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Abstract

When people listen to speech, neural activity tracks the entropy fluctuation in the acoustic 

envelope of the signal. This signal-based entrainment has been shown to be the basis of speech 

parsing and comprehension. In this electroencephalography (EEG) study, we compute sign 

language users’ cortical tracking of changes in visual dynamics of the communicative signal 

in the time-direct videos of sign language, and their time-reversed counterparts, and assess the 

relative contribution of response frequencies between.2 and 12.4 Hz to comprehension using a 

machine learning approach to brain state classification. Lower frequencies of EEG response (.2–4 

Hz) yield 100% classification accuracy, while information about cortical tracking of the visual 

envelope in higher frequencies is less informative. This suggests that signers rely on lower visual 

frequency data, such as envelope of visual signal, for sign language comprehension. In the context 

of real-time language processing, given the speed of comprehension responses, this suggests that 

fluent signers employ a predictive processing heuristic based on sign language knowledge.

Keywords

EEG; sign language; perceptual sampling; vision; language comprehension

I. Introduction

The field of spoken language processing has accumulated substantial correlational evidence 

that spoken language comprehension relies on neural activity tracking entropy fluctuation in 
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the acoustic envelope of the signal [1]–[3]. This envelope tracking at a range of frequencies 

between 100 Hz and 1 kHz (i.e. matching the human vocal range, cf. [4]), also sometimes 

termed signal-based entrainment, or frequency-following response (FFR), forms the basis 

of speech parsing and comprehension [5], [6]. As compared to speech, sign language 

processing and comprehension is not well understood, and lacks neurocomputational 

processing models. While it has been established that the visual signal for sign languages 

contains higher entropy (i.e. are less predictable across multiple time-scales) than non-

communicative human biological motion [7]–[9], the question of whether human sensitivity 

to entropy of the visual signal might support sign language processing in the same manner it 

supports speech comprehension has not been posited to date. An EEG study of signers’ and 

non-signers entrainment to the amplitude of visual frequencies in sign language (quantified 

by Instantaneous Visual Change (IVC) metric, equivalent to loudness for speech) indicated 

that in frontal regions, fluent signers showed stronger coherence to IVC than non-signers 

[10]. Low-frequency entrainment to sign language video signal ‘loudness’ was found in 

both signers and non-signers between 0.4 and 5 Hz, peaking at 1 Hz. However, lack of a 

baseline condition - a non-linguistic visual stimulus – prevents a conclusive interpretation 

of the results, which are also counter-intuitive in light of current understanding that visual 

cortex responds in the alpha band in response to aperiodic stimulation [11], [12]. Thus, 

if modality-driven preferences determine the spectrum of entrainment for the stimuli, then 

peak coherence to sign language visual stimuli in both signers and non-signers should be 

observed around alpha frequency (8–12 Hz). It has thus remained unclear whether similarity 

between signers’ and non-signers’ neural responses performance reflected sign language 

processing per se (which non-signers did not know), or was part of the response to the 

lower-level visual features associated with the IVC metric. The work to understand neural 

bases for scene categorization, on the other hand, has identified links between neural activity 

and visual stimuli, separating the timecourses for visual feature encoding (i.e. bottom-up 

processing, occurring at 90 ms post-stimulus onset, or 10 Hz), as well as higher-level 

cognitive processing, such as categorization (or top-down processing, peaking between 150 

and 200 ms after image onset and persisting across the trial epoch, below 5 Hz [13]). This 

suggests that an entrainment to a signal above 10 Hz (or in the range of alpha frequency 

in EEG response) is likely to be elicited by low-level (higher-frequency) processing of 

rapidly changing visual features. On the other hand, top-down processing based on global 

scene categorization (or lexical retrieval, in case of sign language) would be expected to 

yield a lower-frequency response (under 5 Hz). To investigate signers’ response to multiple 

visual frequencies in the visual signal, we designed an experiment to assess the relative 

contribution of frequencies from.2 to 12.5 Hz to the measures of cortical coherence to 

changes in the signal. We hypothesized a range of possible outcomes for the investigation. 

Based on prior research, we hypothesized a range of possible outcomes for the investigation. 

Prior observations of entrainment to visual stimuli in the alpha (8–12 Hz) range [14] might 

suggest that sign language, as aperiodic stimulus, is processed in the bottom-up manner, 

based on rapid dynamic changes in the visual signal. Alternatively, if signers’ knowledge 

of the sign language allow for lower-frequency sampling of the visual input, and reliance 

on predictive processing during language comprehension [13], then observations of lower 

(under 5 Hz) frequencies of EEG exhibiting coherence with sign language and reversed 

videos stimuli would be expected.
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II. Materials and Methods

A. Participants

Proficient users of Austrian Sign Language (ÖGS) were recruited, who reported normal or 

corrected-to-normal vision, and no history of neurological disorders. All of the participants 

used ÖGS as their primary language in daily life, and were members of the Deaf community 

in Austria. Their sign language proficiency was tested by a certified sign language 

interpreter. 24 participants (13 male) aged between 28 and 68 years (M = 42, SD = 12.27) 

took part in the study. All procedures in the study were undertaken with the understanding 

and written consent of each subject. The study conforms to the Declaration of Helsinki 

(World Medical Association, 2013). The Institutional Review Board of the University of 

Salzburg approved the design of the study and engagement of human participants.

B. Stimuli and Procedures

Each participant was shown a mixed set of videos, which contained 40 videos that were 

sentences in Austrian Sign Language (ÖGS, signed by a fluent signer), and 40 videos 

which were time-reversed versions of these sentences (i.e. not linguistically acceptable), 

as well as filler videos. Filler videos consisted of videos of sign language sentences with 

classifier constructions and topicalized sentences using SOV and OSV word order, as well 

as simple sentences with SOV word order (200 total filler sentences). Neural and behavioral 

responses to filler videos used to prevent habituation are reported in detail in [15], [16]. 

Overall, behavioral data in response to filler stimuli were similar to that for time-direct 

videos under analysis. However, as spectro-temporal parameters of these videos differed 

from the ones considered here, they were not amenable to the same type of analysis. Sign 

language stimuli consisted of dynamic videos of signed sentences, easily understood by 

proficient sign language users (see Figure 1). The list of glossed sentence translations is 

provided in the appendix. To produce linguistically non-acceptable stimuli, we time-reversed 

sign language videos, to hold constant the spatiotemporal frequencies of the visual stimuli 

in sign-language and non-sign language categories. Time-reversed videos thus contained no 

comprehensible sign language; we also obtained behavioral responses for each stimulus, 

evaluating proficient signers’ assessment of how linguistically acceptable each stimulus was 

(a single stimulus contained a video of a signed sentence, or a time-reversed representation 

of it). The conditions were pseudo-randomized (such that no condition repeated more than 

twice in a row). Two different pseudo-random orders of stimuli were used, balanced among 

participants. Each participant was presented with a training block of videos prior to the 

experiment, to become familiar with task requirements, and to ask any questions they had. 

The videos were presented on the screen 35.3 × 20 cm in size. The size of the videos was 

1280 × 720 pixels. Participants were asked to avoid excessive motion during the presentation 

of the video material. Every trial began with the presentation of a fixation cross (2000 ms) 

to allow the participant to prepare; this was followed by a 200 ms presentation of an empty 

black screen, and then the stimulus video, which appeared in the middle of the screen. At the 

end of each trial, a question mark appeared in the center of the screen for 3000 ms, during 

which the participants were instructed to perform the rating task by pressing a key on the 

keyboard. In the rating task, participants had to rate the videos on a scale from 1 to 7 (1 for 

‘that is not ÖGS’; 7 for ‘that is good ÖGS’, and 4: not ÖGS, but understandable).

Malaia et al. Page 3

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. EEG Data Acquisition and Processing

Data collection was carried out on a 26-channel EEG system at a rate of 500 Hz using 

active electrodes. The electrodes were placed on the participant’s scalp according to the 

standards of the 10/20 system (Fz, Cz, Pz, Oz, F3/4, F7/8, FC1/2, FC5/6, T7/8, C3/4, 

CP1/2, CP5/6, P3/7, P4/8, O1/2), and secured with an elastic cap (Easy Cap, Herrsching-

Breitbrunn, Germany). The impedances of all electrodes were kept below 5 kΩ. The eye 

movements and blinks were monitored and recorded using electrodes placed over the right 

and left outer canthi (horizontal eye movement, HEOG), and left inferior and superior 

orbital ridge (vertical eye movement, VEOG).The AFz electrode functioned as the ground 

electrode during the recording. All electrodes were referenced to the electrode on the 

left mastoid bone. At the start of each trial, numerical trigger codes were sent by the 

stimulus presentation computer to the EEG recording computer, and time-stamped on the 

EEG recordings for synchronization. Offline, following the recording, electrodes were re-

referenced to the averaged data from the electrodes at the left and right mastoids. The signal 

was filtered with a bandpass filter (Butterworth Zero Phase Filters; high pass: 0.1 Hz, 48 dB/

Oct; low pass: 30 Hz, 48 dB/Oct) in Brain Analyzer. As we planned to analyze coherence of 

video and EEG data, the higher frequency data (EEG) needed to be downsampled. As video 

data was recorded at 25 fps, the highest computable frequency for it – Nyquist frequency 

– is 12.5 Hz. The signal was then corrected for ocular artifacts using the Gratton and 

Coles method [17], and segmented from recorded triggers – the onsets of video stimuli 

to 5 seconds following the onset. The full duration of video stimuli was between 5 to 7 

seconds; the 5 second cutoff ensured that only neural responses to ongoing video stimuli 

were analyzed (see Figure 2).

D. Optical Flow Extraction From Video Stimuli and Coherence Calculation

Optical flow is a technique frequently utilized in computer vision to quantify the motion 

of image content between two adjacent frames of a video recording. Optical flow is a 

metric that tracks signal variability across time by quantifying the velocity magnitude of 

each object (based primarily on edge contrast values) in pixels per frame. Although optical 

flow analysis converts each frame to a velocity profile, it does not filter the spatial content 

of dimensions, as the resulting signal contains velocity per pixel versus time, preserving 

both the spatial and temporal information available in the video. Based on optical flow, the 

velocity signal is analyzed according to fractal complexity using the formula M f = α
fβ , 

where M is the power spectral density profile of the signal (PSD), f is the frequency, α is the 

PSD magnitude, and β is the parameter for fractal complexity of the signal. By computing 

the optical flow measure in video, we quantify the distance traveled by each individual pixel 

as it moves from frame to frame, such that intensity of optical flow is proportional to the 

area of the moving part in the video. Optical flow was computed for each stimulus video 

using the vision toolbox optical flow function from MathWorks’ MATLAB. This function 

produces an output matrix of size equal to the input video frame, such that each element of 

the matrix identifies the magnitude of optical flow velocity (pixels per frame) between the 

two frames for each corresponding pixel in the video. An optical flow histogram (which can 

be thought of as a velocity spectrum) is thus created for each frame of the stimulus video. 

Then, for each frame (25 frames for each second of the video), the amplitudes across all 
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velocity bins were added to calculate the total magnitude of optical flow for each frame, 

which was used an instantaneous measure of motion in the stimuli. Across multiple frames 

this produced an optical flow timeseries.

Coherence between the optical flow timeseries of each stimulus video and the neural 

response timeseries in each electrode for each participant was then calculated. To compute 

coherence at a given frequency, both timeseries were first filtered at that frequency (from 

0.02 Hz to 12.5 Hz, as limited by the 25 fps video frequency) using a second-order IIR 

bandpass filter. The filtered timeseries correlation was then calculated using canonical 

correlation analysis with MATLAB NoiseTools toolbox [18]. Both the peak correlation 

and the timeshift of that correlation were extracted for each frequency for each participant, 

stimulus video, and electrode location.

E. Data Setup and Pipelines for Machine Learning

Our intent for machine learning analysis was, first, to assess predictability of the two 

conditions, time-direct sign language and time-reversed sign language stimuli, from the 

neural data on frequency coherence with the stimuli videos’ optical flow. The secondary 

goal was to evaluate the predictive value of input parameters – in this case, frequency 

bins of coherence data – for such classification. To construct the data matrix, we used 

the peak cross-correlation values from 62 frequency ranges (from 0.2 Hz to 12.4 Hz in 

0.2 Hz increments) over each of the four brain regions (anterior, comprising data from 

electrodes in positions F3, F4, Fz, FC1, and FC2; posterior comprising data from electrodes 

in positions P7, P8, P3, P4, Pz; left, including data from electrodes C3, FC5, T7, CP1, 

CP5; and right, with the data from C4, FC6, T8, CP2, CP6) for each of the 0.2 Hz-wide 

frequency bins of optical flow PSD, and each participant. As differing data distribution 

can negatively impact performance of machine learning algorithms by over-weighting 

less clustered input parameters, we performed scaling data transform such that each of 

the parameters would have a mean value of zero and a standard deviation of one. Six 

classifier algorithms were used to evaluate the performance: two linear algorithms (Linear 

Regression (LR) and Linear Discriminant Analysis (LDA)), and four nonlinear algorithms 

(k-nearest neighbors (kNN), classification and regression trees (CART), Naïve Bayes (NB), 

and support vector machines (SVM)), with default tuning parameters of Python sklearn 
library. Machine learning algorithms, in general, are data-greedy methods that create 

complex representation models based on raw data; however, the algorithms vary in terms 

of weighting of different parameters of the raw data; thus, it is rarely possible to determine 

in advance, which types of algorithms will perform well on the data. The six classifier 

algorithms chosen included a variety of algorithms differing in assumptions about the data. 

For example, linear algorithms (Linear Regression (LR) and Linear Discriminant Analysis 

(LDA) assume Gaussian distribution of the data, but differ in terms of performance on 

well-separated classes (i.e. LR can be unstable, while LDA is more appropriate). Among 

the four nonlinear algorithms used, classification and regression trees (CART) are simple 

self-correcting (pruning) algorithms that perform well in the presence of outliers. Naïve 

Bayes (NB) algorithm, on the other hand, assumes conditionally independent parameters 

(i.e. non-interacting ones) – a very strong assumption, which rarely holds on real data; the 

algorithm, nevertheless, can perform well on data sets where parameter dependence is noisy. 
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K-nearest neighbors (kNN) algorithm makes no assumptions about the functional form of 

the classification problem, but, on the other hand, is highly reliant on training data, such 

that it performs well in situations where training and testing data sets are very similar (i.e. 

individual participants’ parameters are alike across the population). Support vector machines 

(SVM) are flexible in terms of analysis, and can learn problem representation from the data 

itself, but are, as a result, the most data-greedy among the options. Application of multiple 

algorithms to the data set in its entirety, as well as sub-sets, provides the most thorough 

understanding of potential models that can best describe the data. During classification, 20% 

of the data was retained for a validation hold-out set (sample of data held back from the 

rest of the analysis and modeling). We used a 10-fold cross-validation approach with the test 

harness pipeline configuration to prevent data leakage between training and testing data in 

each cross-validation harness.

III. Results

A. Behavioral Results

Data from the participants’ behavioral responses on the Likert scale from 7 (‘that is good 

Austrian Sign Language’) through 4 (‘not Austrian Sign Language, but understandable’), to 

1 (‘that is not Austrian Sign Language’) indicated that only sentences in the sign language 

condition were rated as linguistically acceptable, while reversed videos of sign language 

(i.e. not linguistically acceptable videos) were not considered meaningful communication 

(sign language M = 5.80; SD = 1.48; reversed videos M = 1.72, SD = 1.35) (see Figure 

3). Paired t-test between individual ratings of time-direct and time-reversed videos indicate 

significantly higher ratings (t(23) = 14.01; p<.001) for time-direct videos. Response times 

did not differ significantly between conditions (t(23) = −1.3; p>.2; sign language M = 883 

ms; SD = 535 ms; reversed videos M = 925 ms, SD = 541 ms).

B. Machine Learning Results

Peak coherence between the stimuli and neural activity occurred between 100 ms and 250 

ms post-stimulus onset in response to both time-direct and time-reversed (not linguistically 

acceptable) video stimuli conditions, as expected for visual dynamic stimuli (cf. [13]). The 

cross-correlation matrix of the input vectors (frequency coherence bins between EEG and 

optical flow in the visual stimuli) to machine learning pipeline is presented in Figure 4. 

The red line along the diagonal represents self-correlation of individual input parameters 

(coherence frequency bins). Notice the structure in the matrix around the diagonal in 

the quadrant encompassing.4 to 4 Hz bins: dark blue suggests high values of negative 

correlation of the parameters and red indicates high positive correlation values, both of 

which are likely to weigh strongly in classification. We used the bagged decision tree 

classifier (ExtraTreesClassifier from Python sklearn library) to estimate the importance of 

input parameters (i.e. coherence frequencies) in the data set. The importance scores for all 

input parameters was <0.01, with the exception of frequency bins 0.8 Hz (importance score 

0.16), and 1Hz (importance score 0.16), highlighting relevance of these input parameters for 

classification accuracy. The accuracy metrics for the algorithms are summarized in Table I. 

Five algorithms (LR, LDA, kNN, Naïve Bayes, and SVM) achieved 100% out-of-sample 

prediction accuracy on hold-out dataset for the whole brain data set. For region-specific 
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analysis classification accuracy remained above 80% accuracy, with most values above 

90% accuracy. Nonlinear Naïve Bayes performed at 100% accuracy for each brain region 

separately as well as for the whole-brain dataset.

The high prediction accuracy in classifying the time-direct vs. time-reversed conditions 

suggests that machine learning algorithms successfully identify common neural responses 

to visual linguistic stimuli based on stimulus-EEG coherence data across frequency bins. 

To identify the independent contribution of each frequency to successful classification, we 

repeated the analysis, this time reducing the number of input parameters used to 5 parameter 

vectors at a time: e.g. vectors for frequencies 0.2 to 1 Hz (0.2, 0.4, 0.6, 0.8, and 1.0). The 

results are summarized in Table II. Notice that lower frequency ranges (up to 4 Hz) yield 

highest out-of-sample prediction accuracy, with classification accuracy of 100% attained for 

a set of frequency bins between.2 and 1 Hz using kNN, NB, and SVM algorithm, while 

higher frequencies appear to contribute less to recognition of neural state for language 

comprehension.

IV. Discussion

To assess the relationship between neural data response to visual entropy of the signal in 

linguistic (sign language) vs. not linguistically acceptable (time-reversed sign language) 

conditions, electroencephalography signal (EEG) was recorded from participants who were 

fluent signers, while they were viewing sign language sentence videos, and the same videos 

that were time-reversed. The participants rated the sentences on a Likert scale from 1 (“that 

is not Austrian Sign Language”) to 7 (“that is good Austrian Sign Language”). The sign 

language videos and time-reversed videos differed only in the time direction of the signal; 

all other spectro-temporal parameters of the videos were the same. To relate the neural data 

to the video data (sign language signal and time-reversed sign language stimuli), we first 

quantified the video signal using changes of optical flow across multiple visual frequencies. 

This measure was linearly regressed against individual EEG signals of each participant, such 

that peak cross-correlation frequency was defined for each channel in the EEG data. We 

then employed a variety of machine learning pipelines to evaluate whether brain state of 

processing sign language was classifiable from the state of watching time-reversed videos, 

equivalent in low-level features; we also assessed relative contribution of brain regions and 

specific frequencies to classification accuracy of six machine learning algorithms. What we 

probed in our study is whether neural response to the motion frequencies of the signal is 

based on low-level feature assessment (in this case, low-level, or sensory features describe 

high frequency motion at the onset and offset of the signs), or on assessment of whether 

the visual data contains any vocabulary items of the sign language known. If high-frequency 

data were predictive of comprehension, it would indicate that low-level (motion-based) 

features are indeed critical for sign recognition. However, as we identified low-frequency 

data as predictive of comprehension, this suggests that participants rely not on local (higher-

frequency) motion features, but rather on slower (lower-frequency) global visual features. 

The only possibility to do real-time processing and respond rapidly to comprehension 

questions would be to employ predictive processing: i.e. using low-frequency sampling 

of the input signal, to retrieve a number of potentially appropriate lexical/syntactic items 

from sign language vocabulary, and rapidly reject those that do not fit the signal at the 
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next data point. The results indicated that electrophysiological responses to visual language 

yield enough information for successful classification. Cross-correlation analysis indicated 

that frequencies under 4 Hz tended to contribute most weight to classification accuracy. 

Feature evaluation using the bagged decision tree classifier also highlighted importance of 

0.8 Hz and 1Hz input parameters to classification accuracy. In general, frequency-based 

entrainment to stimuli is an overarching cortical mechanism of sensory processing evidenced 

across modalities. For spoken language (with high temporal variability of the signal) it is the 

envelope features, which describe entropy fluctuations of the changing signal, that predict 

comprehensibility of the signal [1], [2], [19]. For sign language, circumstantial evidence 

from multiple behavioral studies has pointed to the likelihood of a similar mechanism. 

For example, [20] investigated the ability of signers and non-signers (native users of 

Spoken English/American Sign Language and Spoken Chinese/Chinese Sign language, 

respectively) to parse dynamic point-light presentations of ‘pseudo-hieroglyphic writing’ 

(with novel stimuli created for the experiment to mitigate for the Chinese Sign Language 

users’ familiarity with hieroglyphic Chinese) [20]. Native users of either sign language were 

able to perceptually separate discrete segments, such as ‘strokes’ and ‘transitions’, in the 

signal, while non-signers perceived point-light motion as continuous. Since no linguistic 

cues were available to signers in these studies, motion entropy envelope tracking might 

be one perceptual adaptation enhanced in sign language that might allow signers to parse 

dynamic visual stimuli relying on language-driven skills.

Infant studies provide further evidence for attentional relevance of entropy-rich portions 

of visual signal during sensitive period for language acquisition. [21] investigated infants’ 

attentiveness to fingerspelled stimuli in sign language. The operational definition of visual 

sonority of the stimuli used in the study is qualitatively based on Brentari’s [22] model of 

sign language phonology, and is functionally equivalent to an entropy measure in visual 

modality. In a preferential looking paradigm, hearing 6-month-olds looked significantly 

longer at high-entropy stimuli than low-entropy stimuli. This preference disappeared in older 

infants (around 12 months of age) who had not received any signed language experience. 

Perceptual sensitivity to entropy (syllabicity) to auditory stimuli is known to peak around six 

months and specialize to environmental input by approximately 12 months of age [23], [24].

The present study links the research on neurobiologically-motivated approaches to language 

comprehension [1] and action processing [25] to computational modeling of information 

transfer in communication [9], [26]. Both behavioral (acceptability) and neural measures of 

comprehension of sign language sentences appear rooted in entrainment of neural activity 

to the dynamic variations in the entropy of the visual signal, as measured by optical flow. 

The findings demonstrate that cortical tracking of spectro-temporal dynamic entropy in 

the visual signal of sign language relies on lower (under 4 Hz) frequencies, and is likely 

mediated by predictive processing mechanisms based on language knowledge. Identification 

of common mechanisms underlying comprehension in speech and sign, based on neural 

response to linguistic stimuli that tracks the low-frequency envelope of signal entropy, could 

help develop brain-based diagnostics for language processing disorders for users of sign 

languages.
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There were several limitations to the present analysis which related primarily to the scope 

of the chosen question. We did not specifically address the relationship between behavior 

(and between-participant behavioral variability) and the neural signal. In sign language 

populations, the participant pool is often heterogenous, as strict inclusion criteria (participant 

age, etc.) would severely limit the pool of participants. Language proficiency assessment 

tools, or detailed description of the grammatical structure, are yet unavailable for ÖGS. 

Additionally, analysis focused on frequency-domain correlation between the signal and 

the neural response, rather than the relative location or timing of entrainment, or possible 

variations among participants –questions which certainly deserve further scrutiny. It is 

possible that individual signs, particularly those symmetric in the time domain, could have 

been understood by signers. However, most signs (especially verb signs [27]) follow a non-

symmetric dynamic trajectory, with higher acceleration at the end of the sign. Time-reversed 

sentence-level stimuli, thus, violated both syntactic (word order) and phonological (motion 

profile) rules of sign language, and, as such, were rated below understandable threshold. 

The stimuli in the present study were controlled for syntactic structure (simple sentences) 

to avoid possible variability in processing strategies that are often seen in the processing 

of more complex sentences [28]. The question of possible variability in processing of more 

complex sentences is very interesting, and should be subject to further research.
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Fig. 1. 
a) a dynamic signed sentence as a sequence of still frames; b) optical flow data in time 

domain; c) comparison of PSD of optical flow in frequency domain for sign language 

(magenta) and reversed videos (blue).
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Fig. 2. 
Comparison of EEG responses to sign language (black) and time-reversed videos (red). For 

the purposes of presenting the data, ERPs are baseline-corrected using 300 ms epoch prior 

to each trigger; negative is plotted upward. Blue lines indicate electrode clusters used for 

analysis (anterior (FC1, FC2, F3, F4, Fz); posterior (P3, P4, P7, P8, Pz); left (FC5, C3, CP1, 

CP5, T7); right ( FC6, C4, CP2, CP6, T8).
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Fig. 3. 
Behavioral response distribution in Sign Language and Reversed Videos conditions. A. 

Acceptability ratings on Likert scale (7 – good Austrian Sign Language; 4 - not Austrian 

Sign Language, but understandable; 1 - not Austrian Sign Language), with significantly 

lower ratings for time-reversed videos; B. Reaction times (in ms) to the two conditions did 

not differ significantly.
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Fig. 4. 
Cross-correlation matrix of the input vectors (coherence between EEG and optical flow 

in the visual stimuli, binned in.2 Hz frequency increments). Both horizontal and vertical 

axes represent the same bins (top to bottom and left to right). The red line along the 

diagonal represents self-correlation of individual input parameters (value of 1, or perfect 

self-correlation).
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TABLE I

Accuracy (in Percent) on Hold-Out Set for Whole-Brain, and Spatially Localized Input Parameters Across 

Classification Algorithms. Notice High Performance of Linear and Non-Linear Algorithms Across Brain 

Regions

Accuracy LR LDA kNN CART NB SVM

Whole brain 100 100 100 96 100 100

Anterior 98 100 95 90 100 98

Posterior 100 89 98 100 100 100

Left 100 93 100 80 100 100

Right 100 97 97 90 100 100
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TABLE II

Accuracy (in Percent) on Hold-Out Set for Specific Frequency Bins of Coherence Parameters. Notice 

>80% Accuracy in Identification of Stimuli Type and Comprehensibility Across Algorithm Types for Low-

Frequency (up to 4 Hz) Data

Feature bins LR LDA kNN CART NB SVM

0.2 – 1.0 Hz 99 99 100 94 100 100

1.2 – 2.0 Hz 92 93 89 86 90 93

2.2 – 3.0 Hz 93 93 90 83 91 93

3.2 – 4.0 Hz 82 83 71 75 81 88

4.2 – 5.0 Hz 67 67 62 61 69 73

5.2 – 6.0 Hz 61 61 55 57 59 61

6.2 – 7.0 Hz 79 78 79 70 67 79

7.2 – 8.0 Hz 66 66 52 58 56 60

8.2 – 9.0 Hz 51 51 49 58 43 50

9.2 – 10.0 Hz 57 60 52 64 56 52

10.2 – 11.0 Hz 78 86 54 71 67 67

11.2 – 12.0 Hz 63 64 50 52 54 58
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