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Simple Summary: Endotoxin liver/kidney injury is characterized by oxidative stress, inflammation,
and apoptosis that results in acute hepatic and kidney dysfunction with limited effective intervention.
This study evaluated the potential protective efficacy of cepabiflas B and C (CBs) separated from
Allium cepa against LPS (lipopolysaccharide)-induced hepatic and kidney damage and its possible
mechanistic pathways. CBs effectively protected the liver and the kidney against LPS-induced
damage. CBs ameliorated oxidative damage and enhanced Nrf2/HO-1 protective pathway. In
reverse, CBs counteracted the activation of NF-κB/downstream cytokines which attenuated LPS-
induced inflammatory response. CBs showed remarkable anti-apoptotic activity as it enhanced Bcl2
and suppressed Bax/caspase-3. Hence, this study elucidated the new therapeutic use of CBs in
septic patients.

Abstract: Cepabiflas B and C (CBs) are flavonoid dimers separated from Allium cepa. They demon-
strated antioxidant and α-glucosidase and protein tyrosine phosphatase 1B inhibition capacities.
However, their anti-inflammatory activities and their effects on endotoxemia are unknown. The
current study aimed at exploring the protective activities of CBs on lipopolysaccharide (LPS)-induced
kidney and liver damage in mice and investigating the possible molecular mechanisms. Mice were
orally treated with a low (40 mg/kg) or high (60 mg/kg) dose of CBs for five days prior to a single
intraperitoneal injection of LPS (10 mg/kg). Samples of serum and hepatic and kidney tissues were
collected 24 h after the LPS challenge. Changes in serum indices of hepatic and renal injury, patho-
logical changes, molecular biological parameters, and proteins/genes related to inflammation and
apoptosis of these organs were estimated. LPS injection resulted in deleterious injury to both organs
as indicated by elevation of serum ALT, AST, creatinine, and BUN. The deteriorated histopathology of
hepatic and renal tissues confirmed the biochemical indices. CBs treated groups showed a reduction
in these parameters and improved histopathological injurious effects of LPS. LPS-induced hepatore-
nal injury was linked to elevated oxidative stress as indicated by high levels of MDA, 4-HNE, as well
as repressed antioxidants (TAC, SOD, and GSH) in hepatic and kidney tissues. This was accompanied
with suppressed Nrf2/HO-1 activity. Additionally, there was a remarkable inflammatory response
in both organs as NF-κB signalling was activated and high levels of downstream cytokines were
produced following the LPS challenge. Apoptotic changes were observed as the level and gene
expression of Bax and caspase-3 were elevated along with declined level and gene expression of
Bcl2. Interestingly, CBs reversed all these molecular and genetic changes and restricted oxidative
inflammatory and apoptotic parameters after LPS-injection. Collectedly, our findings suggested the
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marked anti-inflammatory and anti-apoptotic activity of CBs which encouraged its use as a new
candidate for septic patients.

Keywords: cepabiflas B and C; Allium cepa; endotoxemia; hepatorenal injury; LPS; Nrf2/NF-κB;
Bax/Bcl2; health and wellbeing; sustainable development goals; waste management

1. Introduction

Sepsis is a systemic threatening severe inflammatory status that results in multiple
organ failure. It is the leading cause of death in severely ill patients, with 5.3 million deaths,
and 35 million new cases of sepsis every year [1,2]. The mortality rate among sepsis patients
with liver failure or renal injury may reach 70% in hospitalized patients [3,4]. The mortality
rates among septic patients with liver failure or dysfunction ranged from 54% to 68%, which
is more than the rates of mortality in septic patients having respiratory system failure or
dysfunction. AKI (Acute-kidney injury) is widespread in septic patients. The annual global
incidence of septic-AKI might be approximately 6 million cases with a mortality rate up to
44% in severe cases [5,6]. Globally, about 25 to 75% of all AKI patients are accompanied
with septic shock or sepsis [7–9]. Sepsis’s pathogenesis is predominantly connected to the
immunological disorders, inflammatory reaction, and various organ failures, in which the
kidney and liver are crucial target organs [10].

LPS is a bacterial-derived endotoxin that elicits a powerful immune-inflammatory
response in animals and hence, it is widely used as a pathogenic factor in sepsis research [11].
LPS exposure results in the TLRs activation (Toll-like receptors) particularly TLR4 which
interacts with the downstream adaptor protein MyD88 (myeloid differentiation-primary
response-88) resulting in activation of the downstream NF-κB signal transduction and
lastly provokes the release of inflammation cytokines, such as interleukins (ILs) and TNF-α
(tumour-necrosis factor-alpha) [12]. Moreover, one of the key characteristics of LPS-induced
macrophages is the excess expression of NO (nitric oxide) synthase, particularly iNOS
(inducible-nitric oxide synthase), which ultimately results in excessive NO production and
subsequently inflammation [13].

Oxidative stress is another important player in the pathogenesis of sepsis that closely
interplays with the inflammatory response to exacerbate cellular damage [14]. Previous
studies have demonstrated the activation of apoptotic pathways during LPS-induced
injuries [15,16]. New bioactive compounds that can modulate this pathogenic triangle can
be more effective in controlling endotoxin-induced organ injury.

Allium cepa L. (common onion, Egyptian onion; family Alliaceae) is an old commer-
cial vegetable and essential spice in various cuisines [17–19]. Traditionally, the plant is
utilized as a remedy for diverse illnesses such as digestive disorders, insect bites, tu-
mours, worms, and metabolic, heart, and skin diseases [20,21] and it demonstrated varied
bioactivities [21,22]. This plant is an abundant source of flavonoids, including quercetin
and its derivatives that were proven to demonstrate various pharmacological benefits,
including antioxidative, cardio-protection, antidiabetic, anti-HIV, anti-inflammation, and
anti-cancer capabilities [22–28].

Waste management can participate, whether indirectly or directly, in the achievement
of specific targets of different SDGs (Sustainable_development_goals), whereas “good
health and well-being” and “sustainable cities and communities” are the ones that are
greatly affected by waste management [29]. The reuse of food industry wastes leads to
the manufacture of various products with added values [30]. In this regard, onion outer
skins as a waste product from the food industry represent a natural source of worthwhile
functional components, which need potential ways for their utilization. In this work, two
flavonoid dimers; cepabiflas B and C (CBs) were isolated from A. cepa outer skins that were
only reported by Vu et al. [31]. This study proposed to systematically investigate their
protective effects and potential molecular mechanism in septic acute hepatorenal injury.
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Moreover, the impact of CBs on the crosstalk of inflammatory and apoptotic pathways
was investigated.

2. Materials and Methods
2.1. General

NMR analyses were performed on Bruker BioSpin GmbH 800 MHz Ultrashield spec-
trometer with standard Bruker software. Linear ion trap mass spectrometer Thermo
Scientific LTQ-XL coupled with Accela pump and Accela autosampler (San Jose, CA, USA)
was used for electrospray ionization mass spectrum measurement. A pre-coated silica
gel 60 F254 TLC plates (0.2 mm, Merck, Rahway, NJ, USA) was utilized for TLC. Chro-
matographic investigation was performed utilizing Sephadex LH-20/silica gel 60/RP-18
(Merck). The TLC solvent systems were CHCl3/MeOH (I: 85/15 and II: 75/25).

2.2. Plant Materials

The outer scaley leaves of yellow onion were collected in June 2021 from Al-Qassim
governorate, KSA. The staff members of the Department of Natural Products and Alter-
native Medicine, Faculty of Pharmacy, King Abdulaziz University confirmed the plant’s
authenticity. A voucher specimen was kept in the herbarium of the Department under the
registration number AC-2021-A.

2.3. Extraction and Isolation

Air-dried outer scaley leaves (5.0 kg) were extracted using MeOH (4 × 25 L) at
room temperature and the combined extract was concentrated under reduced pressure
using Büchi Rotavap RE111 Rotary Evaporator (50 ◦C water bath temperature; rotation
100–150 rpm; vacuum 250 mmHg) to afford a dark brown residue (670 g). The MeOH ex-
tract was dissolved in water and successively partitioned with n-hexane, CHCl3, and EtOAc.
The EtOAc-soluble fraction (69 g) was subjected to silica gel column (500 g × 100 cm × 5 cm,
CHCl3/MeOH) to obtain 10 subfractions (ACE1-ACE10) by increasing 10% MeOH for
each fraction. Subfractions ACE-5 and ACE-6 (4.7 g) were collected based on TLC plates
and subjected to Sephadex LH-20 CC (100 g × 50 cm × 5 cm) using MeOH as an eluent
to afford six fractions. Fractions 3 to 5 were gathered and chromatographed on RP-18
(150 g × 50 cm × 3 cm) CC using H2O/CH3OH (80:20 to 40:60) that gave impure CBs,
which were further purified by Sephadex LH-20 CC with MeOH elution to afford CBs
(286 mg).

2.4. Animal Experiments

Male BALB/c mice (20–25 g, 5-week-old) were held under standard conditions prior to
and throughout the experimental period. The study protocol was approved by the Batterjee
Medical College Research Ethical Committee (no. RES-2022-0064), which adheres to the
NIH regulations for the care and use of experimental animals.

Animals were randomly divided into five groups (6 mice/group): control mice which
were given sterile saline; positive control group (CBs group) that was administered CBs
(dissolved in H2O) (60 mg/kg, orally) for 5 days; LPS (Sigma-Aldrich, St. Louis, MO,
USA) group (10 mg/kg, i.p.); two CBs + LPS treated groups that received CBs group
(40 and 60 mg/kg, orally) for 5 days prior to LPS challenge (10 mg/kg/i.p.). LPS dose
was selected based on previous studies [16,32] while the doses of CBs were selected based
on a preliminary experiment. Five doses of CBs (5, 10, 20, 40, and 60 mg/kg) were tested
against LPS induced hepatic and kidney damage. Serum markers of injury along with the
histopathology of both organs were used to select the most effective doses to complete
the study.

Twenty-four hours after the LPS injection, mice were euthanized by cervical dislocation
under anaesthesia. Samples of blood, liver, and kidney were harvested. Serum was
separated after centrifugation of blood samples and kept at −80 ◦C till further analysis.
A part of each organ tissue was homogenized in PBS (phosphate-buffered saline) and
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centrifuged to obtain the supernatants for ELISA. Other pieces of each organ were submitted
for histological, IHC (immune-histochemical), biological, and RT-PCR analysis.

For survival analysis, mice were divided into another 4 groups (each = 10 mice) as
follows: control, CBs 60, LPS, and CBs 60 + LPS. Mice were treated with CBs (60 mg/kg)
once a day for 5 days followed by LPS injection. LPS (10 mg/kg, intraperitoneally) was
injected. The mice were kept and monitored every 6 h for lethality for 3 days. The percent
of survival was calculated according to the death number.

2.5. Serum Indices of Hepatic and Renal Injury

Aminotransferases (ALT and AST), creatinine, and BUN (blood-urea nitrogen) were
estimated in serum according to the colorimetric kits’ instructions (Human, Wiesbaden,
Germany) using spectrophotometer.

2.6. Oxidative and Antioxidant Parameters

A piece (≈50–100 mg) of the liver and kidney tissue was homogenized in ice-cold
buffer (EDTA 1 mM, potassium phosphate 50 mM, PH 7.5) and then centrifuged
(3000× g/10 min/4 ◦C) to obtain the supernatants which were retained at 4 ◦C for oxidative
stress and antioxidants assay using commercial kits as follows:

2.6.1. Malondialdehyde (MDA, Abcam/Cambridge/UK, Cat No: ab233471)

It relies on the formation of a coloured product generation by reaction with thiobar-
bituric acid, which was colorimetrically estimated at 532 nm by UV spectrophotometer
(T80 + UV/VIS Spectrometer PG Instruments Ltd./Lutterworth/UK). The kit sensitivity is
>0.1 nmol with no significant cross-reactivity.

2.6.2. 4-Hydroxynonenal (4-HNE, MyBiosource/USA, Cat No: MBS027502)

Based on the ELISA-kit manual (the kit sensitivity is 1.0 µmol/L with no significant
cross-reactivity), the samples were mixed with HRP-conjugate reagent and covered with
a closure plate membrane at 37 ◦C for 60 min then washing for four times. Finally, the
chromogen solution was added and protected from light at 37 ◦C for 15 min, then a
stop-solution was added, and optical density was assessed at 450 nm.

2.6.3. Total Antioxidant Capacity (TAC, Sigma-Aldrich/St. Louis/MO/USA, Cat No:
MAK187.1KT)

The samples were mixed with Cu2+-working solution and incubated at 25 ◦C/for
90 min, then the absorbance was estimated at 570 nm.

2.6.4. Superoxide Dismutase (SOD, Abcam/Cambridge/UK, Cat No: ab65354)

The samples were mixed with both enzyme working solution and WST-1 and incu-
bated for 20 min/37 ◦C to form a formazan dye which was assessed by absorbance increase
at 450 nm. The more SOD activity in the sample, the lower the formazan dye is produced.
The kit sensitivity is 0.46 ng/mL.

2.6.5. Reduced Glutathione (GSH, Calbiochem/MERCK Millipore/Darmstadt/Germany,
Cat No: 354102,100T)

GSH estimation depends on a reaction among 4-chloro-1-methyl-7-trifluromethyl-
quinoliniumm-ethylsulfate and all mercaptans (RSH) that are existed in the supernatants,
followed by β-elimination reaction under alkaline condition (NaOH 30%), producing a
chromophoric thione with absorbance maxima at 400 nm. The kit sensitivity is 5.0 µM.

2.7. Histology

Hepatic and renal tissues were fixed with neutral formalin, dehydrated in ethanol,
and then embedded in paraffin. The blocks were sliced and stained with haematoxylin
and eosin. Specimens were blindly examined in random order. Lesions were graded as
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previously described [33–35]. The hepatic lesions were scored based on the presence of
cytoplasmic vacuolation, pyknosis, inflammatory infiltration, congestion, and necrosis as
follows: Score 0 = normal, 1 = very mild injury with cytoplasmic vacuolation, pyknosis,
occasional necrosis and inflammation, 2 =≤30% mild injury with marked pyknosis, lobular
necrosis/inflammation, 3 = ≤60% moderate injury with lobular necrosis/inflammation,
and 4 = severe injury with >60% lobular necrosis/inflammation. For kidney sections, the
score was based on the presence of loss of brush border, tubular necrosis, cast formation,
and tubular dilatation as follows: Score normal = 0, small focal damage = 0.5, <10% cortical
damage = 1, 10–25% cortical damage = 2, 25–75% cortical damage = 3 and >75% cortical
damage = 4.

2.8. Immunohistochemistry

The liver paraffin sections were dewaxed and processed as previously described [34,
36]. Sections were IHC stained using the primary antibodies: rabbit-polyclonal-antibody
against NF-kB p65 (1:200), Nrf2 (1:200) (Fisher-Scientific Inc., Waltham, MA, USA), Bcl2
(1:200), and caspase-3 (1:200) (Elabscience Biotechnology Inc., Houston, TX, USA). Di-
aminobenzidine (DAB) was used for visualization.

2.9. ELISA

NF-κB, cytokine concentrations (IL-6 and -1β and TNF-α), HO-1 (heme-oxygenase),
and apoptosis parameters (Bcl-2, Bax, and caspase-3) were measured in the supernatants
employing ELISA kits following the manufacturer’s instructions (Cusabio_Biotech Co.,
Shanghai, China, cat no. CSB-E12108m (Sensitivity 0.078 ng/mL); CSB-E04741m (Sensitivity
3.9 pg/mL); CSB-E04639m (Sensitivity 3.9 pg/mL); CSB-E08054m (Sensitivity 7.8 pg/mL);
CSB-E08268m (Sensitivity 7.8 pg/mL); CSB-E08855m (Sensitivity 3.9 pg/mL); CSB-E17114m
(Sensitivity 1.95 pg/mL); CSB-E08858m (Sensitivity 0.078 ng/mL), respectively). Nrf2-
binding capacity was assessed in the nuclear extract as described in the kit’s guidelines
(Active_Motif Inc., Carlsbad, CA, USA, cat no. 50296).

2.10. NO (Nitric Oxide) Estimation

This was measured according to the kit‘s protocol (Bio-Diagnostic Co., Giza, Egypt,
cat no. 25 33; the kit sensitivity is 2.5 µM). In brief, the tissue was homogenized utilizing an
ice-cold buffer having EDTA (2 mM) before centrifugation (4000× g/10 min/4 ◦C). The
supernatants and sulphanilamide and N-(1–naphthyl) ethylenediamine were mixed to
produce a reddish-purple product that was spectrophotometrically quantified at 540 nm.

2.11. RT-PCR

The expression of TNF-α, IL-6, IL-1β, iNOS, Bcl2, caspase-3, Bax, Nrf2, and HO-1
were determined using RT-PCR. In brief, RNA was extracted using QIAzol reagent (Qi-
agen/Germany) according to manufacturer guidelines and then its concentration was
estimated using the NanoDrop-2000 (ThermoScientific, Waltham, MA, USA). RNA (≈1
µg) was reverse transcribed utilizing the Bioline cDNA-synthesis kit (cat no. BIO-65054,
Bioline, Taunton, MA, USA). RT-PCR equipment (Pikoreal 96/ThermoScientific, Waltham,
MA, USA) was utilized to replicate cDNA templates. The amplification process consisted
of a total volume mixture (20 µL) [10 µL of HERA SYBR green PCR Master Mix (cat
no. WF10304002No/Lo/Hi, Willowfort, West Midlands, UK), 2 µL of cDNA template,
2 µL (10 pmol/µL) of each gene primer, and 6 µL of nuclease-free water], and was per-
formed using the following program: 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C for
10 s, and 60 ◦C for 30 s. The studied genes‘ primers were designed using Primer3Plus
software [http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi] (accessed
on 16 January 2023). Their specificity was determined using Primer-BLAST program
(NCBI/primer-BLAST [https://www.ncbi.nlm.nih.gov/tools/primer-blast/] (accessed on
3 February 2023). Primer sets were synthesized by Vivantis (Vivantis Technologies/Shah
Alam/Malaysia). GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as a

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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control gene, and the sequences of the used primer pairs are listed in Table 1. Relative gene
expression levels were represented as ∆Ct = Ct target gene − Ct control gene; fold change
of gene expression was calculated according to the 2−∆∆CT method.

Table 1. The sequence of the primers employed in RT-PCR.

Gene (Mouse) PCR Product (bp) Sequence (5′-3′)

TNF-α 99
F: TGAACTTCGGGGTGATCGGT

R: GGTGGTTTGTGAGTGTGAGGG

IL-6 79
F: AGTCCTTCCTACCCCAATTTCC

R: GGTCTTGGTCCTTAGCCACT

IL-1β 81
F: GCAACTGTTCCTGAACTCAACT

R: GGGTCCGTCAACTTCAAAGA

iNOS 75
F: TGGTGAAGGGACTGAGCTGT

R: GCTACTCCGTGGAGTGAACA

Bcl2 123
F: CCTGTGGATGACTGAGTACCTG

R: AGCCAGGAGAAATCAAACAGAGG

Caspase-3 74
F: ATGGAGAACAACAAAACCTCAGT

R: TTGCTCCCATGTATGGTCTTTAC

Bax 140
F: TGAAGACAGGGGCCTTTTTG

R: AATTCGCCGGAGACACTCG

Nrf2 170
F: AAGAATAAAGTCGCCGCCCA

R: AGATACAAGGTGCTGAGCCG

HO-1 122
F: GAAATCATCCCTTGCACGCC

R: CCTGAGAGGTCACCCAGGTA

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 123
F: AGGTCGGTGTGAACGGATTTG

R: TGTAGACCATGTAGTTGAGGTCA

2.12. Data Analysis

Shapiro–Wilk test was utilized to analyse the data normality before selecting the para-
metric or non-parametric tests. One-way ANOVA (analysis of variance) followed by Tukey
Kramer’s multiple comparisons test were utilized for comparing the presented data (mean
± SEM). Survival curve (Kaplan–Meier curve) was analysed using the log-rank test (Graph-
Pad Software Inc., San Diego, CA, USA). p-value < 0.05 indicated a significant difference.

3. Results
3.1. Purification and Characterization of Cepabiflas B and C (CBs)

The MeOH extract of the outer skins of yellow onion (A. cepa) was partitioned among
n-hexane, CH3Cl, and EtOAc. The combined CH3Cl and EtOAc fractions were separated
on SiO2 and Sephadex LH-20 CC to afford cepabiflas B and C (CBs) as a mixture (1:1)
(Figure 1). Their structures were assigned utilizing NMR and ESIMS spectral tools and
comparison with the literature. The LCMS investigation demonstrated that the percentage
of CBs was 0.427% in the extract (See Supplementary Materials). It is noteworthy that these
compounds were separated by Vu et al. as a new metabolite in 2020 from the outer skins
of red onion (A. cepa) obtained from Daejeon, Korea [31], and here is the second report for
their isolation and characterization.
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Figure 1. Chemical structures of cepabiflas B and C (CBs).

3.2. CBs Increased the Survival Rate and Ameliorated Serum and Histopathological Indices of
Hepatorenal Damage in LPS-Intoxicated Mice

There was no notable difference between the CBs group and control in all the
estimated parameters.

LPS significantly decreased the survival rate comparing to the control group. CBs
pre-treatment resulted in notable increase in survival rate compared to the LPS group
(Figure 2A). LPS challenge led to a significant increase (p < 0.001) in serum transaminases,
creatinine, and BUN compared to normal mice (Figure 2B). These indices were supported
by the histopathological results.
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Figure 2. CBs increased survival rate and attenuated serum markers of hepatorenal toxicity in
LPS−intoxicated mice. (A) Survival rate (for 72 h) after injecting LPS (10 mg/kg). (B) Alanine
aminotransferase (ALT); Creatinine; Aspartate aminotransferase (AST); Blood urea nitrogen (BUN).
Data are the mean ± SE (n = 6). * p < 0.05; ** p < 0.01; *** p < 0.001 vs. control group; # p < 0.05,
## p < 0.01, ### p < 0.001 vs. LPS group (one-way ANOVA).
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The histopathology of the liver and kidney showed normal architecture in the control
and CBs groups. On the contrary, the LPS group exhibited pathological lesions in the
form of necrosis, inflammatory, and apoptotic changes (Figure 3). Notably, CBs-pre-treated
groups showed a significant reduction in the abovementioned serum induces of hepatorenal
injury compared to the LPS group. In addition, the histopathology of both organs showed
a remarkable improvement and significant reduction in the histopathological score.Biology 2023, 12, x FOR PEER REVIEW  9  of  22 
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(S) radiating from the central veins (cv). In LPS group, hydropic de-generative alterations in the
hepatocytes with complete sinusoids’ disappearance. Near the central veins, there is a noticeable
lymphocytic infiltration of the liver tissue (tailed arrows). CBs pre-treated groups showed marked
improvement in the hepatic lesions as the hydropic degeneration of the hepatocytes and lymphocytic
infiltration were minimal. The sinusoids reappeared in the CBs 60 + LPS group. Panel of the kidney
sections showed normal renal cortex of the control (A,B) and CBs (C,D) groups containing the
proximal (p), glomeruli (G), and distal (d) convoluted tubules with clear lumens and homogenous
acidophilic cytoplasm of the lining endothelium. LPS group (E,F) shows vacculation of the cytoplasm
of the endothelial cells (arrows) and obvious vascular congestion (tailed arrow). CBs 40 + LPS group
(G,H) shows minimal vacculation of the endothelium and minimal congestion. CBs 60 + LPS group
(I,J) group is close the control group apart from minimal vacculation of the cytoplasm of some
proximal renal tubules ((A,C,E,G,I) scale bar = 400 µm, (B,D,F,H,J) scale bar = 25 µm); Scores of
histopathological hepatic and renal injury. The hepatic lesions were scored based on the presence of
cytoplasmic vacuolation, pyknosis, inflammatory infiltration, congestion, and necrosis. For kidney
sections, the score was based on the presence of loss of brush border, tubular necrosis, cast formation,
and tubular dilatation. Data are the mean ± SE (n = 6). ** p < 0.01, *** p < 0.001 vs. control group;
# p < 0.05, ## p < 0.01 vs. LPS group (one-way ANOVA).
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3.3. CBS Repressed LPS-Induced Inflammatory Response in the Liver and Kidney

LPS injection resulted in a significant elevation (p < 0.001) in the expression and
consequently the levels of inflammatory cytokines (TNF-α, IL-6 and 1β, and NOx) in the
hepatic and kidney tissues compared to that of the normal mice. However, CBs treatments
prior to the exposure to the LPS challenge efficiently repressed these significant rises in
cytokines, especially at the dose level of 60 mg/kg (Figure 4).Biology 2023, 12, x FOR PEER REVIEW  11  of  22 
 

 
 

Figure 4. CBs repressed LPS-induced inflammatory response in the liver and the kidney. The level
(A,C,E,G) and the mRNA expression (B,D,F,H) of inflammatory cytokines TNF-α, IL-6 and 1β and
NOx. Data are the mean ± SE (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control group; # p < 0.05,
## p < 0.01, ### p < 0.001 vs. LPS group (one-way ANOVA).
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3.4. CBS Alleviated LPS-Induced Activation of NF-κB in the Liver and Kidney

The inflammatory cascade that occurs during endotoxin-induced injury is closely
linked to NF-κB signalling. Our results showed significant increase in the level and immuno-
expression of NF-κB in the liver and the kidney compared to control mice that was declined
in case of CBs pre-treatment (Figure 5).
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Figure 5. CBs alleviated LPS-induced activation of NF-κB in liver and kidney. (A) Level of NF-
κB in the hepatic and kidney tissue; (B) NF-κB immunostaining of the hepatic and kidney tissue
where NF-κB was intensified in the LPS group while CBs pretreated groups exhibited much lower
immuno-stain; (C) The % of NF-κB immuno-positive cells in the hepatic and kidney tissue. Data are
the mean ± SE (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control group, ### p < 0.001 vs. LPS
group (one-way ANOVA).

3.5. CBS Inhibited LPS-Induced Apoptosis of the Liver and Kidney

As shown in Figure 6, the LPS challenge resulted in a marked decrease (p < 0.001)
in the mRNA expression, level, and number of hepatocytes positive for Bcl2 in the liver
and kidney.

Furthermore, there was a marked increase (p < 0.001) in mRNA expression, level, and
the immuno-stain for cleaved caspase 3 in LPS group. The mRNA expression of Bax as
well as its level were significantly augmented in the LPS group. On the other hand, CBs
pre-treatments abated all these changes. CBs enhanced the mRNA and protein expression
of Bcl2, and consequently increased its level compared to LPS group. On the contrary,
CBs suppressed the apoptotic parameters. CBs pre-treatment inhibited the increase in the
expression and level of caspase-3 and Bax comparing to the LPS group.
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Figure 6. CBs counteracted LPS-induced apoptosis in liver and kidney. (A–F) Level and mRNA
of Bcl2, caspase-3 and Bax in liver and kidney among different animal groups. (G) The protein
immuno-expression of Bcl2 in liver and kidney, the stain was minimal in LPS group while CBs
pretreatment enhanced Bcl2 expression. (H) The protein immuno-expression of caspase-3 in liver
and kidney among different animal groups. (I,J) % of immuno-positive cells of Bcl2 and caspase-3.
Data are the mean ± SE (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control group, ## p < 0.01,
### p < 0.001 vs. LPS group (one-way ANOVA).

3.6. CBS Reversed LPS-Induced Oxidative Stress and Enhanced the Antioxidants in the Liver and
the Kidney

In comparison to normal mice, LPS injection led to a significant increase (p < 0.001)
of lipid peroxidation markers (4-HNE and MDA) concurrent with a significant reduction
in the content of the antioxidant enzymes (TAC, SOD, and GSH) in the liver and kidney
tissues (Table 2).

Table 2. CBs ameliorated oxidative stress and enhanced antioxidants in hepatic and renal tissues.

Parameters
Groups

Control CBs LPS CBs (40 mg/kg) + LPS CBs (60 mg/kg) + LPS

MDA (nmol/g tissue)

Liver 29.5 ± 3.0 22.8 ± 2.1 73.1 ± 4.9 *** 52.6 ± 4.3 **## 35.3 ± 4.0 ###

Kidney 23.6 ± 2.8 20.9 ± 2.4 65.4 ± 5.4 *** 46.6 ± 3.7 **## 28.8 ± 2.9 ###

4-HNE (µmol/mL)

Liver 0.36 ± 0.05 0.31 ± 0.04 1.02 ± 0.1 *** 0.7 ± 0.06 *# 0.57 ± 0.07 ###
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Table 2. Cont.

Parameters
Groups

Control CBs LPS CBs (40 mg/kg) + LPS CBs (60 mg/kg) + LPS

Kidney 0.42 ± 0.05 0.38 ± 0.05 1.24 ± 0.08
*** 0.82 ± 0.05 ***### 0.6 ± 0.04 ###

TAC (nmol/g tissue)

Liver 0.75 ± 0.06 0.81 ± 0.04 0.36 ± 0.03
*** 0.57 ± 0.03 *# 0.71 ± 0.04 ###

Kidney 0.58 ± 0.08 0.67 ± 0.02 0.25 ± 0.01
*** 0.48 ± 0.03 ## 0.54 ± 0.02 ##

SOD (U/g tissue)

Liver 22.6 ± 2.2 26.9 ± 1.2 7.9 ± 0.3 *** 16.4 ± 1.9 **## 18.6 ± 4.6 ###

Kidney 20.2 ± 1.9 25.1 ± 2.7 8.7 ± 0.8 *** 13.9 ± 1.5 *## 15.1 ± 2.1 ###

GSH (µmol/g tissue)

Liver 14.8 ± 1.9 17.9 ± 1.5 4.7 ± 0.4 *** 8.3 ± 0.8 **## 12.3 ± 1.4 ###

Kidney 16.3 ± 1.3 14.5 ± 1.3 6.9 ± 0.2 *** 10.1 ± 1.5 **## 13.1 ± 1.1 ###

Results presented as the mean ± SEM (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the control, # p < 0.05,
## p < 0.01, ### p < 0.001 vs. LPS group (ANOVA followed by Tukey-Kramer multiple comparison).

Noteworthy, CBs pre-treatment reversed the increase in 4-HNE and MDA contents
and enhanced the antioxidant enzymes compared to the LPS group.

3.7. CBS Enhanced Nrf2 Signalling in the Liver and the Kidney of LPS-Intoxicated Mice

As presented in Figure 7, LPS induced a non-significant decrease in the mRNA ex-
pression and binding activity of Nrf2, in addition to mRNA expression and level of HO-1.
However, CBs pre-treatment significantly enhanced Nrf2 mRNA expression, its binding
activity, mRNA expression of HO-1 and its level compared to the LPS group. Additionally,
the immunostaining of Nrf2 was greatly enhanced in CBs pre-treated groups.

4. Discussion

Sepsis results in deleterious damage to many of the body organs such as the kidneys
and the liver. LPS-induced cellular damage leads to the failure of these vital organs. Treat-
ment of sepsis and its associated injurious effects attract the attention of many researchers
to establish a new therapeutic strategy with minimal side effects. Based on the previous
reports on the anti-inflammatory activity of onion and its flavonoid [37], the current study
was designed to explore the protective effect of CBs (new dimeric flavonoid glucosides) on
hepatorenal damage in endotoxic mice. The results have demonstrated the potent ability of
CBs to counteract the deleterious effects of LPS on both organs. These effects were linked
to CBs’ antioxidant, anti-inflammatory, and anti-apoptotic activities via the activation of
Nrf2, inhibition of NF-κB signal transduction, and modulation of apoptotic pathways.

Various investigations reported the protective potential of flavonoids such as fisetin
against LPS-induced septic damage in the kidney [16], morin against LPS-induced lung
injury [38], and quercetin against sepsis-linked organ impairments [39]. Moreover, onion
MeOH extract was found to attenuate inflammatory mediators (e.g., NO, TNF-α, inter-
leukins (IL)-1β, and -6) induced by LPS in BV2 microglia [40] while onion peels flavonoids
and onion-prepared nanoparticles suppressed the LPS-produced NO production in BV-2
cells and RAW264 cells, respectively [41].
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Figure 7. CBs enhanced Nrf2 signalling in the liver and the kidney of LPS-intoxicated mice.
(A,B) mRNA expression of Nrf2 and its binding activity. (C,D) mRNA expression and level of
HO-1 in hepatic and kidney tissues. (E) Immuno-expression of Nrf2 in the liver and kidney tissue
where specimen of LPS group showed decreased immuno-stain compared to the control group while
specimen of CBs pre-treated groups exhibited enhanced Nrf2 immuno-stain. (F) % of immuno-
positive cells of Nrf2. Data are the mean ± SE (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control
group; p < 0.05, ## p < 0.01, ### p < 0.001 vs. LPS group (one-way ANOVA).
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LPS injection results in a well-established rodent model of endotoxemia with multiple
organ injury. Oxidative, inflammatory, and apoptotic reactions interconnect to induce organ
injury [42]. Serum parameters such as aminotransferases indicate hepatocyte damage while
creatinine and urea nitrogen are indices of renal function [43]. Following LPS injection,
these parameters were elevated indicating the occurrence of hepatic and kidney damage
in the setting of LPS-induced damage. These data are in line with previous studies that
documented the injurious effects of LPS on the liver and kidney [14,44]. Importantly, CBs
attenuated the increase in serum aminotransferases, creatinine, and BUN in LPS-challenged
mice. Combined with the results of HE staining which revealed the improvement of the
histopathological lesions in both organs in CBs pre-treated groups, it was concluded that
CBs could significantly protect mice from LPS-induced hepatic and kidney damage.

Following LPS injection, multiple molecular pathways interplay and crosstalk to
mediate LPS-induced injurious effects. LPS stimulates endothelial cells and mononuclear
macrophages through the body’s cell signal transduction system, and the synthesis and
release of various inflammatory mediators [45], which in turn cause a set of reactions in
the body. Pro-inflammatory cytokines such as TNF-α, IL-6 and 1β, and NOx play a pivotal
role during LPS-induced inflammatory response [46,47]. Many studies have documented
the excessive accumulation of inflammatory mediators during sepsis which exacerbates
the inflammation and subsequent multiple organ failure [48]. In our research, serum
pro-inflammatory factors TNF-α, IL-6 and -1β, and NOx were remarkably elevated in
mice injected with LPS. However, CBs decreased the level and mRNA expression of these
inflammatory mediators in hepatic and kidney tissues and these findings suggested that
CBs had an anti-inflammatory activity which may be responsible for its protective effects
on endotoxic mice.

In terms of possible inflammatory signalling mechanisms, new studies have empha-
sized on the importance of NF-κB activation during sepsis and its modulating effects on the
release of inflammatory cytokines [49–52]. Our data were in the same line and confirmed
the NF-κB signalling activation. Notably, CBs suppressed the activation of NF-κB which
was consistent with depressed inflammatory mediators. Furthermore, NF-κB activation
and cytokine release are strongly linked to the apoptotic changes which play a substantial
role in cell death. Previous studies had documented the upward increase in the apoptotic
markers and suppression of anti-apoptotic factors following LPS injection [42,48,53]. A
fact that was further confirmed by our results which showed the enhancement of Bax
and caspase-3 (pro-apoptotic factors) and depression of Bcl2 (anti-apoptotic factor) in LPS
group. These results suggested that CBs promoted cell survival through the suppression of
apoptotic modulators as NF-κB signalling.

One of the major players that mediate LPS-induced organ injury is the generation of
free radicals and associated oxidative stress. Pro-inflammatory mediators are known to
exacerbate ROS generation, which can activate several intracellular signalling pathways
including the one that involves the transcription factor, NF-κB [42]. Furthermore, following
LPS, overproduction of ROS produces lipid peroxidative damage which leads to the de-
struction of the mitochondrial outer membrane, resulting in high expression of TNF-α, Bax,
and caspase that induces apoptosis [54,55]. Our data confirmed this point. In LPS-mediated
endotoxemia, the lipid peroxidative markers (MDA and 4-HNE) were abnormally elevated
while the antioxidants (TAC, GSH, and SOD) were declined, indicating that oxidative stress
damage occurred. Interestingly, CBs showed potent antioxidant efficacy and succeed to
ameliorate LPS-induced oxidative stress and enhancing endogenous antioxidants in the
liver and kidney tissues. This effect of CBs might be in part responsible for its beneficial
protective activity against LPS-induced liver and kidney damage.

The transcription factor Nrf2 can control the expression of antioxidant response ele-
ments and cytoprotective genes and hence, it can oppose oxidative inflammatory damage.
Normally, Nrf2 is repressed by Keap1 but under stress conditions, it is activated and translo-
cated into the nucleus to stimulate the expression of various genes, including HO-1 [12].
The crucial role of the HO-1/Nrf2 signalling pathway in the mediation of LPS-induced
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injury in the liver and kidney was discussed previously in many investigations [12,56–59].
In line with these data, our results showed that the increased oxidative stress and restrained
antioxidant capacity of the liver and the kidney were contaminant with a decrease in the
protein expression of Nrf2. Interestingly, CBs facilitated the activation of Nrf2 to enhance
the anti-oxidative capacity. So, it may be acceptable to suggest that CBs protective activity
could be linked to its ability to potentiate Nrf2-dependent antioxidative machinery.

Clinically endotoxemia and sepsis treatment usually begin after infection and disease
manifestation, which may be a limitation of this study. However, the beneficial effects of
CBs treatment after the LPS challenge will be a target for further investigation.

5. Conclusions

Overall, our results indicated that CBs isolated from yellow onion exerted potent anti-
apoptotic and anti-inflammatory activities via repression of NF-κB and Bax/Bcl2 signalling
which led to attenuation of LPS-associated hepatic and kidney damage (Figure 8).
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