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Abstract

Work on deep learning-based models of grid cells suggests that grid cells generically and robustly
arise from optimizing networks to path integrate, i.e., track one’s spatial position by integrating
self-velocity signals. In previous work [27], we challenged this path integration hypothesis by
showing that deep neural networks trained to path integrate almost always do so, but almost never
learn grid-like tuning unless separately inserted by researchers via mechanisms unrelated to path
integration. In this work, we restate the key evidence substantiating these insights, then address
a response to [27] by authors of one of the path integration hypothesis papers [32]. First, we show
that the response misinterprets our work, indirectly confirming our points. Second, we evaluate
the response’s preferred “unified theory for the origin of grid cells” in trained deep path integrators
[31, 33, 34] and show that it is at best “occasionally suggestive,” not exact or comprehensive. We
finish by considering why assessing model quality through prediction of biological neural activity
by regression of activity in deep networks [23] can lead to the wrong conclusions.

1 Introduction: Grid Cells & the Path Integration Hypothesis

The discovery of grid cells [13, 36] in the mammalian brain sparked considerable work on their mecha-
nisms and origins. One approach to understanding grid cells is through the lens of optimization in deep
neural networks. A number of works in this direction published in high-profile venues assert that grid
cells generically and robustly emerge when recurrent networks are trained to path integrate (Nature
[1], Neuron [34]) and machine learning conferences (Neural Information Processing Systems Spotlights
[31, 23], International Conference on Learning Representations [5]):

• Main text of [1]: “Notably, therefore, our results show that grid-like representations reminiscent
of those found in the mammalian entorhinal cortex emerge in a generic network trained to path
integrate.”

• Abstract of [33]: “Here we forge an intimate link between the computational problem of path-
integration and the existence of hexagonal grids, by demonstrating that such grids arise generi-
cally in biologically plausible neural networks trained to path integrate. Moreover, we develop a
unifying theory for why hexagonal grids are so ubiquitous in path-integrator circuits.”

• Highlights of [34]: “RNNs trained to path integrate with nonnegative firing develop hexagonal
grid cells.”
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Figure 1: (a) Top: Most networks learn to path integrate, regardless of supervised target. Bottom:
Few networks display possible grid-like tuning. (b) Survival functions of grid scores per supervised
target. (c) Rate maps of top grid-scoring units in trained deep path integrators with i) Cartesian, ii)
Polar, iii) Gaussian, iv) specifically selected (tuned) Difference-of-Softmaxes (DoS) targets. Only DoS
supervised targets induce grid cells. Numbers above rate maps are 60◦ grid scores. Figure from [27].

• Abstract of [5]: “We trained recurrent neural networks (RNNs) to perform navigation tasks in
2D arenas based on velocity inputs. Surprisingly, we find that grid-like spatial response patterns
emerge in trained networks.”

• Key figure in [34]: “Neural networks trained on normative tasks develop grid-like firing fields.”

These publications collectively paint the picture that simply learning to path integrate (possibly
with a non-negativity constraint) surprisingly, generically, and robustly causes the networks to learn
grid-like representations matching those found in the mammalian entorhinal cortex. We call this claim
the path integration hypothesis. However, there are reasons to question this path integration hypothesis:
the hypothesis is inconsistent with prior numerical results training deep recurrent neural networks to
perform spatial tasks [15, 16] and contradicts theoretical work suggesting the grid code is special not
just for path integration but also for its coding-theoretic properties [10, 35, 22, 38].

Motivated by these reasons, we rigorously and systematically investigated the path integration
hypothesis in our paper “No Free Lunch from Deep Learning in Neuroscience: A Case Study through
Models of the Entorhinal-Hippocampal Circuit” (NFL, for short) [27]. NFL combined large-scale
numerical experiments and mathematical guidance to show that deep recurrent neural networks trained
to path integrate frequently learn to do so, but almost never learn grid-like tuning, unless grid-like
tuning is inserted via handcrafted supervised targets designed specifically to produce grid-like tuning.
In this paper, we:

1. Restate the key evidence from NFL substantiating these conclusions.

2. Address a response to NFL by leading authors of the path integration hypothesis [32] (henceforth,
“the Response”), explaining how the Response misinterprets NFL’s findings and in doing so
validates NFL’s core findings.
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Figure 2: (a) The “Difference of Softmaxes” (DoS) supervised target is specifically chosen to place
Fourier power on an annulus of a desired radius; doing so embeds grid-like tuning in the supervised
targets that deep path integrators are then trained to predict. (b) The researchers’ choice of DoS
targets inserts a single grid periodicity into the networks. (c) The choice of DoS hyperparameters sets
the periodicity of the grid-like tuning. Subfigure (a) from [33], (b-c) from [27].

3. Evaluate the validity of results from the“unified theory for the origin of grid cells” [31] and
demonstrate that the Unified Theory is at best an occasionally suggestive description of trained
deep path integrators.

2 Evidence Challenging the Path Integration Hypothesis

NFL challenged the path integration hypothesis by demonstrating that grid-like tuning does not emerge
in deep recurrent networks trained to path integrate unless researchers insert grid-like tuning via
supervised targets designed to produce grid-like tuning [27].

To substantiate these claims, NFL used large scale hyperparameter sweeps to train over 11,000
deep recurrent neural networks to path integrate. Most learned to successfully path integrate, but few
learned possible grid-like tuning (Fig. 1a). Grid-like tuning appeared only when researchers chose a
specific and otherwise hard-to-justify supervised target called “Difference-of-Softmaxes” (DoS) (Fig.
1ab) that was designed to produce grid-like tuning [31, 33] (Fig. 2a). This DoS target does not improve
path integration performance: thus it is not a functionally motivated choice. The DoS is also not a
biologically motivated choice [26]. NFL demonstrated that the choice of DoS inserts into the networks
a single grid periodicity (Fig. 2b), and the grid periodicity is directly set by the researchers’ chosen
DoS hyperparameters (Fig. 2c). Further, [31] notes that multiple grid modules, a key property of
biological grid cells [36], do not emerge from their framework, which NFL confirmed, meaning one
cannot evaluate whether the artificial grid modules follow biological grid module ratios.

Based on this and additional evidence, NFL concluded that grid-like tuning in trained deep path
integrators is often a post-hoc result in which losses, target functions, and regularizers are explored
until the result resembles grid cells.

3 The Response to NFL [32] Misinterprets Then Corroborates
NFL [27]

The message of multiple prominent papers is that grid cells naturally result from a simple path inte-
gration task [31, 33, 23, 34]; these papers underemphasize or omit that the key ingredient for grid-like
tuning in deep networks is researchers designing supervised targets to produce grid-like tuning. Even
after the publication of NFL, a Neuron paper [34] neglected mentioning the critical importance of
the DoG or DoS supervised targets in the Highlights, Summary and Introduction while emphasizing
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Figure 3: (a) In the Unified Theory, only a narrow range of hyperparameters σE , σI should (analytically
and numerically) contain Fourier power on an annulus of an appropriate radius to create grid-like
tuning (right). Networks trained on Difference-of-Gaussians (DoG) supervised targets do not develop
grid-like tuning outside a narrow hyperparameter interval and inconsistently develop grid-like tuning
inside the hyperparameter interval. (b) Across αE/αI DoG ratios, DoG networks (orange) generally
score worse than filtered-and-thresholded noise (blue) and worse than DoS (black). (c) More densely
sweeping within the theoretically feasible αE/αI DoG region, and choosing αE and αI magnitudes
closely matching DoS, shown in (c) still showed only one ratio that did at least as well as a DoS. This
result was true for only one out of three seeds: two “sibling” runs with otherwise identical settings
produced poor gridness. All networks learn to path integrate. Subfigures from [27].

the less-central claim about path integration: “Here, we forge a link between the problem of path
integration and the existence of hexagonal grids, by demonstrating that such grids arise in neural net-
works trained to path integrate under simple biologically plausible constraints. Moreover, we develop
a unifying theory for why hexagonal grids are ubiquitous in path-integrator circuits.”

The Response to NFL [32] misinterprets NFL from its outset: “[NFL] presented a sequence of
simulation results and some theoretical analysis suggesting prior work involved non-transparent fine-
tuning.” NFL is not about fine-tuning. NFL is about prior work selecting improbable readout functions
to drive grid-like tuning, but presenting the results as a tale of grid cells resulting naturally and directly
from optimization for path integration.

The Response then corroborates NFL’s central findings at length (Sec. 2 in [32]). We reproduce the
“unified theory” for completeness (App. B) and highlight our key takeaway here: The “unified theory”
is not a theory of path integration, nor of deep recurrent neural networks, nor of learning dynamics of
deep recurrent neural networks trained to path integrate. The “unified theory” is a theory of Fourier
structure in supervised targets. The “unified theory” starts with the static function approximation
model of prior work [6], and studies learning representations g to predict/reconstruct a given supervised
target P :

min
g

||P − ggTP ||2 + σ(g) subject to gTg = 1. (1)

This optimization problem’s minima are set by the choice of supervised targets P , specifically
through the autocorrelation matrix Σxx′ = (PPT )xx′ . The Unified Theory designs P using DoS tuning
curves to embed grid-like tuning into Σ’s Fourier structure (Fig. 2). These supervised targets drive
networks (recurrent or feedforward) to develop grid-like tuning without regard to path integration.
Indeed, the authors showed shallow nonlinear autoencoders can develop grid-like tuning when trained
on these targets [31], despite the complete absence of a velocity signal.
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Figure 4: (a) Code by Ganguli et al. [34] to show that Gaussian targets can give (square) lattices uses a
more-elaborate architecture with several additional components adapted from previous work [1], rather
the architecture of their earlier publications[31, 33, 23]. (b-c) Reducing or removing dropout from this
model causes lattice-like responses to disappear without affecting path integration performance. (d)
The recurrent units of the architecture also display no lattices. (e-f) Changing other implementation
details, such as the learning rate or optimizer, also causes the lattices to disappear without affecting
path integration performance. See also Figs. 11, 12, 13

4 Evidence Challenging the Unified Theory [31]

The Response to NFL claimed that the Unified Theory [31], as a complete theory for the emergence
of grid cells in deep path integrators, already contained the results shown in NFL – this is a point we
disagree with. To see why, we turn to the Unified Theory. First, as noted in the previous section, the
Unified Theory of grid cell emergence in deep path integrators is not that – it is a theory of the Fourier
structure of supervised targets. Second, two critical assumptions made by the Unified Theory (i.e.
place cells are translationally invariant as a population, and place cells have center-surround tuning
individually) were recently shown to be biologically unlikely [26]. Here, we set aside these two issues
and explore the results of the Unified Theory and their relevance to deep path integrators, which we
find to be at most “occasionally suggestive,” not exact or comprehensive.

Fourier structure in supervised targets is necessary but insufficient. The Unified Theory
predicts that supervised targets with Fourier power on an annulus of an appropriate radius should
result in grid-like tuning in path integrating deep networks. We derive the spectrum for Difference-of-
Gaussians (DoG) targets and show that only a narrow slice of hyperparameters possess the appropriate
radius (Fig. 3a). But even when networks are trained inside this narrow interval, they only occasionally
develop grid-like tuning (Fig. 3ab). The very specific Difference-of-Softmaxes (DoS) leads to grid-like
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Figure 5: Deep path integrators with ReLU nonlinearities and Gaussian readouts, sweeping Gaussian
scale, do not learn lattices: RNNs (Red) Gaussian readout scale was swept σE ∈ [5, 50] cm in increments
of 2.5 cm. For negative control, we consider Uniform(−1, 1) noise filtered-then-ReLU-thresholded
(Blue), and for positive control, we consider RNNs with ReLU nonlinearities trained on ideal-width
(12 cm) DoS readouts (Black). RNN+ReLU+Gaussian 60◦ score distributions are dominated by
almost all noise filter widths, and the ideal-width DoS 60◦ score distribution dominates most noise
filter widths (especially at the tail). All other hyperparameters match [34]’s Page e2.

tuning more often than DoG target (Fig. 3b), but grid-like tuning still does not reliably emerge and is
seed dependent (Fig. 3c). These findings show that the Unified Theory’s conditions are not sufficient.
To reiterate, the criticism is not that deep learning requires hyperparameter tuning, but rather that
a sequence of highly-specific and biologically-implausible choices orthogonal to path integration make
clear that grid cell tuning was the goal of the entire setup, and that grid cells did not simply pop out
as a natural consequence of path integration.

Gaussian-like supervised targets do not produce grid-like tuning without additional ele-
ments. A key point of contention is whether Gaussian supervised targets produce grid-like tuning.
Early work claimed yes [1, 31, 33], but NFL showed that Gaussian supervised targets almost never
produce lattices (either hexagonal or square) [27]. This finding of NFL was contested by [32], which
claimed that with specific hyperparameters Gaussian targets should lead to grid cells in deep path in-
tegrators, and released new code in support. Here we present three new results showing that Gaussian
supervised targets in deep path integrators do not on their own produce lattices. This debate matters
for two reasons. Firstly, Gaussian supervised targets might be easier to justify biologically than DoG
and DoS targets, and secondly, whether Gaussian targets produce grids sheds light on the size of the
space of grid-producing supervised targets.

Firstly, we deconstruct the new code released by the authors of [34], which produces (square) lattices
from Gaussian targets. This code uses a different architecture than the deep recurrent networks used
in their prior work [31, 33, 23] and is similar to the model of [1]. It is described by the authors as:
“a significantly more complex LSTM architecture [...] The “grid cells” in this architecture are not
recurrently connected, but reside in a dense layer immediately following the LSTM. Importantly, the
grid cells are now subject to dropout at a rate of 0.5.” We found that the high dropout rate, together
with specific choices of high learning rates and optimizers, are pivotal to achieving lattice-like responses
when the target functions are Gaussian (Fig. 4, App. A, Figs. 11, 12, 13), even though good path
integration can be achieved without these features. This also bolsters NFL’s critique of the narrative
of grid cell emergence in [1].

Secondly, returning to the authors’ original code from [23], we densely sweep the recommended
Gaussian receptive field, testing (a) recurrent networks with ReLU nonlinearities that the Unified
Theory predicts should learn hexagonal lattices and (b) Tanh nonlinearities that the Unified Theory
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Figure 6: Deep path integrators with Gaussian readouts and Tanh nonlinearity achieve lower grid score
distributions than low-pass-filtered-then-ReLU-thresholded noise: RNNs’ (Red) Gaussian readout scale
was swept σE ∈ [5, 50] cm in increments of 2.5 cm. For negative control, we consider Uniform(0, 1)
noise filtered(Blue), and for positive control, we consider RNNs with ReLU nonlinearities trained on
ideal-width (12 cm) DoS readouts. RNN+ReLU+Gaussian 90◦ score distributions are dominated by
almost all noise filter widths, and the ideal-width DoS 90◦ score distribution dominates most noise
filter widths (especially at the tail). All other hyperparameters match [34]’s Table on Page e2.

a b

with conformal isometry loss
without conformal isometry loss

Figure 7: Independent research by Xu et al. 2022 [39] shows Gaussian supervised targets do not create
grid-like tuning [39]. In order to obtain lattices with Gaussians, Xu et al. 2022 proposed a novel
conformal isometry loss (left). Networks trained without the loss, i.e., solely with Gaussian supervised
targets do not learn lattice-like units (right). Figure included with permission from authors.
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Figure 8: Using DoS supervised targets with ideal hyperparameters, switching from Tanh to ReLU
increases 60◦ scores (left), but also increases 90◦ scores (center). Example square rate maps (right). 3
seeds ∈ {0, 1, 2} per nonlinearity; all other hyperparameters matched [31, 34]’s code defaults.

a b c

Figure 9: (a) NFL discovered small alterations to the DoS target width σE can result in the disap-
pearance of grid units [27]. (b) The Response disputes this result [32], albeit over a much narrower
range of σE values. (c) Rerunning our previous sweep but with larger networks (4096 units, previously
1024 units) to exactly match newly published hyperparameters [34] again shows that grid-like tuning
is highly sensitive to hyperparameters. All networks achieve low position decoding error.

predicts should learn square lattices. Following [31], we used filtered and thresholded noise as the
null distribution to determine when observed patterns were more significant than chance in all cases.
Across nonlinearities and receptive field widths, the sweeps show networks do not learn grid-like tuning
from Gaussian targets (Figs 5, 6).

Thirdly, we highlight recent independent research by Xu et al. 2022 [39] confirming that Gaussian
supervised targets do not produce grid-like tuning (Fig. 7).

Contrary to Unified Theory, non-negativity produces hexagonal and square lattices. A
key result of the Unified Theory [34, 31] is that non-negativity favors hexagonal lattices over square
lattices: “Once a nonlinear constraint such as non-negativity is added, the optimization favors a single
type of map corresponding to hexagonal grid cells.” We find that the default hexagonal grid-forming
hyperparameters consistently produce networks that simultaneously learn both hexagonal and square
lattices (Fig. 8): Replacing Tanh with ReLU for non-negativity causes an upward shift in hexagonal
60◦ scores, but also causes a larger upward shift in square 90◦ scores in the same networks. Visual
examination of units with high 90◦ scores in ReLU networks confirms square tuning curves. Training
here and in NFL [27] is 20× longer than in [34], so insufficient training cannot explain the result.

Sensitivity to supervised target hyperparameters. NFL reported that even with DoS super-
vised targets, the emergence of grid-like tuning is highly sensitive to the receptive field width σE (Fig.
9A) when sweeping over the range 8cm to 20cm [27]. The Response stated that DoS readouts are ro-
bust to σE [32] but showed only a narrow range of 11cm to 13cm (Fig. 9B). The only noted difference
in published hyperparameters between the NFL result, which was based on code from [23], and the

8



Figure 10: Three independent research labs studying three different brain circuits in three different
species across three different modalities found a consistent relationship: test R2 in neural regressions
is approximately an affine function of the log of the effective dimensionality (Eqn. 2) of the artificial
neural activations. Figures from (a) Spatial Navigation in Mouse Medial Entorhinal Cortex [27], (b)
Vision in Macaque IT Cortex [8] (note the log-X scaling), and (c) Audition in Human fMRI [37].

Response was the number of hidden units (ours: 1024 units; their Response: 4096 units). We find that
the NFL result on sensitivity to supervised target field width holds in 4096-unit networks (Fig. 9C).

5 Why Can Neural Regressions Be So Confidently Wrong?

A widely used method to test models in modern computational neuroscience is neural regression
[40, 18]: predicting biological neural recordings from activity in trained deep networks, typically using
linear regression. Nayebi et al. 2021 [23] used this technique to accurately predict tetrode recordings
from mouse medial entorhinal cortex (MEC) from the path integrating networks and thus to conclude
that their networks were excellent models of MEC.

NFL hypothesized that trained deep networks might achieve higher neural predictivity scores than
competitor models simply because trained deep networks provide higher dimensional, richer basis
functions that could be able to generate closer fits to the data (and by extension better within-sample
predictions of the data) than lower dimensional, poorer basis functions supplied by alternative models
[27]. NFL found initial supporting evidence: the reported test Pearson correlation (termed “neural
predictivity”) approximately followed a linear-log relationship with the effective dimensionality (some-
times termed intrinsic dimensionality or participation ratio) [21, 25, 24] of the networks’ representations
(Fig. 10a), defined as:

Participation Ratio a.k.a. Effective Dimensionality
def
=

(
∑

r λr)
2∑

r λ
2
r

. (2)

NFL then conjectured similar results would be found in other modalities. Two independent research
groups studying two different modalities (vision and audition) in two different brain circuits (visual
ventral stream and auditory cortex) across two different species (macaque and human) using two
different recording technologies (ECoG, fMRI) found a quantitatively similar relationship: in vision,
Elmoznino et al. 2022 [8] found the same approximate linear-log relationship in regressions between
convolutional networks and macaque IT Cortex (Fig 10b), and in audition, Tuckute et al. 2022 [37]
found the same linear-log relationship regressions between deep networks and human fMRI responses
(Fig 10c).

NFL and these results call the neural regression methodology into question. Han & Chung 2002 [14]
sought to validate the neural regression methodology by asking how well the methodology can identify
the correct network if the correct network is included within the set of candidate models, and concluded
that the results were poor. Canatar et al. 2023 [3] provided a theory showing candidate networks can
achieve high predictivity scores so long as candidate networks have certain spectral properties relative
to the target networks, without any assumption of a mechanistic, biological or otherwise meaningful
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relationship between the candidate and target networks. One possibility is that neural regressions are
spiritually similar to Ramsey Theory [17]: networks trained with more parameters, data and compute
are more likely to offer richer basis functions such that there will exist a subset of basis functions able to
predict whatever neural recordings, and we know that both underparameterized and overparameterized
linear regression can generalize [29, 30]. Mathematically formalizing and proving such a possibility for
neural regressions is non-trivial, but collectively, these results call for further investigation into what
exactly the neural regression methodology tells us about neural representations.

6 Discussion and Future Directions

NFL, the Response, and the current document together show that path integration is an insufficient
condition for the emergence of grid cells in deep neural networks. Contrary to the claims made in the
various papers on grid cell emergence in deep networks, successfully training networks to path integrate
does not automatically lead to grid cells – unrelated and special ingredients must be added to obtain
grid cells. Thus, to obtain grid cells in such networks requires effectively baking them in, with the
researcher implicitly using grid cells as a major part of their own loss function in their investigations.
While there is no harm in explicitly taking such an approach, and indeed such approaches can be
enlightening when the conditions of emergence are carefully explored and delineated, it is incorrect to
claim that grid cells drop out of deep networks when simply trained to path integrate.

If path integration is an insufficient task for grid cells to emerge, what might be sufficient? Prior
work showing that grid cells are a powerful neural code with exponential capacity and error correction
abilities [10, 35, 22, 38] suggests a potential direction: our hypothesis is that the grid code emerges
by directly optimizing the learned representation for space, in a coding-theoretic sense, so that coding
states are well-distributed within the available coding volume. Work in this direction exists [12, 11,
7, 39], and a recent work of ours, “Self-Supervised Learning of Representations for Space Generates
Multi-Modular Grid Cells” [28], demonstrates that training deep neural networks with self-supervised
learning to both path integrate and optimize the packing of the code in the coding space can generate
multi-modular grid cells - without any supervised targets.
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A Further Investigation of Ganguli et al.’s Gaussian Result

We include additional results from investigating the newly released code of Ganguli et al. 2022 [32]
that claims to produce square lattices from Gaussian supervised targets. We find that a combination of
additional implementation details unrelated to path integration performance are critical for lattice-like
tuning. Specifically, (1) high dropout probability e.g., 50% (Fig. 11), (2) high learning rate, e.g., 0.1
(Fig. 12) and (3) choice of optimizer, e.g., Adam (Fig. 13) increases the 90◦ grid score distribution
without improving path integration performance.
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Figure 11: Left: High dropout probability increases the 90◦ grid score distribution. Right: High droout
does not increase path integration performance.
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Figure 12: Left: High learning rate increases the 90◦ grid score distribution. Right: High learning rate
does increase path integration performance.
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Figure 13: Left: Specific choice of optimizer increases the 90◦ grid score distribution. Right: Specific
choice of optimizer does not increase path integration performance.
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B Reproduction & commentary on the Unified Theory of [31]

Here, we reproduce the theory of [31, 33], highlighting the simplifying assumptions made by the
authors, to provide an explanation for the mismatch between theory and simulations of trained path
integrating networks. Further, we reproduce, very briefly, the theory of pattern formation in first-
principles continuous attractor models, highlighting similarities and differences between these two
theories.

This theory does not deal with dynamics of path integration or learning dynamics of a deep recurrent
network from initialization, but rather concerns the problem of readout reconstruction. This leads us
to the first assumption:

Assumption 1 (A1): The hypothetical hidden representation G ∈ Rnx×ng is some function of
space. Here nx is the number of spatial locations and ng is the number of hidden units. This is a
subtle but significant assumption because, for recurrent networks given velocity inputs, the networks’
representations are not a function of space, but rather develop into a function of space (i.e., builds a
continuous attractor) over the course of training. For a better understanding of why the assumption of
building a continuous manifold of fixed points is significant, see literature of the theory of continuous
attractors, which is briefly reviewed in [20].

Under A1, consider a feedforward mapping P̂
def
= GW where W ∈ Rng×np . Here np is the number

of readout units. One can define the readout reconstruction error as the mean square loss between the

readout target P ∈ Rnx×np and prediction P̂
def
= GW :

E(G,W )
def
= ||P − P̂ ||2F = ||P −GW ||2F (3)

Assumption 2 (A2): Linear readoutW relaxes, reaching its optimummuch faster thanG changes,
so that we can replace W with its optimal ordinary least squares value for fixed G,P :

W ∗(G,P ) = (GTG)−1GTP (4)

Substituting W ∗(G,P ) into the loss for W yields the error as a function of P and G:

E(G,P ) = ||P −G(GTG)−1GTP ||2F (5)

Assumption 3 (A3): G’s columns can be made orthonormal i.e. GTG = Ing
.This means that

each grid unit has the same average firing rate over all space, and that any 2 grid cells do not overlap.
There is no provided reason why the dynamics of (stochastic) gradient descent in RNNs, with or
without regularization, can or should find this solution.

Then, we can write down a Lagrangian for this optimization problem, using a Lagrange multiplier
λ, for this constraint:

L = −E(G,P )− λ(GTG− Ing
) (6)

We can then set GTG to I in the error term and the Lagrangian is now written as:

L = −||P −GGTP ||2F − λ(GTG− Ing
) (7)

L = −Tr[(P −GGTP )T (P −GGTP )]− λ(GTG− Ing
) (8)

Here, the identity ||M ||2F = Tr(MTM) has been employed.
The trace term can be simplified further using the cyclic permutation property of Trace: Tr(ABC) =
Tr(CAB),

Tr[(P −GGTP )T (P −GGTP )] = Tr(PTP ) + Tr[(GGTP )T (GGTP )]− Tr(PTGGTP )− Tr(PTGGTP )

= Tr(PTP ) + Tr[GT (PPT )G(GTG)]− 2Tr(GTPPTG)

Here Σ
def
= 1

np
PPT ∈ Rnx×nx is the readout spatial correlation matrix. We can also drop the G

independent term above. Using the trace identity again, this term simplifies to Tr(GTPPTG). Hence
the total simplified Lagrangian is then:
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L = Tr
[
GTΣG− λ(GTG− Ing )

]
(9)

Considering gradient learning dynamics, one gets the following evolution equation for G:

d

dt
G = ∇GL ⇒ d

dt
G = ΣG− λG (10)

[31, 33] then simplify further analysis by considering a single grid unit. This corresponds to replacing
the nx × ng matrix G by the nx × 1 column vector g:

d

dt
g = Σg − λg (11)

Thus, this linear dynamical system captures how the pattern g of a unit evolves with gradient
learning. Further, [31, 33] conclude the eigenvectors corresponding to the subspace of the top eigenvalue
form the optimal pattern, since these eigenvectors will grow exponentially with the fastest rate.

Assumption 4 (A4): The readout spatial correlation Σ is translation-invariant over space i.e.
Σx,x′ = 1

np

∑np

i=1 pi(x)pi(x
′) = 1

np

∑np

i=1 pi(x+∆)pi(x
′+∆) = Σx+∆,x′+∆∀∆. This is a strong assump-

tion on the readouts and not necessarily true in biology [26].
Assumption 5 (A5): The environment has periodic boundaries (or no boundaries, which cor-

responds to a continuum limit). [An alternative assumption in other parts of the derivations and
numerics is (A5’): the assumption involves periodic boundary conditions with a small box size L; the
smallness of the box is important for the prediction of grids from Gaussian units. There are other
biological plausibility concerns with making a specific choice for box size to explain grid cell responses,
which exhibit high invariance to box size in familiar environments (see paragraph below, on “The
nature of discretization effects”).]

Under A4 and A5, the eigenmodes of Σ are exactly Fourier modes across space and thus form a
periodic basis. The normalized eigenvectors are indexed by their wavelength, k and are denoted fk
with corresponding eigenvalue λk.

To calculate this eigenvalue, [31, 33] use Fourier theory:

Σfk = λkfk

=⇒ λk = f†
kΣfk

Here f†
k denotes the conjugate of the eigenvector fk.

Next, they rewrite in component form: Σx,x′ = 1/np(PPT )x,x′ = 1/np

∑np

i=1 pi(x)pi(x
′)

λk = f†
kΣfk =

np∑
i=1

∑
x,x′

1

np
f∗
k(x

′)pi(x)pi(x
′)fk(x)

=
1

np

np∑
i=1

(∑
x

pi(x)f
∗
k(x)

)(∑
x′

pi(x
′)fk(x

′)

)

=
1

np

np∑
i=1

p̃∗(k)p̃(k) = |p̃(k)|2

=⇒ λk = |p̃(k)|2

So, [31, 33] conclude that the eigenvalue corresponding to eigenvectors with wavelength k is given
by the corresponding power of the Fourier spectrum of the readout correlation matrix Σ. And thus
the optimal pattern is the one which has the highest Fourier power in Σ.
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Further, [31, 33] consider the effect of non-negativity perturbatively in the readout regression
framework by phenomenologically adding a term to the Lagrangian, =

∫
x
σ(g)dx.

L = Tr
[
GTΣG− λ(GTG− Ing )

]
+

∫
x

σ(g)dx (12)

In Fourier space, [31, 33] show perturbatively that this amounts to a cubic interaction term, which
is the leading order term that non-trivially distinguishes between nonlinearities such as ReLU and
Sigmoid which break the g 7→ −g symmmetry and nonlinearities such as Tanh which do not. Again,
specializing to the single neuron Lagrangian,

Lint =

∫
k,k′,k′′

g(k)g(k′)g(k′′)δ(k + k′ + k′′)dkdk′dk′′

This term effectively acts as a penalty for non-negativity. Here, it is important to point out that this
cubic term appears not only for non-negativity, but rather any function that is not anti-symmetric.
Negative activation functions such as slightly shifted Tanh can also have a cubic term. Thus, non-
negativity is a special case, as has been noted in [31] Appendix B. We refer to this as Assumption 6
(A6).
Under this assumption, [31, 33] conclude that the optimal pattern consists of a triplet of Fourier waves
with equal amplitude and k−vectors that lie on an equilateral triangle, at 60o to each other.

Next, we examine the Fourier spectrum of a translationally invariant Gaussian readout f(∆x) =
1√
2πσ2

exp(−(∆x2)/2σ2) under the assumptions of this theory. For simplicity and to provide intuition

we write its Fourier transform in 1d, which is given by another Gaussian. The peak of the Fourier
spectrum is at k = 0, or the DC, non-periodic mode:

f̃(k) =

∫
R

1√
2πσ2

exp(−(∆x2)/2σ2)eik∆xd∆x

= exp(−k2σ2/2)

In simulations in a finite environment of length L, the allowed frequency modes are discretized with
bin-size 2π/L ((A5’). This is shown in Fig.14 as lattice points with the Fourier spectrum overlayed
as in [31, 33]. Gaussian readouts produce a Fourier spectrum peaked at the central DC mode. This
mode has no periodicity and thus the theory for a single hidden unit predicts no lattices in this hidden
unit, in the continuum or small-box discrete limit.

Until now, all analysis was performed for a single grid unit. What happens in full multi-cell setting?
For this case, [31] shows that the global optimum to the constrained optimization problem:

maxG Tr(GTΣG) such that GTG = Ing ,

i.e. under (A3) involves the columns of G spanning the top ng eigenmodes of Σ (Theorem B.2,
Appendix B of [31]). Under (A6), [31] also shows that with a Fourier spectrum consisting of a wide
annulus (in the discrete setting this corresponds to a Fourier spectrum of rings of different radii),
the optimum consists of a hierarchy of hexagonal maps, but only if the Fourier powers of these rings
are exactly equal (Lemma B.3, Appendix B). For purely Gaussian spectra (corresponding to Gaussian
readouts), the full theoretical solution of this problem depends on specific details of the power spectrum
curve (i.e. the width of the Gaussian) since each discrete eigenmode has a different Fourier power which
must be taken into account while constructing linear combinations of modes, and thus is not solvable
analytically. Instead, [31] numerically simulates the Lagrangian dynamics with assumption (A3) to
find a hierarchy of lattices. However, the number of different period lattices that result is related
directly to and nearly as numerous as the number of cells. For a large number of neurons, such as the
4096 hidden units used in simulations[34, 32], and sufficient wide power spectra, this would mean the
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optimum solutions would consist of likely hundreds of discrete frequencies (each corresponding to a
grid module). This is to be contrasted with the 4-8 modules estimated to exist in rodents [36].

Until NFL, whether the sequence of assumptions in the theory of [31] holds over the course of
gradient learning in path-integrating RNNs, and whether their derived global optimal solution is
generically gradient-learnable, remained unanswered. Our simulations suggest a negative answer. We
also note that in simulations, (A3) (the orthonormality of all hidden unit ratemaps), on which this
analysis and proof rests, does not seem to hold [34], since there are multiple cells with the same phase
and periodicity. Indeed, in the biological system, grid units are far from orthonormal – in each grid
module, neurons densely (and nearly continuously) tile all phases, meaning that there are always pairs
of cells with non-identical but very similar phases and highly overlapping fields.
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Figure 14: Fourier structure of Gaussian readouts
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Theory of pattern formation in continuous attractor networks Next, we briefly summarize
the theory of pattern formation in continuous attractor networks[19, 2]. For a full theoretical treatment
see [4, 9]. Neurons are arranged on a sheet with sheet coordinates denoted by n. These models assume
translation-invariant connectivity between neurons on a neural sheet: W (n, n′) = W (|n − n′|), which
is specified by a kernel of interaction. For a network of N neurons, the equations describing their
dynamics are given by the following system of equations:

ds(n, t)

dt
+

s(n, t)

τ
= ϕ

[
N∑

n′=1

W (n, n′)s(n′, t)dn′ +B(n)

]
(13)

We can take the number of neurons, N 7→ ∞, making n a continuous coordinate on the attractor
sheet and use neural field equations to describe the dynamics:

∂s(n, t)

∂t
+

s(n, t)

τ
= ϕ

[∫ +∞

−∞
W (n, n′)s(n′, t)dn′ +B(n)

]
(14)

This connectivity structure sets up an approximate continuum of fixed points. With the correct
kernel, the stable states are periodic. To find the periodicity of the formed pattern, we linearize around
an unstable uniform state and use Fourier theory.

First, to identify the unstable uniform state:

s0
τ

= ϕ

[∫ +∞

−∞
W (n− n′)s0(n

′)dn′ +B

]
. (15)

s0 =
τB

1− τW̄
, for a ReLU nonlinearity, (16)

where W̄ =
∫
W (n− n′)dn′.

We then consider a perturbative analysis, by examining the evolution of s(n, t) = s0 + ϵ(n, t).
We apply our analysis to the early time evolution of this initial condition, such that ϵ(n, t) ≪ s0 is

a small growing perturbation. Inserting our form of s(n, t) in Eq. (14), we obtain

∂ϵ(n, t)

∂t
+

ϵ(n, t)

τ
= ϕ′(W̄s0 +B)

∫ ∞

−∞
W (n− n′)ϵ(n′, t)dn′ (17)

Next, we posit the ansatz ϵ(n′, t) = ϵeik·n
′+α(k)t, where α(k) denotes the wavelength-dependent

growth rate of this ϵ perturbation.

α(k) + 1/τ = ϕ′(W̄s0 +B)

∫ ∞

∞
W (n− n′)e−ik·(n−n′)dn′,

= ϕ′[W̄s0 +B]F [W (n− n′)],

= W̃ (k), for a ReLU non-linearity, assuming W̄s0 +B > 0,

where F [W (n − n′)] = W̃ (k) is the Fourier transform of the interaction kernel. Hence, the wave-
length that will dominate the formed pattern on the attractor sheet is the one with highest growth
rate, which is given by:

k∗ = argmaxkW̃ (k), (18)

Typically, in simulations of mechanistic continuous attractor models, a mexican-hat connectivity
profile is used[2]. This corresponds to local excitation and broader inhibition in the network:

W (n, n′) = W (|n− n′|) = W (∆n) = αE exp

(
− (∆n)2

2σE

)
− αI exp

(
− (∆n)2

2σI

)
, (19)
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Here, σE , σI and αE , αI refer to the widths and amplitudes of the excitation and inhibition respectively.
We can use Fourier analysis to calculate the periodicity of the formed pattern:

W̃ (k) = F [W (n− n′)] = αEσE exp

(
−σ2

Ek
2

2

)
− αIσI exp

(
−σ2

Ik
2

2

)
Then, using Eq. 18, we find the Fourier mode dominating the pattern is given by:

[k∗]2 =
2

σ2
E − σ2

I

log

(
αEσ

3
E

αIσ3
I

)
.

B.1 Connection between the two theories

To connect these two theories, [31] alternate between a Lagrangian gradient step (Eq.11), and a recti-
fication step to impose non-negativity which is equivalent to applying a ReLU non-linearity. Further
they assume a total sum constraint on each grid cell’s firing to reduce their dynamics to look similar
to mechanistic attractor dynamics with a ReLU non-linearity. This is an assumption that we refer to
as Assumption 7 (A7):

d

dt
G = σ (ΣG)− λG (20)

Thus, here the readout correlation matrix plays the role that the interaction matrix plays in mechanistic
models.

The nature of discretization effects Now, we can see similarities between the readout recon-
struction loss and continuous attractor networks. In the former case, the Fourier mode with highest
power in the readout correlation function tends to dominate the pattern and in the latter, the Fourier
mode with highest power in the interaction kernel determines the pattern.

An important difference is that in the readout reconstruction setting, the pattern is in real space,
while in the continuous attractor network the pattern is in the neural sheet space. This difference is
conceptually critical: It is reasonable to assume that the neural sheet is of a given and fixed size, but
it is unreasonable to think of the physical space in which the animal moves as being of a given and
fixed size.

The discretization and finite size lattice effects in the readout reconstruction setting are due to the
size (and shape) of the physical room used in readout reconstruction and in trained path integrators.
This can lead to artefactual lattice-like patterns in some cells as has been observed in [31, 33]. It also
predicts that the size and shape of the formed lattice will be affected by the room; this is not true in
biology for familiar environments of different sizes [13].

On the other hand, the continuous attractor network is subject to discretization effects at the
level of number of neurons N – this is an invariant constraint on the circuit regardless of the current
environment the animal is exploring. The number of neurons in MEC is also large, and thus the
continuum limit approximation is a valid assumption.
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