improvement” cases. Although 
the RF algorithm showed a TPR greater than 0.7 during the 
training stage, this measure of sensitivity of model perfor-
mance was reduced in the testing dataset to 0.194. This was 
attributed to the limited number of “improvement” cases. 
Despite low sensitivity, ROC and CCR values were within a 
desired range and the model performed well regarding its se-
lectivity, that is, in predicting patients who did not experience 

clinical improvement at 6 months (TNR = 0.936; Table 1). 
Hence, the ML model demonstrated potential for use as a tool 
to identify patients for inclusion, which could be used as a 
technique to enrich enrollment.

Clinical trial enrichment using ML

Patient recruitment can be a challenging limitation to suc-
cessful trials. Clinical trials in schizophrenia are no excep-
tion. In response to these concerns, the high selectivity of 
the full ML model was leveraged to develop the patient 
screening ML model that could cull potential subjects dur-
ing the enrollment phase not likely to experience an effica-
cious response. This screening model was created by limiting 
clinical measurements to those collected only at baseline to 
predict outcome at 3 months, which is reasonably short and 
therefore attractive from the standpoint of making quick 
win/quick kill decisions. Based on higher predicted effica-
cious response rates (>45%) in 3 virtual trials of 50 patients 
each as compared with actual results (22%), these findings 
offer encouragement regarding further investigation of this 
approach. Although the false-positive rate was low in this 
screening model (1–0.948 from Table 2), it was not 100% se-
lective with respect to false-positive removal. Had this been 
achieved, higher predicted response rates would likely have 
been realized. From the standpoint of efficiency, this poten-
tial benefit for a shorter treatment phase needs to be weighed 
against the potential for a longer recruitment phase in order 
to identify a sufficient number of patients not predicted to be 
in the nonresponder group. Additionally, incorporation of an 
ML model to support patient recruitment may have merit as 
a novel approach to support patient segmentation in clinical 
trial design, which may enhance signal detection of an effect 
from an investigated novel therapy.

It is important to emphasize that the present analysis for 
ML utility for clinical trial enrollment enrichment in schizo-
phrenia trials is a proof-of-concept; further investigation is 
necessary. A potential limitation of this specific ML model 
approach is that the model was trained on clinical responses 
to antipsychotic drugs that are presumed to be effective 
based upon their pharmacology at the dopamine and sero-
tonin receptors. These are the common mechanisms relevant 
to the agents tested in CATIE. Accordingly, it is likely that 
this model would be more relevant for new chemical entities 
seeking to improve treatment efficacy and/or safety through 
similar mechanisms (for example, through increased recep-
tor occupancy or potency, improved receptor selectivity, or 
enhanced pharmacokinetic properties). Therefore, we con-
clude that the concept of incorporating an ML-based patient 
screening approach, as developed herein, merits further re-
search. Furthermore, given the encouraging results obtained, 
the work merits an expansion of ML techniques to predict the 
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response of existing and future CNS agents based on a variety 
of mechanisms in other patient populations, such as in major 
depression, attention-deficit disorder, pain, Alzheimer’s dis-
ease, and cognitive impairment, to name a few.

A second limitation of this approach is that features iden-
tified represent a particular patient population, and that this 
population is not going to be adequately represented with re-
spect to potential for response in the space where cognitive 
issues and negative symptoms, which remain a significant 
unmet need in medical treatment of schizophrenia, are the 
primary focus. Finally, an ML approach provides the oppor-
tunity to consider a much higher dimensionality of potential 
input variables to predict outcome compared to a linear or 
nonlinear mixed effects model. Despite this apparent advan-
tage, there is significant risk of overfitting with ML based 
approaches. Furthermore, ML approaches do not consider 
mechanistic underpinnings of a system; therefore, if the sys-
tem changes (or the training data contain sufficiently hetero-
geneous responses), the ML algorithm is less likely to predict 
an outcome correctly, whereas a mixed effects approach (or 
quantitative systems pharmacology potentially) could accom-
modate those changes given there may be more mechanistic 
information. As additional information becomes available, in 
particular longitudinal information, differences in predictive 
ability of the ML versus mixed effect models may narrow.

In summary, an ML classification model was developed 
to predict patient treatment response to currently utilized 
antipsychotic medications. Overall model performance was 
satisfactory aside from low sensitivity (TPR < 0.7). Model 
specificity, represented by the false negative rate, was over 
93%. This outcome was leveraged to develop a patient screen-
ing ML model to recommend exclusion from a schizophrenia 
trial designed to demonstrate efficacy. A proof-of-concept 
analysis via 3 virtual trials of 50 patients each predicted an 
average 47% of patients would improve at 12  weeks com-
pared to 22% from CATIE trial results.
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