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Abstract

Purpose

Aerobic endurance training (ET) increases systemic and peripheral oxygen utilisation over
time, the adaptation pattern not being linear. However, the timing and mechanisms of
changes in oxygen utilisation, associated with training beyond one year are not known.
This study tested the hypothesis that in women aged 40-60 years performing the same
current training load; systemic O, utilisation (VO,) and tissue deoxyhaemoglobin (HHb) in
the Vastus Lateralis (VL) and Gastrocnemius (GAST) would be higher in long term trained
(LTT; > 5 yr) compared to a short term trained (STT; 6—24 months) participants during
ramp incremental (RI) cycling, but similar during square-wave constant load (SWCL)
cycling performed at the same relative intensity (below ventilatory turn point [VTP]); and
that pre-frontal cortex (PFC) HHb would be similar between participant groups in both
exercise conditions.

Methods

Thirteen STT and 13 LTT participants performed Rl and SWCL conditions on separate
days. VO,, and VL, GAST, and PFC HHb were measured simultaneously.

Results

VOypeak Was higher in LTT compared to STT, and VO, was higher in LTT at each relative
intensities of 25%, 80% and 90% of VTP in SWCL. HHb in the VL was significantly higher in
LTT compared to STT at peak exercise (4.54 + 3.82 vs 1.55 + 2.33 uM), and at 25% (0.99 +
1.43vs 0.04 £ 0.96 uM), 80% (3.19+2.93 vs 1.14 + 1.82 yM) and 90% (4.62 £ 3.12 vs 2.07
+2.49 uM) of VTP in SWCL.

Conclusions

The additional (12.9 £ 9.3) years of ET in LTT, resulted in higher VO,, and HHb in the VL
at peak exercise, and sub—VTP exercise. These results indicate that in women 40-60
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years old, systemic and muscle O, utilisation continues to improve with ET beyond two
years.

Introduction

Irrespective of age and sex, in adults, there is a dose response relationship (to a limit) for
increased duration and intensity of aerobic endurance training (ET) and improved maximum
(peak) oxygen utilisation (VO,pcqr) [1, 2]. These adaptations are not linear, but rather follow a
curvilinear increase [2]. Conversely, with advancing age, VO,pcak decreases in the same curvi-
linear pattern [3]. A meta-analysis indicated that in previously sedentary older adults, regular
ET for 30-40 weeks elicits the largest improvements in VO,pca1, with small improvements
between 40-50 weeks, and a plateau at 50 weeks [2]. These results indicate that improvements
in systemic O, utilisation reach a plateau within one year of commencing regular ET, and only
minimal increases will occur following prolonged (> 1 yr) ET.

In women over 60 years of age, physiological adaptations responsible for increased VO, pear
following ET vary depending on training history, these being peripheral [4-6], central [7, 8],
or a combination of both [9]. Collectively, these previous results indicate that in older women,
1) regular ET decreases the typical age-related decline in VO, through preserved central mech-
anisms; and 2), peripheral adaptations potentially only occur in individuals who start ET fol-
lowing a sedentary lifestyle. Peripheral adaptations play an important role in O, utilisation,
and ~90% of available O, at peak exercise is consumed peripherally at the muscle mitochon-
dria [10]. However, peripheral oxidative adaptations were not directly measured at the muscle
in any of these studies, rather measuring arteriovenous oxygen difference which is calculated
from central and systemic measurements. Therefore, the results did not directly indicate
changes or differences in local muscle oxidative metabolism or O, utilisation.

Peak VO, and ventilatory turn point (VTP) are standard measures of systemic O, utilisa-
tion and endurance performance [11-13]. During incremental exercise, tidal volume (V) and
breathing frequency (BF) increase simultaneously, then V plateaus, and further increases in
pulmonary ventilation (V) result from increases in BF only [14]. Ventilatory turn point corre-
sponds to a metabolic rate where an increase in carbon dioxide production, relative to VO,
results in Vg increasing out of proportion to VO, [15, 16]. Unlike VO,pca1, VTP does not
change (relative to VO,peai) With age [12, 13], and can increase following ET without concur-
rent improvements in VO,peqi [17]. Therefore, VO, peq is likely to be higher in trained than
untrained individuals; however, beyond 12-24 months of training, additional improvements
may be seen in VTP, and not VO,pcax.

Continuous wave near-infrared spectroscopy (NIRS) systems provide a more direct method
of investigating changes in muscle and prefrontal cortex (PFC) deoxyhaemoglobin (HHb) dur-
ing exercise [18, 19]. These systems have been used to compare muscle oxygenation (HHb,
oxyhaemoglobin [O,HDb], total haemoglobin [tHb], and the tissue oxygenation index [TSI]) of
trained and untrained young women [20-22] and ET adaptations in previously untrained [23]
as well as highly trained young women [20, 22]. However, only one cross-sectional study of
older women has reported the effect of endurance training on muscle HHb [21]. That study
investigated the matching of O, delivery to O, utilisation [A tau (response time to a step incre-
ment in work load) HHb in the Vastus lateralis (VL) / A tau pulmonary VO,] of trained and
untrained women aged 60-85 years during moderate exercise. The results indicated that
trained, compared to untrained women had a better matching of O, delivery to utilisation

PLOS ONE | DOI:10.1371/journal.pone.0165433 November 10, 2016 2/19



@° PLOS | ONE

Effect of Endurance Training on Older Women

during moderate intensity exercise with a higher HHb amplitude reported in the trained com-
pared to the untrained women at 90% VTP.

Changes in PFC oxygenation (HHb, O,Hb, tHb, TSI) occur during heavy exercise (in
young men) [24-28], indicating an increased O, utilisation and could be a potential mecha-
nism for limiting exercise performance. Only two studies have measured PFC HHb in women
during exercise [29, 30]. Neary et al. [29] reported significantly higher peak PFC HHb in a con-
trol group compared to those with chronic fatigue syndrome. Peltonen et al. [30] however,
reported no difference in PFC HHb during ramp incremental (RI) exercise between healthy
men and women. Further, although higher peak HHb levels have been reported in trained
compared to untrained men [31], they were not significant. Therefore, it would be reasonable
to expect that irrespective of the number of training years, PFC HHb would be similar in older
women during moderate and high intensity exercise. Simultaneous measurements of VO,
and multiple muscle and PFC HHb could assist in determining a potential relationship
between PFC HHb and exercise limitation [25].

Therefore the aim of this study was to determine the difference in systemic O, utilisation
(VO,) and multiple local muscle and PFC HHD between short term (STT; 6-24 months) and
long term (LTT; > 5 years) endurance trained women aged 40-60 years matched for current
training load, during two different cycling exercise conditions, RI peak and sub-maximal
square wave (SWCL). It was hypothesised that; 1) VO, would be higher in LTT compared to
STT at VTP and VO,c,i during RI cycling, but similar at the same relative intensity (25%,
80% and 90% VTP) during SWCL cycling, and 2) muscle HHb would be higher in LTT com-
pared to the STT in the vastus lateralis at VTP and peak exercise during RI cycling, but similar
at the same relative intensities (25%, 80% and 90% VTP) during SWCL cycling, and that there
would be no difference in PFC HHb between the groups at any exercise intensity.

Methods
Ethical Approval

This study was approved by the Human Research Ethics Committee at the University of the
Sunshine Coast (S/14/676) and participants provided written informed consent.

Study Design

The study used a cross-sectional, two group, repeated measures design. The independent vari-
ables were age, current training load and years of training. The dependent variables were sys-
temic O, utilisation (VO,), deoxygenated haemoglobin (HHb), heart rate (HR) and rating of
perceived exertion (RPE) (modified Borg 1-10 scale) [32].

Each participant attended two testing sessions in a temperature controlled (20-23°C) exer-
cise physiology laboratory. Prior to each session, participants abstained from alcohol and
intense exercise for 24 hours and food and caffeine for four hours. Timing with the menstrual
cycle was not controlled for as menstrual cycle phases have no significant effect on VIP [33]
or VOjpcar [34-36].

Participants

The two groups of older aerobically trained Caucasian women consisted of one group of 13
short term trained (STT) women, having regularly performed > 150 minutes of moderate to
vigorous exercise per week (including cycling) over the last six to 24 months, and one group of
13 long term trained (LTT) women, having regularly performed > 150 minutes of moderate to
vigorous exercise per week (including cycling) for at least the last five years. All participants
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were actively training for a minimum of 11 months every year. Current average ET load (time
x intensity) was the same between groups, but as expected by design, lifetime ET was signifi-
cantly less in STT compared to the LTT (p < 0.05). The participants’ physical characteristics
and training history are provided in Table 1. Medical screening was conducted using the Phys-
ical Activity Readiness Questionnaire [37] and a Medical Health Questionnaire. Exclusion cri-
teria were any cardiovascular, respiratory, metabolic and musculoskeletal disease, any health
related issues or medications that would compromise participant safety and or impact exercise
capacity or O, utilisation. Training status was determined using self-reported physical activity
training logs. Current training years was calculated as the number of continuous years of ET
meeting the criteria outlined above. Current training load was determined by adding the prod-
uct of each training session duration (in minutes) and intensity (1 = low, 2 = moderate and

3 = high) over seven days.

Testing Sessions

Session One. The aim of session one was to determine VO, and HHDb values at VTP and
peak exercise. Anthropometric (height, mass, and thigh and calf skinfold [Harpenden skinfold
calipers, British Indicators Ltd, UK]) and pulmonary function (Spiro II spirometer, Medical
International Research, Rome, Italy) data were recorded. Adipose tissue greater than half the
distance between the NIRS source and detector (< 17.5 mm) can affect the NIRS signal [38].
No participants were excluded following pulmonary function or skinfold thickness tests.

Heart rate and NIRS detectors were fitted and participants were instructed on the RPE
scale. While the participant was seated on the bike, five minutes of resting measures were
recorded, the last minute included VO, measures. Participants then performed a ramp incre-
mental test (1 W every 3 s) to volitational cessation, on a Velotron cycle ergometer (Racermate,
Seattle, USA). During the test, VO,, HR and HHb were recorded continuously, while RPE was
recorded during the last 10 s of each minute.

Table 1. Participant characteristics for short term trained and long term trained older women.

Characteristic STT LTT
Age (yr) 51.5(5.0) 47.5(5.0)
Weight (kg) 65.9 (10.5) 63.2 (7.4)
Height (cm) 164.4 (4.7) 167.5 (2.0)
LVL adipose (thickness) 12.8(3.7) 9.8 (2.8)*
LGAS adipose (thickness) 13.1(3.6) 10.1 (2.5)*
Current training (yr) 1.6 (0.5) 14.5(9.8) *
Lifetime training (yr) 4.9(3.8) 16.1 (8.1) *
Average weekly training load 862.8 (190.5) 987.6 (274.8)
VTP VO, (mL - kg™ min™") 20.2 (5.1) 29.0 (6.4) *
VTP % of Peak (mL - kg™ min™") 65.6 (9.1) 70.7 (5.7)
VTP VO; (L - min™") 1.5(0.4) 1.9(0.4) *
VTP % of Peak (L - min™") 72.0(7.4) 75.3(8.9)

Values are mean (SD).

* Significant difference between groups p = < 0.05.

Average weekly training load = minutes x intensity (light = 1, moderate = 2 and high = 3).

STT: Short Term Trained; LTT: Long Term Trained; LVL: Left Vastus Lateralis; LGAS: Left Gastrocnemius;
VTP: Ventilatory Turn point.

doi:10.1371/journal.pone.0165433.1001

PLOS ONE | DOI:10.1371/journal.pone.0165433 November 10, 2016 4/19



o @
@ : PLOS | ONE Effect of Endurance Training on Older Women

Session Two. Session two was conducted three to 28 days after session one. The aim of
this session was to determine VO, and HHb during exercise at the same relative intensity
below VTP. Following the same preparation and procedures used in the RI test, participants
completed a SWCL cycling protocol where the intensity was set as a percentage of VIP. The
timing and designed percentages were; three minutes at 25%, 80%, 25%, 20 minutes at 90%
and three minutes at 25%.

During the test, VO,, HR and HHb were recorded continuously, while RPE was recorded
during the last 10 seconds of the third minute of each of the three minute SWCL stages, and
every forth minute during the 20 minute stage. No feedback or encouragement was provided
during this test to minimise cognitive stimulus.

Measurements

Systemic Oxygen Utilisation and Ventilation. Expired gas analysis (Parvo Medics,
Sandy UT, USA) was used for the determination of ventilation, tidal volume and breathing fre-
quency, oxygen consumption (VO,), carbon dioxide production (VCO,), and respiratory
exchange ratio during exercise and is presented in absolute (L' min™) and relative (mL kg™
min!) values. The VOypear Was determined as the highest 15 second average VO, value during
the last minute of the RI exercise test.

Ventilatory Turn Point. Ventilatory turn point was determined using the V-slope
method [8, 39, 40]. Briefly, visual inspection determined the VO, at which CO, output
(VCO,) increased out of proportion in relation to VO, with an increase in the ratio of minute
ventilation to VO, ratio. This point was time matched with the Power (in Watts) of the cycle
ergometer.

Heart Rate and Rating of Perceived Exertion. During both exercise conditions, HR was
recorded continuously (Polar Electro, Kempele, Finland). Maximal heart rate was recorded as
the highest HR obtained during the same 15 second period as that used for the VO,c.x, which
was the highest HR for each participant.

The participant’s rating of perceived exertion was measured using Borg’s 1-10 Category-
Ratio (CR-10) ratings of perceived exertion scale.

Tissue Deoxyhaemoglobin. Local tissue oxygenation (HHb, O,Hb, tHb and TSI) data
were measured continuously and simultaneously from the left and right VL, the left GAST and
the left PFC with a multi-channel NIRS system (PortaMon and Portalite, Artinis Medical Sys-
tems BV, Zetten, Netherlands). Muscle optodes were placed over the middle of the muscle belly,
fixed using adhesive tape and wrapped with low compression black elastic bandage (to prevent
movement and extraneous light). For PFC monitoring, the optode was placed 1-2 cm over the
left PFC above the eyebrow as used in previous studies [41, 42], fixed using adhesive tape and
covered with a black headband. Differential pathway factor (DPF) depends on the optical char-
acteristics of tissue [43] and depending on age, the path length of the photons is 4-6.5 times lon-
ger than the spacing between the optodes. To account for age a formula (DPF = 4.99 + 0.067
[Age0‘814]) was applied. This formula derived from data from Duncan et al. [44] is validated for
ages 17-50 years. For all participants over the age of 50 the DPF range was set at 50 years of age.

All NIRS-derived raw data (O,Hb, HHb, tHb and TSI) were recorded at 10 Hz. The last 20
seconds of resting values were averaged to obtain baseline values. All changes were then
expressed relative to these baseline values, then calculated and displayed as 30 second (Figs 1 &
2) and total data for each intensity (Figs 3 and 4) averages for RI and SWCL respectively. Com-
pared to O,Hb, HHD is less affected by changes in blood haemodynamics [45-47], thus a better
indicator of oxygenation. Further, in studies similar to the current study use HHbD is used
when describing changes in O, utilisation, [8, 23, 48] therefore, O,Hb data is not presented for
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Fig 1. Ramp Incremental (cycling); deoxygenated haemoglobin HHb measures. Panel (A) HHb in the LVL. Panel (B) HHb in the
GAST. Panel (C) HHb in the PFC. STT 0—8 min (n = 13); 8-9.5 min (n = 7-11); 9.5-13.5 min (n = 2-5). LTT 0-9 min (n = 13); 9-12

(n=5-12); 12-14 (n = 3-5).

doi:10.1371/journal.pone.0165433.9001

the current study. The HHb results for the RVL were the same as the LVL for the RI and
SWCL, providing additional evidence that the NIRS was providing consistent HHb data, and
therefore, to avoid providing similar data, the RVL data have not been presented.

Statistical Analysis

All statistical analyses were performed using SPSS (version 22, SPSS Inc., Chicago, IL). A
second investigator checked all data for correct input. Prior to statistical analysis data were
checked for normality and that relevant assumptions were met. To identify the presence of
any significant exercise intensity and group (STT vs LTT) main effects as well as interactions
while controlling for any between group total weekly training load differences, two-way
(group: STT and LTT, by intensity: 90% VTP and peak, and 25% [first bout at 25%], 80%
and 90% VTP) ANCOVAs (Analysis of Covariance’s) were conducted on each of the depen-
dent variables and for each of the conditions. Following significant main effects post hoc
tests were not required as they were on two levels. For significant interactions, post hoc pair-
wise t-tests were conducted. For all analysis, significance was set at the 95% level of confi-
dence. Partial-eta squared was used to determine the effect size of small (N> =0.01)
medium (Np° = 0.06) or large (Np” = 0.14) was determined as per Cohen [49].

Results
Systemic Oxygen Utilisation

For relative VO, (mL kg™ min™") in the RI, there was a significant group main effect with a
large effect size [F(1, 23) = 13.987; p = 0.001; Ne> = 0.378; B = 0.947], with VO, higher in LTT.
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Fig 2. Square-Wave Constant Load (cycling); deoxygenated haemoglobin (HHb) measures. Panel (A) HHb in the LVL. Panel (B) HHb
inthe GAST. Panel (C) HHb in the PFC during the SW/CL.

doi:10.1371/journal.pone.0165433.9002

There was a significant main effect with a large effect for intensity [F(1, 23) = 40.359;
p < 0.001; Np” = 0.637; B = 0.000], with VO, higher in LTT. There was no significant group x
intensity interaction [F (1, 23), = 3.317; p = 0.082; Np> = 0.126; B = 0.415] (Table 2).

For absolute VO, (L' min™) in the RI, there was a significant group main effect with a
medium effect size [F(1, 23) = 7.775; p = 0.010; Np” = 0.253; B = 0.761], with VO, higher in
LTT. There was a significant main effect with a large effect for intensity [F(1, 23) = 18.542;

p < 0.001; Np” = 0.446; B = 0.985], with VO, higher in LTT. There was no significant group x
intensity interaction [F (1, 23), = 0.262; p = 0.614; Ne> = 0.011; B = 0.078] (Table 2).

For relative VO, (mL kg ™" min™') in the SWCL, there was a significant group main
effect with a large effect size [F(1, 23) = 13.358; p = 0.001; Ne” = 0.367; P = 0.938], with
VO, higher the LTT. There was a significant main effect with a large effect size for intensity
[F(2, 46) = 23.552; p < 0.001; Np> = 0.506; B = 1.000], with VO, higher in LTT. There was a
significant group x intensity interaction [F(2, 46), = 11.627; p < 0.001; np” = 0.336; B =
0.991], with VO, being higher in LTT compared to the STT at 25%, 80% and 90% VTP
(Table 3).

For absolute VO, (L' min™) in the SWCL, there was a significant group main effect with a
large effect size [F(1, 23) = 4.776; p = 0.039; Ne> = 0.172; B = 0.553], with VO, higher the LTT.
There was a significant main effect with a large effect size for intensity [F(2, 46) = 17.907;

p < 0.001; Np* = 0.438; B = 1.000], with VO, higher in LTT. There was a significant group x
intensity interaction [F(2, 46), = 4.937; p = 0.011; N> = 0.177; B = 0.782], with VO, being
higher in LTT compared to the STT at 25%, 80% and 90% VTP by 0.1 L' min™", 0.2 L' min™"
and 0.4 L' min™' respectively, and the difference between the groups widening as the intensity
increased (Table 3).
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Fig 3. Ramp Incremental (cycling); deoxygenated haemoglobin (HHb) group mean measures. Panel (A) HHb in the LVL. Panel (B)
HHb in the GAST. Panel (C) HHb in the PFC at 90% VTP and peak exercise. Pattern fill STT, solid fill LTT. * Significant different between

groups.

doi:10.1371/journal.pone.0165433.9003

Ventilation

Minute Ventilation. For Vg in the RI, there was a significant group main effect with a
large effect size [F(1, 23) = 8.630; p = 0.007; Ne> = 0.273; B = 0.803], with Vy being higher in
LTT. There was a significant main effect for intensity with a large effect size [F(1, 23) = 20.281;
p < 0.001; Np” = 0.469; B = 0.991], with Vg, being higher in LTT. There was no significant
group x intensity interaction [F(1, 23) = 3.495; p = 0.074; Ne> = 0.132; B = 0.433] (Table 2).

For Vg in the SWCL, there was a significant group main effect with a large effect size [F(1,
23] = 8.830; p = 0.007; Np> = 0.277; B = 0.812), with Vg being higher in LTT. There was a signif-
icant main effect for intensity with a large effect size [F(2, 46) = 11.640; p < 0.001; N> = 0.336;
B =0.991], with Vg being higher in LTT. There was a significant group x intensity interaction
[F(2, 46) = 7.096; p = 0.002; Ne” = 0.236; B = 0.914], with Vg being higher in LTT compared to
the STT at 25% 80% and 90% VTP, with the difference between groups increasing as intensity
increased (Table 3).

Tidal Volume. For Vrin the R, there was a significant group main effect with a large
effect size [F(1, 23) = 11.958; p = 0.002; N> = 0.342; B = 0.912], with Vi being higher in LTT.
There was no significant main effect for intensity [F(1, 23) = 0.422; p = 0.522; Np> = 0.018; B =
0.096]. There was a significant group x intensity interaction [F(1, 23) = 7.929; p = 0.010; e’ =
0.256; B = 0.769], with V1 being higher in LTT compared to the STT at 90% VTP, with the dif-
ference between groups decreased from 90% TP to peak exercise (Table 2).

For Vi the SWCL, there was a significant group main effect with a large effect size [F(1, 23)
=6.471; p = 0.018; np° = 0.220; B = 0.683], with V1 being higher in LTT. There was a signifi-
cant main effect for intensity with a large effect size [F(2, 46) = 16.475; p < 0.001; Np” = 0.417;
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B =0.999], with V1 being higher in LTT. There was a significant group x intensity interaction
[F(2, 46) = 6.205; p = 0.004; Np” = 0.212; B = 0.872], with Vi being higher in LTT compared to
the STT at 25% 80% and 90% VTP, with the difference between groups widening as intensity
increased (Table 3).

Breathing Frequency. For BF in the RI, there was no significant group main effect [F(1,
23) = 0.851; p = 0.366; Np> = 0.036; B = 0.143]. There was a significant main effect for intensity

Table 2. Ramp Incremental (cycling); systemic oxygen utilisation, ventilatory and heart rate

measures.
90% TP Peak
STT LTT STT LT

VO, (mL kg™ min™") 20.2 (5.1) 29.0 (6.4) * 30.4 (5.8) 40.8(7.1) *
VO, (L min™") 1.4 (0.4) 1.8(0.3) * 2.1(0.4) 2.6(0.4) *
Ve (L min™") 34.9 (10.4) 47.0 (8.5) * 79.6 (21.9) 102.1(16.2)*
Vo (L) 1.5(0.3) 2.0(0.2) * 1.9 (0.4) 2.1(0.2) *
BF (Breaths' min™") 24.1 (5.5) 23.7 (3.9) 43.2 (10.0) 48.9 (10.4
HR (Beats' min™")# 123.8 (16.9) 134.4 (7.5) 160.3 (10.8) 168.0 (10.8)

Values are mean (SD).

* Significant difference between groups p = < 0.05.

VTP: ventilatory turn point; STT: Short Term Trained; LTT: Long Term Trained; VO,: oxygen utilisation; VE:
minute ventilation; V+ tidal volume; BF: breathing frequency; HR: heart rate.

*HRSTTNn=10,LTTn=09.

doi:10.1371/journal.pone.0165433.t002
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Table 3. Square—~Wave Constant Load (cycling); systemic oxygen utilisation, ventilatory, heart rate and rate of perceived exertion measures.

STT
VO, (mL kg™ min™") 9.0 (1.5)
VO, (L - min™") 0.6 (0.1)
Ve (L-min™) 16.8 (2.5)
V7 (L) 0.9 (0.1)
BF (Breaths' min™") 18.7 (3.4)
HR (Beats' min™")* 87.1(5.6)
RPE 1.00 (00)

Values are mean (SD).

25% TP 80% TP 90% TP
LT STT LT sTT LTT

11.7 (2.4) * 17.9 (3.0) * 23.2(4.7) % 23.2(4.8) 31.6 (5.5) *
0.7 (0.1) * 1.3(0.2) 1.5(0.3) * 1.6 (0.3) 2.0 (0.4) *
19.7 (4.3) * 31.3(5.8) 37.7(7.4) * 46.9 (9.5) 59.3 (10.0) *

1.0(0.2) 1.4(0.2) 1.6(0.2) * 1.6 (0.2) 2.0(0.3) *
20.1(3.2) 21.6(3.3) 23.4(3.3) 28.4 (4.4) 30.5 (3.5)
85.4 (6.7) 115.6 (10.4) 115.6 (8.6) 139.9 (15.4) 145.2 (10.3)
1.00 (0.00) 2.9(0.6) 3.0(0.7) 7.1(1.2) 8.1(1.1)

* Significant difference between groups p = < 0.05.
STT: Short Term Trained; LTT: Long Term Trained; VO,: oxygen utilisation: VE: minute ventilation; V tidal volume; BF: breathing frequency; HR: heart rate

(BPM: beats per minute).
*HRSTTn=11,LTTn=13.

doi:10.1371/journal.pone.0165433.t003

with a large effect size [F(1, 23) = 17.144; p < 0.001; Np> = 0.427; B = 0.977], with BF being
higher in LTT. There was no significant group x intensity interaction [F(1, 23) = 4.235;
p =0.051; Np” = 0.155; B = 0.505] (Table 2).

For BF in the SWCL, there was no significant group main effect [F(1, 23) = 1.173; p = 0.290;
Ne” = 0.049; B = 0.180]. There was a significant main effect for intensity with a large effect size
[F(2, 46) = 4.004; p = 0.025; Np” = 0.148; B = 0.688], with BF being higher in LTT. There was
no significant group x intensity interaction [F(2, 46) = 0.043; p = 0.958; ne> = 0.002; B = 0.056]
(Table 3).

Heart Rate. For HR in the RI, there was no significant group main effect [F(1, 21) =
3.993; p = 0.059; n_’pz =0.160; B = 0.479]. There was a significant main effect for intensity with
a large effect size [F(1, 21) = 71.280; p < 0.001; ne> = 0.772; B = 1.000], with HR being higher
in LTT. There was no significant group x intensity interaction [F(1, 21) = 0.802; p = 0.381; Ne”
=0.037; B = 0.137] (Table 2).

For HR in the SWCL, there was no significant group main effect [F(1, 14) = 0.128;

p = 0.726; Np" = 0.009; B = 0.063]. There was a significant main effect for intensity with a large

effect size [F(2, 28) = 35.041; p < 0.001; rh:z =0.715; § = 1.000], with HR being higher in STT.

There was no significant group x intensity interaction [F(2, 28) = 1.134; p = 0.336; Ne> = 0.075;
B =0.229] (Table 3).

Rating of Perceived Exertion. For RPE in the SWCL, there was no significant group
main effect [F(1, 23) =2.882; p = 0.103; Np> = 0.111; B = 0.370]. There was a significant main
effect for intensity with a large effect size [F(2, 46) = 23.712; p < 0.001; Np” = 0.505; B = 1.000],
with RPE being higher in LTT. There was no group x intensity interaction [F(2, 46) = 2.969;

p =0.078; Np” = 0.105; B = 0.5.8] (Table 3).

Tissue Deoxyhaemoglobin

The HHb changes in the VL, GAST and PFC in RI followed the expected pattern (Fig 1). The
HHb changes in the VL, GAST and PFC in SWCL followed the expected pattern (Fig 2).

Left Vastus Lateralis. For LVL HHb in the RI, there was a significant group main effect
for with a large effect size [F(1, 23) = 7.176; p = 0.013; Ne> = 0.238; B = 0.728], with HHb being
higher in LTT. There was a significant main effect for intensity with a large effect size [F(1, 23)
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=8.844; p = 0.007; np° = 0.278; B = 0.813], with HHb being higher in LTT. There was no signif-
icant group x intensity interaction [F(1, 23) = 0.088; p = 0.770; Np” = 0.004; B = 0.059] (Fig 3).

For LVL HHb in the SWCL, there was a significant group main effect with a large effect size
[F(1,23) =5.243; p=0.032; n:pz =0.186; B = 0.592], with HHb being higher in LTT. There was
a significant main effect for intensity with a large effect size [F(2, 46) = 3.884; p = 0.028; Np> =
0.144; B = 0.673], with HHb being higher in LTT. There was a significant group x intensity
interaction [F(2, 46) = 3.431; p = 0.041; Np> = 0.130; B = 0.616], with HHb being higher in LTT
compared to the STT at 25%, 80% and 90% VTP, with the difference between groups increas-
ing as intensity increased (Fig 4).

Gastrocnemius. For the GAST in the RI, there was no significant group main effect [F(1,
21) = 0.052; p = 0.821; np° = 0.002; B = 0.056]. There was no significant main effect for inten-
sity [F(1, 21) = 0.399; p = 0.534; N> = 0.017; B = 0.093]. There was no group X intensity inter-
action [F(1, 21) = 0.131; p = 0.720; r11>2 =0.006; B = 0.064] (Fig 3).

For the GAST in the SWCL, there was no significant group main effect [F(1, 21) = 0.005;

p = 0.944; Np” = 0.000; B = 0.051]. There was no significant main effect for intensity [F(2, 42) =
0.041; p = 0.960; N> = 0.002; B = 0.056]. There was no group X intensity interaction [F(2, 42) =
2.277;p=0.115; I"['p2 =0.098; B = 0.437] (Fig 4).

Pre-Frontal Cortex. For PFC HHb in the R, there was no significant group main effect
[F(1,23) = 0.033; p = 0.857; N> = 0.001; B = 0.054]. There was a significant main effect for
intensity with a large effect size [F(1, 23) = 6.367; p = 0.019; Ne” = 0.217; B = 0.676], with HHb
being higher in LTT. There was no group x intensity interaction [F(1, 23) = 0.085; p = 0.773;
ne” = 0.004; B = 0.059] (Fig 3).

For PFC HHb in the SWCL, there was no significant group main effect [F(1, 23) = 0.000;

p =0.999; Ne> = 0.000; B = 0.050]. There was no significant main effect for intensity [F(2, 46) =
0.840; p = 0.438; np° = 0.035; B = 0.185]. There was no group x intensity interaction [F(2, 46) =
0.239; p = 0.788; Np” = 0.010; B = 0.085] (Fig 4).

Discussion

This current study is unique in that it describes VO,, and multiple local muscle and PFC HHb
during exercise in older women closely matched for current training load. It was hypothesised
that VO, and HHb would be higher in LTT compared to the STT at peak exercise, but similar
when exercising at 25%, 80% and 90% VTP. The VO, was significantly higher in LTT com-
pared to the STT at peak exercise and at 25%, 80% and 90% VTP. Deoxyhaemoglobin (HHb)
in the LVL was also significantly higher in LTT compared to the STT at peak exercise and at
25%, 80% and 90% VTP in the LV only. No difference in HHb was found for GAST or PFC at
any intensity. A primary factor influencing VO, and HHb during exercise is current training
status, with greater VO, and HHb in higher trained compared to less trained counterparts [1,
2, 21]. Therefore, the current study ensured that current training load between STT and LTT
was closely matched, with the average difference between LTT and STT participants being
nine minutes of moderate intensity exercise per day.

Systemic Oxygen Utilisation

This current study supported the hypothesis that, when matched for current training load,
LTT older women have a significantly higher VO,peqi than STT older women. The absolute
VOypeak values of 2.6 + 0.4 L - min™' for the LTT and 2.1 + 0.4 L - min™* for the STT are higher
than reference values for untrained women of this age [50], therefore, are consistent with the
training volume and experience reported by the participants. These results of the current study
support others [12, 51, 52] in that VO, could be the primary physiological mechanism
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reflective of performance in older adults. However, they are in contrast to a dose response rela-
tionship existing between ET and improved VO,cak [1], and evidence that maximum gains in
VOypeak are achieved within 12 months of ET [2, 53]. Our results suggest there is potential for
VO,peak to increase beyond two years of regular ET. A possible reason for the conflict between
the current VO, measures and others is that other studies have not investigated the changes
in VOypeax beyond 12 months in older adults [53], rather based their findings on plateaus
reported in a 12 month period. Another potential explanation is all training studies in older
women have been on those aged over 60 and previously untrained, therefore, training intensity
and volume might not have been sufficient to elicit continued training adaptations [4, 8, 9].

As expected, absolute VTP values were significantly higher in the LLT compared to the
STT, however, this difference was not seen when expressed as a percentage of VOypeax. This
suggests that a higher VTP as a percentage of VO,,cai did not influence the higher VO, e, in
LTT compared to the STT. This supports Marcell et al. [54] who reported VTP as a percentage
0f VO,peax is not a determining factor in aerobic exercise performance.

During the SWCL, contrary to our hypothesis, VO, (L - min™") was significantly higher in
LTT compared to the STT while cycling at a Power calculated as 25%, 80% and 90% of that at
VTP. Moreover, as the intensity increased the difference between the groups changed from 0.1
L - min™ at 25%, t0 0.2 L - min™' 80% and 0.04 L - min ™" at 90% (as indicated by the ANCOVA
interactions). These results support Dogra et al. [21] who reported higher VO, values in
trained compared to untrained older women during constant load cycling at 90% VTP. This
suggests that while exercising at the same relative intensity, those who are longer trained have
improved O, utilisation during sub-VTP constant load exercise.

Ventilation

An unexpected finding of this current study was the higher Vi in LTT at peak exercise and
during the SWCL was produced by increased Vr, not BF. These findings are in contrast to the
response in typically healthy adults performing strenuous exercise, where V. plateaus once it
reaches ~ 50-60% of vital capacity and further increases in Vg, result exclusively form increases
in BF [14]. While increases in Vg, following ET have been reported in older women [53, 55-
57], this current study is unique in reporting the effect of short and long term ET on BF, Vg
and Vr at peak and sub—VTP intensities. These results indicate that the higher Vi of the LTT
was produced from breathing larger volumes of air (V) rather than increases in BF. These
higher volumes could be result of the LTT having more compliant connective tissue of the
lungs and or better respiratory muscle function as a result of their additional years of training
[58].

Heart Rate and Rate of Perceived Exertion

As expected, peak HR was not different between groups during the RI. This supports other
research that indicates that peak HR is a function of age, not training [30, 57]. A difference in
the response of HR following transitions from light to moderate intensity steady state cycling
could have implications for O, delivery during SWCL exercise. Others have reported faster
HR dynamics in trained compared to untrained older women, [4, 21], however, these adapta-
tions can plateau after just nine weeks of regular training [4]. In the current study, HR was not
different between groups during the SWCL, therefore, potentially had no influence on the
results of the other dependent variables.

The rating of perceived exertion provides an additional valid method of evaluating effort
based on subjective sensation [59]. The SWCL intensities were calculated as a percentage of
VTP, which could potentially have a subjective component; however, RPE was not different
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between groups during the SWCL, indicating that both groups were exercising at the same rel-
ative intensity.

Tissue Deoxyhaemoglobin

A unique component of this study was the simultaneous measurement of deoxyhaemoglobin
(HHD) in multiple skeletal muscle and PFC. The results supported the hypothesis in that signif-
icantly higher absolute HHb were observed in the VL in the LLT compared to the STT at 90%
VTP and peak exercise. However, the significantly higher HHb would be observed in the VL
in LTT at each relative SWCL intensity (25%, 80% and 90% of VTP) is contrary to the hypothe-
sis. This suggests that regardless of exercise intensity, compared to STT, LTT utilise higher
amounts of O, in the VL. A further unique component of the current study was the simulta-
neous measurement of HHb in the RVL and LVL. Results indicated that both legs utilised the
same amount of O, during exercise, and that the devices were measuring consistently.

Previously, only three studies have investigated HHD in exercising muscles of older women.
Two compared young with old; one was unable to provide data due to technical difficulties
[23], and the other performed knee extension exercise [48]. The third [21] reported a miss-
matching of O, delivery and utilisation (relationship between the time constants of HHb and
VO,) in the VL during moderate exercise. While a peak exercise test was conducted in order
to calculate the sub-maximal intensity, the authors did not report HHb values during the peak
test. However, the higher absolute changes in HHb in the trained compared to untrained
group during sub—VTP constant load exercise support the current study.

Observing no difference in HHb between the groups at GAST during the RI and SWCL are
contrary the hypothesis. Oxygenation in the GAST during exercise has only ever been reported
on men during treadmill running [60]. The investigators compared the HHb pattern of the
gastrocnemius and vastus lateralis during ramp incremental exercise, reporting differences in
the pattern of HHb between the two muscles, however, no patterns, values or possible rationale
were presented. In the current study, while the differences in the VL was not observed in the
GAST, the patterns were opposite. That is, while HHb gradually increased with intensity in the
VL, in the GAST, there was a large drop in HHDb at the onset of exercise which progressively
decreased (less HHb) as exercise intensity increased.

Differences in fibre structure between the GAST and VL may help explain the differences
in HHD response between the muscles. That is, compared to the VL, the GAST has a higher
percentages of Type 1 fibres which during exercise have a high perfusion pressure and rate of
O, extraction, and lower percentages of Type Ila and IIb fibres which have a low perfusion
pressure and rate O, extraction [61, 62]. Further a reduction in muscle mass in older women
has been associated with a concomitant reduction in leg blood flow and perfusion pressure
[63]. Age-related reductions in oxidative capacity in the VL have not been reported in either
sex, however, reductions have been reported in the GAST of men [64]. If this were the same in
older women, it would help explain any differences in the recruitment and oxygen utilisation
of the GAST compared to the VL during exercise.

Our observation of no difference in HHb between the STT and LTT groups in the PFC dur-
ing the RT and SWCL support the hypothesis that the difference in training years between the
groups in the current study would not influence PFC during exercise. The current study is
unique in measuring the effect of ET on PFC HHb in healthy women, and supports similar
findings in men [31]. Further, no differences have been reported in PFC HHb between trained
men and women at peak exercise [30]. Therefore, it appears that training years does not affect
PFC HHb in older women, thus is unlikely to contribute to limiting exercise capacity or per-
formance in this population.
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Combined Responses

The higher VO,;c,i values of the LTT compared to the STT indicate that improvements in the
integration of the pulmonary, cardiovascular and muscular systems to uptake, transport and
utilise O,, do not plateau after 12 months of aerobic ET as has been suggested [2, 53]. During
exercise, the cascade of events to supply the exercising muscles with additional O, to maintain
metabolic processes begins with increased pulmonary ventilation. A full description of the pro-
cesses involved in ventilation and respiratory mechanics is beyond the scope of this current
study, however, up to a point increases in Vg result from increases in either V or BF, or both
[65], where further increases in Vg result solely from increases in BF [14]. In contrast, this
current study reported the higher Vi in LTT resulted solely from increase in V1 not BF. The
effects of age and ET on respiratory control of older women is relatively unknown, with inter-
ventional studies required before suggesting a relationship exists. However, the current study
supports the proposal that higher levels of physical fitness in older women might alter typical
age-related increases in AVy / AVCO, [66].

Cardiac output (stroke volume x HR) provides the pressure and flow for oxygenated
blood to reach exercising muscles for peripheral O, extraction. As stroke volume and cardiac
output were not measured in the current study, it is not possible to determine any influence
on the higher VO,,c,i of the LTT. However, as HR was not different between groups at any
intensity during both conditions, and as maximum HR is not trainable, this indicates both
groups were closely matched, and were exercising at the same relative intensity during the
SWCL.

The higher HHb in the VL in LTT in this current study support others who have reported
improved peripheral muscle O, utilisation as a wider a-vO,dift in older women following ET
[4-6]. This could in part be the result of improved capillary density in LTT, as invasive stud-
ies have reported increased capillarisation in older adults following ET [67-69]. While it is
plausible to consider the higher HHb in the VL in LTT could be a function of and associated
with the higher VO,, below VT, lactate and metabolic needs plateau [70], thus, additional O,
uptake at this intensity is unlikely to influence peripheral HHb. Further, hyperoxia during
exercise increases VO, and arterial O, saturation, while muscle HHDb is not effected [25],
even at peak exercise [71]. Moreover, if peripheral tissue HHb were predominately influ-
enced by VO,, the current study would have potentially observed significantly higher HHb
in the GAST.

Monitoring of blood flow and muscle activation between the VL and GAST require further
investigation, and would assist in determining the reasons for the differences in deoxyhaemo-
globin patterns between muscles.

Limitations

One potential limitation of this current study was the difference in the average age of the two
groups, with the average age of the STT being four years older than the LTT, however, there
was no group difference in peak HR, which is, predominately determined by age, providing
support for the groups being well matched. A second limitation could be related to the average
training load of LTT being higher than the STT. This was controlled for as best as possible
through the recruiting process, and when tested was not significantly different. Nonetheless
average weekly training loads were factored into the analysis as a covariant. A third limitation
was that adipose tissue thickness was higher in STT compared to LTT. However, while high
levels of adipose tissue may affect NIRS measures, all participants were within the recom-
mended ranges (< 34 mm).
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Implications and Future Research

This current study has implications for endurance trained older women, in that beyond the
typical systemic and peripheral adaptations that accompany initial regular ET, prolonged ET
provides further positive systemic and intramuscular adaptations. Future research should
include training studies of more than 12 months duration and include measures of the sys-
temic, central, and peripheral components of O, utilisation during and following prolonged
ET.

Conclusion

It is concluded that that in women aged 40-60 years, continued regular ET beyond two years
can significantly improve VO, at peak and constant load sub—VTP exercise. Further, these
adaptations are concomitant with improvements in HHb in the VL during peak exercise and
SWCL exercise below VTP. However, this higher deoxyhaemoglobin pattern is not observed
in the GAST or PFC at any exercise intensity.
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