
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



www.thelancet.com/rheumatology   Vol 2   October 2020 e633

Review

Lancet Rheumatol 2020; 
2: e633–45

Centre for Osteoarthritis 
Pathogenesis, Versus Arthritis, 
Kennedy Institute of 
Rheumatology, University of 
Oxford, Oxford, UK 
(Prof T L Vincent PhD)

Correspondence to: 
Prof Tonia L Vincent, Centre for 
Osteoarthritis Pathogenesis 
Versus Arthritis, Kennedy 
Institute of Rheumatology, 
University of Oxford, 
Oxford OX3 7FY, UK 
tonia.vincent@kennedy.ox.
ac.uk

Of mice and men: converging on a common molecular 
understanding of osteoarthritis
Tonia L Vincent

Despite an increasing burden of osteoarthritis in developed societies, target discovery has been slow and there are 
currently no approved disease-modifying osteoarthritis drugs. This lack of progress is due in part to a series of 
misconceptions over the years: that osteoarthritis is an inevitable consequence of ageing, that damaged articular 
cartilage cannot heal itself, and that osteoarthritis is driven by synovial inflammation similar to that seen in rheumatoid 
arthritis. Molecular interrogation of disease through ex-vivo tissue analysis, in-vitro studies, and preclinical models 
have radically reshaped the knowledge landscape. Inflammation in osteoarthritis appears to be distinct from that seen 
in rheumatoid arthritis. Recent randomised controlled trials, using treatments repurposed from rheumatoid arthritis, 
have largely been unsuccessful. Genome-wide studies point to defects in repair pathways, which accords well with 
recent promise using growth factor therapies or Wnt pathway antagonism. Nerve growth factor has emerged as a 
robust target in osteoarthritis pain in phase 2–3 trials. These studies, both positive and negative, align well with those 
in preclinical surgical models of osteoarthritis, indicating that pathogenic mechanisms identified in mice can lead 
researchers to valid human targets. Several novel candidate pathways are emerging from preclinical studies that offer 
hope of future translational impact. Enhancing trust between industry, basic, and clinical scientists will optimise our 
collective chance of success.

Introduction 
The global impact of osteoarthritis, the most common 
form of joint disease in developed societies, is predicted 
to rise steadily as obesity and longevity increase.1 Osteo­
arthritis is a substantial societal burden, associated 
with increased mortality and frequently complicated by 
multimorbidity and polypharmacy.2–4 The recent accep­
tance of osteoarthritis as a serious disease has helped to 
drive the therapeutic agenda forward, to garner support 
from academia and industry, and to influence health­care 
prioritisation.5 The market for symptomatic and disease­
modifying treatments is huge, and yet relatively little 
progress has been made thus far in bringing new treat­
ments to patients.

Osteoarthritis research can be broadly divided into 
clinical and basic categories. Clinical research includes 
pathology, epidemiology, and interventional studies in 
humans, whereas basic research encompasses the study 
of molec ular pathogenesis through in­vitro systems, 
preclinical models, and large­scale omics (ie, genomics, 
transcrip tomics, proteomics, and metabolomics) studies. 
Osteo arthritis is a mechanically driven disease. This notion 
is compellingly described in the epidemiological literature6 
and confirmed in basic science studies, which have shown 
the highly mechano sensitive nature of joint tissues,7–12 
the activation of inflammatory signalling by mechanical 
injury,12,13 the dependence on mechanics in preclinical 
osteoarthritis,14,15 and the involvement of mechanosens­
ing mechanisms in in­vivo pathogenesis.16,17 Several 
other important causal factors—such as obesity, age, and 
genetics—affect the ability of joint tissues to withstand 
mechanical stress over a lifetime and affect the ability to 
repair damaged tissues. These factors might also increase 
the risk of osteoarthritis in ways that are indepen­
dent of mechanics. For example, osteoarthritis in non­
weightbearing joints is increased in obese individuals,18 

possibly due to low­grade systemic inflammation,19,20 which 
might be linked to the gut microbiome.21

Various impediments are recognised in osteoarthritis 
drug development. Osteoarthritis is an insidious and 
heterogeneous disease. These qualities inevitably mean 
that clinical trials are often prohibitively expensive, and  
raise the possibility that one target might not work for all. 
Molecular pathogenesis also has its challenges. Molecular 
tools have needed to be refined to work in pauci cellular, 
matrix­rich tissues, such as articular cartilage. Low access 
to human tissue at early stages of disease has necessi­
tated a reliance on preclinical models, which has also 
required substantial refinement, largely involv ing moving 
away from disease models involving chemical induction 
methods (eg, monosodium iodoacetate, papain, and col­
lagenase injection) in favour of those induced by surgi cal 
desta bilisa tion of the joint.22 In the past 15 years, target 
discovery in osteoarthritis has increased substantially, 
particularly through large, agnostic omic studies using 
end­stage human disease tissue and through molecular 
validation facilitated by preclinical mouse models and 
clinical trials. There has also been considerable research 
into methodological tools for improving clinical outcome 
measures and osteo arthritis trial design.23 In this Review, 
recent successes and failures in osteoarthritis clinical 
trials are considered in parallel with preclinical advances. 
Together, these different types of research are helping to 
unravel the complexities of osteoarthritis pathogenesis 
and to provide future target ing strategies with a higher 
chance of translational success.

Targeting inflammation in osteoarthritis 
Support for the involvement of inflammation in osteo­
arthritis comes from clinical observation (joint line tender­
ness, synovial thickening, and episodic joint effu sion) and 
radiographic evidence of synovial hypertrophy and bone 
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marrow oedema (by MRI and ultrasound) that are 
associated with clinical outcome.24–26 Additionally, various 
inflammatory molecules—including cytokines, chemo­
kines, and metalloproteinases—have been mea sured in 
osteoarthritis cartilage and synovium.27,28

Clinicians distinguish between inflammatory arthritis 
and osteoarthritis through a relative paucity of leucocytes 
in osteoarthritis synovial fluid, which are predominantly 
monocytes (in osteoarthritis) rather than neutrophils (in 
rheumatoid arthritis). Patients with osteoarthritis typically 
complain of less than 30 min early morning stiffness and 
show a modest systemic inflammatory response.29 These 
features are used clinically to aid the diagnosis of osteo­
arthritis. Whether low­grade inflammation contributes 
to osteoarthritis pathogenesis, both in terms of pain and 
structural disease, has been subject to heated debate 
over the years. Several randomised controlled trials that 
address different aspects of inflammation have been 
recently conducted. All the tested drugs derive from 
experience in rheumatoid arthritis where there is proven 
efficacy for such therapies.

Corticosteroids 
Intra­articular corticosteroids are widely used in clinical 
practice in osteoarthritis, although few historical studies 
have applied stringent placebo­controlled, randomised, 
and double­blind assessments. In hand osteoarthritis, a 
randomised controlled trial30 of intra­articular triamcina­
lone hexacetomide (a long­acting steroid prepara tion) plus 
lidocaine (a local anaesthetic) showed clinical improve­
ment up to 12 weeks following injection of the drug 
compared with lidocaine alone. This result met the 
primary outcome of the study, albeit in only two of eight 
co­primary endpoints.30 For both groups, the injected joint 
was splinted for 48 h immediately after treatment. 
A phase 2b trial31 of an extended­release intra­articular 
steroid showed greater efficacy than placebo in pain 
outcomes for knee osteoarthritis at several time points, 
even though the primary endpoint (pain at 12 weeks) was 
not met. Combined phase 2–3 studies of this preparation 
have showed an acceptable safety profile and a reduc­
tion in use of rescue pain medication (paracetamol or 
acetaminophen).32 In 2017, this prepara tion received 
approval by the US Food and Drug Administration (FDA) 
for clinical use under the trade name Zilretta.

Oral prednisolone has also been tested in hand osteo­
arthritis. The first study by Wenham and colleagues,33 in 
which 70 patients were randomly assigned to receive 5 mg 
of prednisolone or placebo daily, found no statistically 
significant improvement in pain at 4 or 12 weeks. How­
ever, a 2019 study,34 in which patients were randomly 
assigned to receive 10 mg of prednisolone or placebo daily 
for 6 weeks, showed significant improvement in patient­
reported pain and function at the primary endpoint of 
6 weeks. Symptoms returned rapidly after withdrawal 
of the drug. The study found a reduction in synovial 
thickness, but no improvement in synovitis by MRI or 

power doppler assessment, making the primary target 
tissue of the drug unclear.34

Few studies have attempted to examine the long­term 
effects of corticosteroids on joints. In a randomised 
controlled trial by McAlindon and colleagues,35 140 patients 
with knee osteoarthritis were randomly assigned to receive 
intra­articular injections of triamcinolone or saline once 
every 3 months for 2 years. Clinical outcomes were 
assessed every 3 months, and cartilage damage was mea­
sured by MRI at 2 years. No clinical benefit was seen for 
any of the outcome measures compared with placebo, 
although it is possible that the periodicity of follow­up 
caused transient responses to be missed (ie, if responses 
returned to baseline by 3 months). Importantly, this study 
showed a small but statistically significant increase in 
cartilage volume loss, raising concerns about the effect of 
repeated and long­term corticosteroid use on joint health.35 
Similar findings were also shown using data derived 
from the Osteoarthritis Initiative.36 A cautious approach 
to intra­articular steroid is indicated by a “conditional 
type 1B recommendation” for this treatment in the 
2019 guidelines from the Osteoarthritis Research Society 
International for non­surgical treatment of hip and knee 
osteoarthritis.37

Disease-modifying anti-rheumatic drugs 
Both hydroxychloroquine and methotrexate are used in 
patients with rheumatoid arthritis and, less com monly, on 
an individual­patient basis in osteoarthritis. Two random­
ised controlled trials using oral hydroxy chloroquine in 
hand osteoarthritis have been published, neither of which 
met the primary study endpoint of reduction in pain.38,39 
Additionally, no clinical response was seen in a predefined 
substudy in which patients were stratified by the presence 
or absence of power doppler signal, which is indicative of a 
more inflammatory phenotype.38 The PROMOTE study40 
has reported by abstract41 a small difference in pain 
in those with knee osteoarthritis taking methotrexate, 
although the effect size was not deemed clinically meanin­
gful. A small random ised controlled trial42 of 64 patients with 
hand osteoarthritis taking 10 mg of methotrexate failed 
to show a beneficial effect on pain, the primary out­
come, although some changes to the evolution of joint 
remodelling were suggested in the reported abstract. A 
meta­analysis43 has concluded no efficacy of conventional 
synthetic disease­modifying anti­rheumatic drugs across 
all joint osteoarthritis.

Anticytokine therapies 
An absence of efficacy was also evident in four random­
ised controlled trials in hand osteoarthritis that targeted 
either tumour necrosis factor or interleukin (IL)­144–47 and 
two trials in knee osteoarthritis targeting IL­1,48,49 one of 
which used an intra­articular approach. Despite promise 
from various small open­label studies, none of the random­
ised controlled trials met their primary study end points, 
suggesting that classical cytokine­driven inflam mation is 



www.thelancet.com/rheumatology   Vol 2   October 2020 e635

Review

at the root of neither pain nor structural damage in osteo­
arthritis. These results are in accordance with preclinical 
data in which gene deletion of IL­1β,50 the IL­1­converting 
enzyme, IL­1R (Vincent, unpublished data), tumour necro­
sis factor,51 or inflammasome pathway components (which 
lead to processing of IL­1­family cytokines)52 does not 
confer pro tec tion from osteoarth ritis after surgical joint 
destabilisa tion. Despite a strong rationale based on in­vitro 
studies, evidence to support a direct pathogenic role for 
IL­1 in osteoarthritis pathogenesis appears, in retrospect, 
to have been weak.53

Other putative inflammatory targets from preclinical 
models 
These studies force us to conclude that classical inflam­
mation, of the type that is pathogenic in rheumatoid 
arthritis, does not drive osteoarthritis. One exception to 
this notion might be IL­6. Although the osteoarthritis 
phenotype has been inconsistently reported in IL­6 knock­
out mice,54,55 therapeutic studies suggest that neutralisa­
tion of IL­6 modifies disease in murine osteoarthritis.56 
A clinical trial using tocilizumab, an IL­6­receptor­
neutralising antibody, in hand osteoarthritis completed in 
2019 but has not yet been reported (registered with 
ClinicalTrials.gov, NCT02477059).

Targeting the proteases that degrade the articular 
cartilage extracellular matrix has long been regarded as an 

attractive approach to disease modification in osteoarthritis. 
A disintegrin and metalloproteinase with thrombo spondin 
motif (Adamts)­5 was identified as the princi pal aggrecan­
degrading enzyme in mice,57 and in humans ADAMTS­5 
also mediates proteolytic activity in osteo arthritis chondro­
cytes58 (possibly also involv ing ADAMTS­4).59 Aggrecanase 
inhibition is being re­explored, after companies had aban­
doned earlier studies at the preclinical phase because of 
adverse cardio vascular events, using an anti­Adamts­5 
monoclonal antibody.60 A good safety profile and evidence 
of target engagement with a small molecule inhibitor61 
is now being followed by phase 2 studies in knee osteo­
arthritis, with struc tural disease as the primary outcome 
(registered with ClinicalTrials.gov, NCT03595618).

Activation of other components of the innate immune 
system might have more important pathogenic roles in 
disease, and some of these components have been 
examined in preclinical osteoarth ritis (table 1). Several 
chemo kine family members have been explored after 
joint destabilisation, with some having disease­modifying 
effects in murine osteoarthritis (table 1). These proteins 
are expressed by chondrocytes and have chondroprotective 
and disease­causing roles, not always correlating with cell 
infiltration of the joint. They therefore probably act in both 
canonical and non­canonical ways.68–70 C­C motif chemo­
kine 2 (Ccl2) and its receptor, C­C chemokine receptor 
type 2 (Ccr2), are the best validated of these targets. 

Target tested Study details Cartilage 
modifying?

Symptom 
modifying?

Complement

Wang et al62 C5 and Cd59a Knockout data confirmed by pharmacological approach Yes Not examined

Chemokines

Miotla Zarebska et al,63 
Miller et al,64 Raghu 
et al,65 Longobardi,66 
and Appleton et al67

Ccl2 or Ccr2 Constitutive gene deletion inconsistent across different studies but appearing 
to show structure modification at later time points; pharmacological studies 
point towards a key treatment window

Inconsistent Yes

Takebe et al,68 and 
Raghu et al65

Ccr5 or Ccl5 Inconsistent cartilage degradation scores; neither study showed a difference in 
synovitis scores after gene deletion

Inconsistent Not examined

Sambamurthy et al69 Ccr7 Modest structural role, knockout mice have reduced pain behaviour Yes Yes

Sherwood et al70 Cxcr2 Structural increase at 8 weeks in knockout mice (ie, protective) Yes Not examined

Qin et al71 Cxcr4 Inhibition in bone abrogates surgically induced osteoarthritis Yes Not examined

Mechanoflammation

Choi et al72 IkB-zeta subunit of 
Nf-κB

Over-expression worsens disease; conditional detection leads to decreased 
disease (both on Col2 promoter)

Yes Not examined

Kobayashi et al73 RelA (p65) Nf-κB 
transcription factor

Dual action of RelA in disease: heterozygotes protected; homozygotes showed 
increased disease through prevention of anti-apoptotic mechanisms induced 
by Pik3r1 (a Gwas hit for cartilage thickness)

Yes Not examined

Culley et al74 Ikka Conditional knockout (aggrecan Cre) disease protection associated with 
increased apoptosis

Yes Not examined

Ismail et al75 Jnk2 Chondroprotection observed at 4 weeks, 8 weeks, and 12 weeks after surgery Yes Not examined

Mast-cell activation

Wang et al76 c-Kit and Mcl1 Deletion produces functional deletion of c-Kit-dependent and 
c-Kit-independent mast cells; chondroprotection also observed with Apc366, 
a tryptase inhibitor

Yes Not examined

Wang et al76 Igh7 and Fcer1 Both genes target IgE-mediated activation of mast cells, indicating that 
IgE-induced mast-cell activation drives osteoarthritis pathology

Yes Not examined

Table 1: Putative innate immune targets showing disease modification in preclinical studies
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Constitutive deletion of Ccl2 or Ccr2 delays and suppresses 
pain severity in preclinical osteoarthritis but has little effect 
on cartilage damage when induced in animals that are 
10 weeks old.63,64 However, a reduction in structural disease 
has been seen when older (aged 20 weeks) Ccr2 knockout 
mice are subjected to joint destabilisation,65 and when 
pharmaco logical Ccr2 inhibition is delivered.67 In another 
study,66 structure modification was observed when a Ccr2 
antagonist was given either between 1–4 or 4–8 weeks after 
joint destabilisation, but not when given between 8–12 or 
1–8 weeks after. A reduction in pain behaviour was 
observed over short (3 week) and long (12 week) periods of 
treatment at all stages of disease. Blocking trans forming 
growth factor α (Tgfα) signalling, a strong inducer of Ccl2 
in the rodent osteoarthritis joint, also reduced structural 
disease after joint destabilisation in the rat.67 TGFα is of 
particular interest because it has been identified as a 
candidate gene for determining cartilage thickness and 
osteoarthritis risk in humans.77,78 These results point 
towards a role for Ccl2 and Ccr2 in murine osteoarth­
ritis pain and a possible role in structural progres sion. 

Two mRNA studies of human synovium have been done 
in individuals stratified by having painful or non­painful 
osteoarthritis.27,79 One of these studies27 identified CCL2 as 
being signi ficantly up­regulated in painful disease. CCR2 
antagonism in osteoarthritis pain has been explored 
clinically (regis tered with ClinicalTrials.gov, NCT00689273), 
although the results of the study do not appear to have been 
reported. A clinical study examining TGFα blockade is 
currently recruiting (regis tered with ClinicalTrials.gov, 
NCT04456686). All current osteoarthritis disease­modifying 
drug trials are summarised in table 2.

Other types of innate immune activation might be 
important in osteoarthritis pathogenesis but have as 
yet only been explored as targets in preclinical models 
(table 1). Components of the common terminal pathway 
of complement activation are strongly up­regulated in 
the synovial fluid of individuals with osteoarthritis,80 with 
evidence of the formation of membrane attach complex 
within human osteoarthritis cartilage.62 Deletion of C5 
(an upstream activator of the common pathway) in mice 
led to reduced disease severity after joint destabilisation, 
whereas deletion of an inhibitor of terminal activation 
(Cd59a) led to increased disease severity.62 The same 
research group also identified mast­cell activity as a 
pathogenic mediator in murine osteoarthritis.76 Mast­cell 
activation has previously been described in the osteoarth­
ritis joint,81 and is associated with structural disease.25

Inflammasome activation is purported to have a role in 
osteoarthritis, especially when disease is complicated by a 
crystal arthropathy. However, studies in mice in which 
components of the inflammasome pathway (activated by 
crystals) were genetically deleted failed to show a role 
for inflammasome in surgically induced osteo arthritis.82,83 
Several groups have examined the role of alarmins 
in osteoarthritis, through deletion of Toll­like receptors, 
S100 proteins, or advanced glycosylation end productspecific 

receptors. Collectively, these studies do not support a role 
for these molecules in surgically induced murine osteo­
arthritis.82,84 Many preclinical studies in this area of research 
remain unpublished, and this reporting bias has been 
unhelpful for research over the years.85

My own work, and work arising from the Centre of 
Osteoarthritis Pathogenesis at the Kennedy Institute of 
Rheumatology (Oxford, UK) has highlighted an important 
role for what has been termed mechanoflammation,86 
showing that mechanical injury directly drives inflam­
matory signalling and inflammatory genes in joint tissues, 
including the articular cartilage and synovium.87,88 Joint 
immobilisation after destabilisation surgery attenuates 
the induction of pathogenic proteases and prevents 
osteoarthritis development.14 Mechanoflammation drives 
TGFβ­activated kinase (TAK1) and downstream activation 
of the inflammatory mitogen­activated protein kinases 
(JNK and p38) and nuclear factor κB (NF­κB).12 NF­κB 
signalling pathway has long been considered an important 
inducer of inflammatory gene regulation in osteoarthritis. 
It is a complex pathway with canonical and non­canonical 
pathways that mediate anti­apoptotic and pro­inflammatory 
functions. This characterisation has been confirmed in 
vivo in a dose­dependent manner, in which heterozygous 
deletion of RelA (p65), a transcription factor activated upon 
canonical NF­κB activation, resulted in chondroprotection, 
whereas homozygous deletion led to accelerated disease 
through the suppression of apoptosis.73 Accelerated disease 
resulting from homozygous deletion of p65 was mediated 
through decreased expression of the anti­apoptoic gene 
Pik3r1, itself a candidate gene arising from a genome­wide 
association study for cartilage thickness.89 Deletion of Ikkα 
(which inhibits κB­kinase­α, an upstream NF­κB pathway 
activ ator) leads to disease protection and anti­apoptotic 
effects in vivo.74 Although NF­κB might be important in 
trans criptional regulation of proteases in osteoarthritis, 
JNK activation controls the bioavailability of aggrecanase 
acti vity in vitro58 and in vivo,75 by a mechanism that appears 
to involve re­uptake of aggrecanases by the cell surface 
scavenger receptor, low­density lipoprotein receptor­related 
protein.90,91 Targeting protease activity through metal cation 
symporter Zip8, a zinc transporter, has also been shown in 
murine osteoarthritis.92 Zip8 is regulated by the hypoxia 
transcription factor Hif2α,93 which has also been shown to 
be disease­modifying in preclinical osteoarthritis models.94

Promoting anabolism and repair in osteoarthritis
The inability of articular cartilage to repair is famously 
attributed to William Hunter who stated in 1743 that 
“…ulcerated Cartilage is universally allowed to be a very 
troublesome disease…and when destroyed, it is never 
recovered”.95 The essence of this statement has been 
reiterated in textbooks for decades, but recent years have 
seen a paradigm shift. Improved MRI imaging indicates 
that asymptomatic focal defects in the joint surface are 
much more common than previously suggested, and 
prospective studies conclude that around 30% of focal 
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Study type and number of 
participants

Drug Target or drug type Route Trial status Primary 
outcome

Secondary 
outcomes

NCT04456686 Phase 2 randomised controlled 
trial; 125 participants

LY3016859 Transforming 
growth factor α and 
epiregulin

Intravenous Recruiting Pain (numeric 
rating scale)

Function

NCT04447898 Phase 1 randomised controlled 
trial; 24 participants

PPV-06 
vaccination

Interleukin-6 Subcutaneous Not yet 
recruiting

Safety Not given

NCT04385303 Phase 3 randomised controlled 
trial; 726 participants

Lorecivivint 
(SM04690)

Wnt pathway Intra-articular Recruiting Pain (numeric 
rating scale)

Function

NCT03928184 Phase 3 randomised controlled 
trial; 725 participants

Lorecivivint 
(SM04690)

Wnt pathway Intra-articular Recruiting Pain (numeric 
rating scale)

Function; 
structure

NCT04318041 Phase 3 randomised controlled 
trial; 128 participants

Diacerin Unknown or anti-
inflammatory

Oral Not yet 
recruiting

Structure (MRI) Function

NCT04303026 Phase 3 randomised controlled 
trial; 70 participants

Zoledronic acid Osteoclast activity Intravenous Recruiting Pain (Visual 
analogue scale)

Function; 
structure

NCT04231318 Phase 3 randomised controlled 
trial; 231 participants

Cingal Triamcinalone plus 
hyaluronate

Intra-articular Not yet 
recruiting

Pain (WOMAC) Not given 

NCT04224584 Phase 2 crossover controlled 
trial; 40 participants

Duloxetine CNS reuptake 
inhibitor

Oral Recruiting Pressure pain 
threshold

Not given 

NCT04117893 Phase 4 randomised open-label 
trial; 150 participants

Duloxetine 
plus hyaluronic 
acid plus 
triamcinolone

CNS reuptake 
inhibitor plus 
corticosteroid plus 
hyaluronan

Oral and intra-
articular

Not yet 
recruiting

Pain (average 
pain scores)

Function

NCT04261049 Open-label trial; 35 participants Zilretta Corticosteroid 
(slow release)

Intra-articular Not yet 
recruiting

Muscle strength; 
function 
and gait

Not given 

NCT04123561 Phase 3 randomised controlled 
trial; 500 participants

TLC599 Corticosteroid 
(slow release)

Intra-articular Recruiting Pain (WOMAC) Function

NCT04120402 Phase 2 randomised controlled 
trial; 238 participants

EP-104IAR Corticosteroid 
(slow release)

Intra-articular Not yet 
recruiting

Pain (WOMAC) Function

NCT04097379 Phase 2 randomised controlled 
trial; 40 participants

LRX712 Not disclosed; 
pro-regenerative

Intra-articular Not yet 
recruiting

Structure 
(sodium 
cartilage 
content by MRI)

Pharmaco-
kinetics

NCT03913442 Phase 4 randomised controlled 
trial; 120 participants

Colchicine Anti-inflammatory; 
precise mechanism 
disputed

Oral Recruiting Pain (visual 
analogue scale)

Function

NCT03815448 Randomised controlled trial; 
200 participants

Methotrexate Immunosuppressant 
(folate antagonist)

Oral Recruiting Synovitis (MRI); 
pain (visual 
analogue scale)

Function

NCT01927484 Randomised controlled trial; 
120 participants

Methotrexate Immunosuppressant 
(folate antagonist)

Oral Not yet 
recruiting*

Pain (visual 
analogue scale)

Function

NCT02905799 Phase 3 randomised controlled 
trial; 164 participants

Resveratrol Anti-ageing or 
anti-inflammatory 
(multiple proposed 
mechanisms of 
action)

Oral Recruiting Pain (numeric 
rating scale)

Function

NCT04119687 Phase 1 open-label trial; 
24 participants

FX201 Interleukin-1 
receptor antagonist 
gene therapy

Intra-articular Recruiting Safety Biodistribution

NCT02790723 Phase 1 open label; 
9 participants

Sc-rAAV2.5IL-
1Ra

Interleukin-1 
receptor antagonist 
gene therapy

Intra-articular Recruiting Safety Not given 

NCT02471118 Phase 2 crossover randomised 
controlled trial; 
100 participants

Adalimumab Anti-tumour necrosis 
factor

Subcutaneous Recruiting OARSI/
OMERACT 
response

Pain; function

NCT03595618 Phase 2 randomised controlled 
trial; 928 participants

GLPG1972 ADAMTS-5 inhibitor Oral Not yet 
recruiting

Structure 
(cartilage 
thickness 
by MRI)

Other structure; 
function 
and pain

Data taken from Clinicaltrials.gov on July 24, 2020. *Trial terminated due to COVID-19.

Table 2: Registered active drug trials in osteoarthritis
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cartilage defects spontaneously regress over time.96 
Regres sion of osteoarthritis, as measured by Kellgren and 
Lawrence x­ray score during a 14­year period, has been 
documented in the Chingford Women’s cohort,97 and 
preclinical studies show evidence of intrinsic repair of 
focal cartilage defects in a mouse strain (genetic) and 
age­dependent manner.98,99

Load-altering procedures 
The best clinical evidence of intrinsic cartilage repair in 
individuals with osteoarthritis comes from open­label 
studies of joint distraction. The largest study to date 
involved 20 patients. Applying a distraction frame for 
6 weeks across the osteoarthritis knee joint resulted 
in an impressive clinical response (reduced pain and 
improved function assessed by the Western Ontario and 
McMaster Universities Osteoarthritis Index [WOMAC]) 
and regrowth of tissue that resembled articular cartilage 
by MRI at 1 year and 2 years.100,101 Extended follow­up of 
this cohort showed that trial participants were less likely 
than a disease­matched osteoarthritis population to 
undergo joint replacement surgery.102 Similar, albeit 
smaller, studies have been done by other groups.103 The 
procedure results in a reduction of compressive load 
through the joint and complete prevention of surface 
shear stress (ie, no joint flexion). These concepts fit well 
with observations in mice, in which immobilising the 
knee joint in a fully extended position prevents pro­
tease regulation and protects the mouse from osteo­
arthritis after joint destabilisation. Maintaining some 
compressive force is likely to be more effective than 
complete joint immobilisation because it promotes 
the release of matrix­bound chondroprotective growth 
factors, such as fibroblast growth factor (FGF) 2.14,16 
When the synovial fluid levels of candidate molecules 
were examined over the course of joint distraction, out 
of ten analytes exam ined, only two, FGF2 and TGFβ 
(both pro­regenerative growth factors), predicted a good 
clinical response.104

High tibial osteotomy, whereby a wedge of bone is 
removed from the top of the tibia (usually) to correct 
valgus–varus joint malalignment, is also associated with 
clinical improvement.105 Moreover, when studies have 
examined the cartilage macroscopically through arthro­
tomy, histologically, or by MRI, evidence of cartilage 
regeneration is observed in the now off­loaded part of 
the joint.106–108

Intra-articular FGF18 
Sperifermin is a truncated form of FGF18. The FGFs 
form a large family of pleiotropic growth factors implicated 
in a range of physiological and pathologi cal processes, 
including embryonic development, tissue repair, and 
cancer.109 Whereas FGF2 is promiscuous, binding to all 
four FGF receptors (FGFRs), FGF18 is thought to be more 
selective for FGFR3, which is the chondroprotective FGFR 
in murine osteoarthritis studies.110–112 Of note, polymorphic 

variants in FGFR3 have been identified in two genome­
wide association studies: a population study77 associating a 
polymorphic variant with articular cartilage thickness, and 
another study113 that identified it as an at­risk allele in 
osteoarthritis. The latter study also identified FGF18 as a 
candidate gene associated with osteoarthritis risk.113

In 2014, a proof­of­concept study114 was reported in 
which 192 individuals with osteoarthritis were randomly 
assigned to receive three doses of intra­articular sprifermin 
(recombinant truncated form of FGF18) or placebo, with 
follow­up at 6 months and 12 months. The study failed to 
meet its primary endpoint (a difference in articular 
cartilage thickness in the central medial femoro­tibial 
compartment), but it did show delayed loss of cartilage 
overall and thickening in the lateral compartment.114 In 
2019, the FORWARD trial,115 in which 549 participants 
received intra­articular sprifermin every 6 months or 
12 months, or placebo, reported a significant increase in 
total femoro­tibial cartilage volume compared with placebo 
at 2­year follow­up, albeit without significant clinical 
improve ment. In a recent post­hoc analysis116 of the original 
trial data (thus far reported in abstract form), sprifermin 
treatment showed a statistically significant clinical and 
structural improvement over among a subgroup of 
161 patients who were defined as being at high risk of 
progression. Although these studies do not specifically 
show reversal of cartilage damage (ie, true repair), they do 
show that damage can be arrested and therefore indicate a 
structure­modifying osteoarthritis drug. Whether these 
drugs turn out to be true disease­modifying osteoarthritis 
drugs is not yet clear. The apparent discordance between 
structure and symptoms in osteoarthritis is discussed later 
in this Review.

Intra-articular Wnt inhibitor 
Wnts are a complex family of cellular signalling molecules 
that direct a broad range of cellular responses, particularly 
regarding bone development. Wnts are activated upon 
mechanical stress of articular cartilage117,118 and are thought 
to drive the dedifferentiated chondrocyte phenotype, bone 
remodelling, and induction of catabolic enzymes seen 
in osteoarthritis.119–121 Canonical Wnt signalling involves 
stabilisa tion of the signalling molecule beta­catenin within 
the cell. Interfering with beta­catenin has shown conflict­
ing outcomes in experimental osteoarthritis, indicating 
that this molecule is not readily amenable to therapeutic 
translation.122 Interfering with natural inhibitors of Wnt 
signalling in mice, such as Dkk1 and Dot1l, reveals the 
disease­modifying potential of this pathway.123–126 SM04690 
is a synthetic Wnt inhibitor with an undisclosed (unknown) 
primary mechanism of action that has shown success in 
murine models of osteoarthritis.127,128 A phase 1 study of a 
single intra­articular dose of SM04690 in 61 participants 
with moderate osteoarthritis showed acceptable safety, 
with exploratory clinical endpoints that showed a positive 
trend towards improvement in pain and joint space 
narrowing.129 A phase 2 study of 455 individuals with 
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unilateral knee osteoarthritis, although not reaching its 
primary endpoint (improvement of WOMAC pain at 
week 13), showed improvement in pain and an increase in 
joint space indicative of disease modification, which was 
especi ally evident in people with unilateral disease.130 In 
May 2019, the phase 3 studies were launched (registered 
on ClinicalTrials.gov, NCT04385303).

Other putative anabolic targets from preclinical studies 
Recent studies in murine osteoarthritis identify the 
transcriptional coactivator Yap and WW domain­
containing transcription regulator protein 1 (Taz) pathway 
as a strong chondroprotective mechanism. Yap and Taz 
are both transcription factors that are activated by Hippo 
signalling, a highly conserved pathway thought to be 
involved in cellular mechanotransduction.131 Genetic and 
pharmacological enhancement of this pathway protects 
joints from osteoarthritis after joint destabilisation,132 
which might in part be due to it controlling the generation 
of chondroprogenitor cells arising from the synovium.133 
The Yap–Taz pathway also reciprocally controls Tak1132 
(strongly induced by cartilage injury), and this might 
be an important mechanism by which inflammation sup­
presses repair (figure 1).

Targeting nerve growth factor to treat 
osteoarthritis pain 
Nerve growth factor (NGF) has long been known to 
sensitise pain fibres and, in doing so, enhance the firing 
rate of nociceptors in response to mechanical and thermal 
stimuli. NGF is also known to be a neurotrophic factor, 
directing the growth of new nerves.134 The use of anti­NGF 
neutralising antibodies to inhibit osteoarthritis pain has 
been heralded as a huge breakthrough for osteoarthritis 
patients who have struggled for years with inade quate pain 
relief. Several biological drugs targeting NGF, all delivered 
systemically (intravenously or subcutaneously), have been 
tested in phase 2 studies, with a meta­analysis showing 
efficacy across the different studies.135 Two companies have 
now published phase 2–3 studies using NGF neutralising 
antibodies,136–138 with fasinumab and tanezumab showing 
efficacy over placebo. Concerns over patients developing 
rapidly pro gressive osteoarthritis in index and non­index 
joints (ranging from 2 to 10% according to dose and study) 
forced the FDA to introduce mitigation strategies, which 
included reducing highest doses and prohibiting the use 
of concomitant non­steroidal anti­inflammatory drugs. 
The community now awaits a decision from the FDA on 
whether this class of drug, which was designated as fast 
track in 2017, will be approved for patient use.

Other strategies to target NGF signalling have also been 
tested. In 2019, two randomised controlled trials targeting 
high affinity nerve growth factor receptor (TrkA), the 
receptor through which NGF signals, were published.139,140 
In one study,139 215 participants were randomly assigned to 
receive twice daily oral dosing with ASP7962, placebo or 
naproxen for 4 weeks. The study failed to meet its primary 

endpoint (WOMAC pain subscore).139 A second study140  
randomly assigned 104 participants to intraarticular 
GZ389988A or placebo. This study did show improved 
pain outcomes of the drug compared with placebo, 
although the effect size was small and of question­
able clinical value.140 Neither study was accompanied by 
evidence of target tissue drug bioavailability.

Anti­NGF clinical trials align well with evidence of NGF­
mediated pain­like behaviour in rodent osteoarthritis. 
Pain­like behaviour can be measured by evoked or non­
evoked methods. Like humans, rodents will spontaneously 
off­load the damaged joint when experiencing pain, and 
this behaviour can be measured by assessing the amount 
of weight transmitted through each hind limb. Using this 
technique, mice have been shown to display two phases of 
pain behaviour after joint destabilisation: an initial post­
operative phase that resolves after 1 week, and a later 
phase that starts only once there is significant joint 
damage (10 weeks after destabilisation of the medial 
meniscus or 8 weeks after partial meniscectomy).141–143 Late 
osteoarthritis pain in rodents is Ngf­dependent144,145 and 
tumour necrosis factor­independent.145 The driver of 
NGF­dependent late osteoarthritis pain is unclear, but Ngf 
mRNA upregulation occurs in the articular cartilage 
rather than bone or meniscus, and there is very little 
inflammatory gene regulation in the joint during this 
time.146 Although this observation might be surprising 
in view of broadly held views that osteoarthritis pain 
originates from inflam matory processes in the synovium 
or subchondral bone, emerging molecular data from 

Figure 1: Emerging therapeutic targets in osteoarthritis
Pathological targets largely cluster into those promoting repair, those neutralising pain, and those suppressing 
tissue inflammation (leading in turn to degradation). A reciprocal relationship exists between inflammatory and 
repair pathways in the osteoarthritis joint, both of which affect pain. Green circles indicate targets that show 
efficacy in mouse experiments and for which therapeutic strategies are being tested in clinical trials, and red circles 
indicate putative pathways identified in mice that have not yet been tested in clinical studies. Solid lines represent 
those with proven efficacy in human studies, and dashed lines indicate where clinical study outcomes are not yet 
known. Arrows indicate promotion, and flat line-ends represent suppression. Question marks indicate where 
connection is speculative. Load-altering procedures include surgical joint distraction and wedge osteotomy to 
correct joint malalignment, which probably suppress mechanoflammation. Peripheral pain arises from joint 
pathology and might suppress tissue inflammation and enable tissue repair by preventing mechanical overload of 
the joint. Zip8 is a zinc transporter that controls protease regulation in chondrocytes. FGFR=fibroblast growth 
factor receptor. IL=interleukin. YAP=transcriptional coactivator Yap. TAZ=WW domain-containing transcription 
regulator protein 1. ADAMTS=a disintegrin and metalloproteinase with thrombospondin motif. CCL=C-C motif 
chemokine. CCR=C-C chemokine receptor. Zip8=metal cation symporter Zip8. NGF=nerve growth factor.
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human tissue also support the notion that cartilage is the 
principal source of NGF in the osteoarthritis joint. Using 
agnostic approaches, NGF was not regulated in the 
synovium of individuals with painful compared with non­
painful osteoarthritis,27,79 and it was not found in bone 
marrow lesions from samples taken at the time of 
arthroplasty.147 NGF was found to be regulated in damaged 
articular cartilage in early micro array studies of osteo­
arthritis cartilage,148 and it defines one of seven subsets of 
chondrocytes identified by single­cell sequencing of 
human osteoarthritis cartilage.149 NGF is regulated by 
direct cartilage injury (mechanoflammation) in a TAK1­
dependent manner, and it is tempting to speculate that 
damage to chondrocytes near the osteo chondral junction 
is an important trigger for the NGF­driven neoinnervation 
of the articular cartilage that is seen late in both murine 
and human disease.150,151 Neoinnerva tion of this region also 
requires a permissive subchondral bone to support axonal 
extension. This neoinnervation has recently been shown 
to be dependent upon Netrin­1, secreted by osteoclasts 
during the course of murine osteoarthritis.152 An overall 

model for the development of pain in osteoarthritis has 
been proposed.153

Conclusions 
There are many reasons to be optimistic about new 
therapeutic developments in osteoarthritis. Although it is 
true that much of what has been learned in the past few 
years from clinical studies is what not to use in disease, 
these negative studies have been highly informative in 
reminding the medical community that osteoarthritis is 
distinct from inflammatory arthritidies, such as rheuma­
toid arthritis. Research has shown that inflammation in 
osteoarthritis is nuanced and that classical immuno­
modulatory pathways are not good targets, but that there 
are several other inflammatory pathways awaiting clinical 
exploration, including those driven by direct mechanical 
injury of the cartilage (so­called mechanoflammation), 
complement, and mast cells.

The nature and role of inflammation in osteoarthritis 
pathogenesis thus remains unclear. Clarification is 
crucially important, not only so that we can develop 
appropriate targeted therapies for patients, but also to 
decide whether patients require stratification before treat­
ment. There has been a popular move to try to phenotype 
patients, with a view to personalising their treatment to 
improve the efficacy of a given drug. However, these 
phenotypes currently lack cohesion; some are defined by 
clinical features (eg, inflammatory osteo arthritis), and 
others by co­morbidity (eg, metabolic osteoarthritis), 
precipitating factor (eg, post­traumatic osteoarthritis), or 
anatomical site (eg, hand osteoarthritis, hip osteoarthritis). 
There is little or no evidence that stratification by any of 
these features changes the response to treatment. Further 
carefully considered phenotypes that take into considera­
tion molecular pathways are probably required. Large­
scale molecular endotyping of patient samples is currently 
in its infancy, but will probably help.

Clinical successes point towards a focus on regenerative 
or anabolic pathways rather than inflammatory ones 
(figure 1). This suggestion fits well with preclinical 
studies, although the reciprocal relationship between 
repair and inflammation in the chondrocyte suggests 
that targeting one will probably affect the other.132 Recent 
large genome­wide association studies in osteoarthritis 
also support the concept that osteoarthritis is a failure of 
repair. Several at­risk loci have been attributed to genes 
in the TGFβ and FGF pathways, and there is a notable 
absence of loci that predict the regulation of classical 
inflammatory genes.113,154 Newer targets identified by 
genome studies, including the retinoic acid pathway, also 
look promising.155

NGF­targeting for pain relief is the target closest to 
being ready to use in osteoarthritis. Clinical success in late 
osteoarthritis indicates that analgesia occurs largely as a 
result of nociceptor desensitisation. It remains to be seen 
whether interfering with this pathway at earlier stages of 
the disease could affect the neoinnervation of the cartilage 

Figure 2: Concordance between tested targets in mouse and human osteoarthritis studies
Several pathways have been or are being tested in human osteoarthritis, having also been tested in murine surgical 
models. Yellow indicates therapies that show treatment success or target engagement in each study. Grey shows 
therapies that have failed to modify symptomatic or structural disease. Note that there is 100% concordance 
between mouse (outer ring) and human (inner ring) studies. FGF=fibroblast growth factor. FGFR=fibroblast 
growth factor receptor. DMOAD=disease-modifying osteoarthritis drug. GWAS=genome-wide association study. 
NGF=nerve growth factor. IL=interleukin. TNF=tumour necrosis factor. ICE=capsase-1/interleukin-1 converting 
enzyme. CCL=C-C motif chemokine. CCR=C-C chemokine receptor. ADAMTS=A disintegrin and metalloproteinase 
with thrombospondin motif.
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due to the neurotrophic functions of NGF, and to what 
extent this could prevent painful disease from developing. 
This type of strategy would need to be considered in the 
context of current safety concerns around the development 
of rapidly progressive osteo arthritis, which remains a real 
concern. Other molecules that appear to have a role in the 
neoinnervation of the osteochondral junction in osteo­
arthritis models include Netrin­1,152 a molecule secreted 
by osteoclasts that guides axonal growth through the 
subchondral bone. Blocking bone remodelling with a 
bisphospho nate early in murine osteoarthritis develop­
ment appears to block pain without affecting structural 
disease, according well with clinical studies in osteo­
arthritis in which bisphosphonates are not disease­
modifying when given in established disease.156,157

One major outstanding issue remains the apparent 
discordance between structural and symptomatic disease, 
which raises questions about whether validated drugs 
need to be able to, or indeed could ever, target both. 
Whether different joint pathologies give rise to different 
types of symptoms at different stages of disease is 
currently unknown, as is the relative contribution of 
factors that drive central sensitisation of pain. Of the few 
examples available at this stage, cartilage structure­
modify ing drugs (eg, sprifermin) mainly arrest disease 
progression rather than regenerating the cartilage, so 
perhaps symptoms could not be expected to reverse. 
Where structural damage appears to reverse (eg, after 
joint distraction), symptoms also appear to improve (albeit 
with no placebo control). Targeting pain alone is unlikely 
to improve structure in the short term and might worsen 
damage through mechanical overuse. In preclinical 
models, there tends to be better accordance between struc­
tural damage and pain­like behaviour,153 with some clear 

examples emerging that might identify true disease­
modifying osteoarthritis drugs of the future, such as those 
involving the YAP–TAZ pathway.

Finally, it is reassuring to conclude that, where there 
is overlap, research in surgical preclinical osteoarth­
ritis models aligns well with findings in clinical trials 
(figure 2). This concordance provides valuable validation 
of the models and will help develop mutual trust between 
the different osteoarthritis research disciplines. It is 
increasingly difficult to claim that mouse osteoarthritis is 
fundamentally different to human osteoarthritis, or that 
post­traumatic osteoarthritis does not inform age­related 
disease in humans. Part of this reassurance has emerged 
through improved awareness of bias mitigation in 
clinical and preclinical studies.158 It is also partly due to 
the acceptance that osteoarthritis has disease­specific 
molecular targets. Regardless, this is an important time 
for osteoarthritis research, with tangible translational 
benefits within reach.
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