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Abstract

A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of
species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species
by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for
an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately
working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes
the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an
inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge
of the systematics of a group is required. In addition to identification of known species, methods for an automatic
delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically
well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the
methods for protists. As species identification method the performance of blast in searches against badly to well-sampled
reference databases has been tested with COI-5P and 59-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In
addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic
divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some
pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA
barcode system in protists is proposed.
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Introduction

DNA barcodes are short and highly variable DNA regions that

can be used to identify species [1]. The COI-5P region,

encompassing 500 to 800 nucleotides of the 59 terminus from

the mitochondrial gene cox1, became a standard barcode in

zoology [2]. Cox1 codes for subunit I of cytochrome c oxidase

(complex IV of the respiratory chain). But since discriminative

power of COI-5P proved to be insufficient in some eukaryotic

groups, also other organellar protein-coding genes, such as e.g.

plastid-encoded matK and subunits of rpo (in embryophyte plants),

or regions of the eukaryotic ribosomal operon, e.g. 59-partial LSU

rDNA, ITS2 or the V4 region of the SSU rRNA gene (e.g. in

diatoms, foraminifera, green algae or fungi), have been proposed

as alternatives [3–7].

To work accurately, DNA-based identification methods require

a dense taxon sampling, but also a consistent systematics [8]. Funk

and Omland summarized problems in DNA barcoding of animals

that will likely cause failures in species identification due to poly- or

paraphylies in species that can be roughly assigned to three

categories [9]: (a) an artificial systematics combined with an

appropriate barcode marker (termed ‘‘imperfect taxonomy’’ by

Funk and Omland), (b) a consistent systematics, but an inappro-

priate molecular marker and (c) naturally non-monophyletic taxa.

Causes for category (a) may be the use of unspecific or misleading

morphological characters for species delimitation. The inferred

phylogeny may be correct, but species names are not congruent

with biological species. In category (b) genes have been either

subject to introgression, to incomplete lineage sorting after

duplication events or paralogous instead of orthologous gene

copies have been used as barcode markers. In these cases

systematics may be consistent, but the wrong marker has been

chosen for barcoding. Its gene phylogeny does not reflect the

species tree. Funk and Omland did not mention lateral/horizontal

gene transfer that also could result in a gene tree deviant from the

species tree, probably because these events have been reported

from eukaryotes only rarely, e.g. for mitochondrial genes in

embryophyte plant species [10]. Problems of categories (a) or (b)

can be solved by a taxonomic revision or by choosing an

alternative barcode marker, respectively. Difficulties arise, if

biological species are naturally non-monophyletic (c). Natural

non-monophyly may be caused by interspecific hybridization

events or by reproductive isolation of a subpopulation from a

species. In the latter case, the parent species will be paraphyletic

with the monophyletic offspring species being nested inside. Apart

from the problems listed by Funk and Omland, molecular traits

inherent in a chosen marker may also result in artifactual tree

topologies or erroneous species identifications, e.g. unequal

evolutionary rates across taxa, sites and/or time, heterogenous

base compositions or differing codon usage [11–15].
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Once a reference database has been set up, species identification

can be performed by using a query sequence to search a reference

database [16]. Restricting a search to a group of organisms

reduces the risk of species misidentifications, because substitution

saturation of a marker is minimized. Whereas morphological

characters seem to reflect to some extent biological species limits in

animals, phenotypic characters proved to be misleading in many

protistan lineages [17–22]. As a consequence, researchers who

want to establish DNA barcoding systems for protists face several

challenges. In many lineages, a chaotic classification with poly- or

paraphyletic species prevails, but for an accurate identification of

species a consistent systematics is required and in addition a priori

knowledge of species phylogeny often provides the only means for

a plausibility control to identify problems such as introgression or

incomplete lineage sorting in a candidate barcode marker.

Problems arise also in searches against reference databases.

Similar cellular organizations of protists – colorless flagellates,

amoebae, green kokkoids – are spread across supergroups/

kingdoms in the eukaryotic tree of life (Plantae/Archaeplastida,

Unikonta, Excavata, cryptophytes/haptophytes and the SAR

group with alveolates, stramenopiles, Rhizaria) [23–25]. Thus,

constraining a search to the correct group requires expertise and

training in light microscopical methods. On the other hand,

nanoplanktonic protists may be too small to be identified by light

microscopy and often only environmental DNA sequences have

been sampled to assess microcosmic diversity in a habitat, e.g. [26–

30]. Both does not allow for restricting searches.

Phylogenetic methods unveiled cases of inconsistent systematics

at different classification levels in protistan lineages, resulting in

taxonomical revisions that combined classical methods such as

light and electron microscopy with molecular phylogenetic

analyses and, if possible, also with mating experiments [31–35].

For an unambiguous identification of taxa, molecular synapomor-

phies, molecular signatures or accession numbers to sequences

have been included into taxonomic descriptions [33] [36–37]. For

taxa that can not be maintained in laboratory culture, isolation of

single cells, subsequent morphological observation, single-cell

PCR and subsequent sequencing or in situ FISH hybridization

methods have been proposed to facilitate integrative taxonomy

[38–39].

Some protists, e.g. the Euglenida, seem to reproduce only

asexually. In others, sexual reproduction is known or suspected,

but they can not be grown in laboratory culture or their inductors

of sexual reproduction are not known. Only in few protistan

lineages mating experiments have been possible. Annette Coleman

performed crossing experiments in volvocalean algae and com-

pared the results with sequences and secondary structures of the

internal transcribed spacer 2 (ITS2) of the eukaryotic ribosomal

operon [40]. In most eukaryotes ITS2 folded up to four major

helices with the proximal part of helix 2 and helix 3 being the most

conserved regions, important for the splicing process of the pre-

rRNA transcript [41–42]. If a compensatory base pair change

(CBC) occurred in one of the most conserved parts of the ITS2

secondary structure, two cultured algal strains proved to be

separate biological species that did not produce fertile offspring

[40]. A similar correlation has been found in other groups across

the eukaryotic tree (e.g. in diatoms, desmids, brown algae,

embryophyte plants, animals, fungi; summarized in [43]). CBCs

in ITS2 seem to be a safe predictor for sexual incompatibility,

albeit by chance. The nuclear ribosomal operon is not directly

linked to mating. Due to unequal evolutionary rates across

lineages, the CBC clade concept probably does not work in both

directions (i.e. a CBC clade may encompass several biological

species). Therefore CBCs in the ITS2 can be considered only an

approximation to biological species limits [44–45]. The use of

ITS2 for a delimitation of species has been spreading in protists

since [20] [32][46], and in fungi, species identification by ITS2

even precedes the use of COI-5P as a DNA barcode [44].

However, ITS regions may be subject to intragenomic variation,

resulting in artifactual increases of species counts, which cautions

against the use of ITS2 as a barcode marker [47].

Considering the vast diversity of protists across the eukaryotic

tree of life, systematics research at low classification levels in

protists is still in its infancy [48–49]. For some Cryptophyceae

larger taxonomic revisions based on integrative taxonomy have

been published previously [20][33][50]. Cryptomonads are

biflagellate and mostly photoautotrophic unicells that occur

ubiquitously in freshwater, brackish and marine environments

[51]. Their complex plastids originate from a secondary

endosymbiosis with a red alga [52]. The former nucleus of the

engulfed alga, termed the nucleomorph, has been retained

between the two outer and the two inner plastid membranes

[53]. The plastid-bearing cryptomonads (cryptophytes), thus,

contain four genomes in a cell, two of eukaryotic and two of

prokaryotic origin (nucleus, nucleomorph, plastid and mitochon-

drial genome), each with its own ribosomal RNA genes.

Apart from the phagotrophic and aplastidic genus Goniomonas

STEIN and a lineage with an unknown mode of nutrition inferred

from environmental sequencing, five clades and two isolated

lineages are known (the genus Cryptomonas EHRENBERG: freshwater

only; the Rhodomonas clade with the genera Rhodomonas KARSTEN,

Rhinomonas HILL ET WETHERBEE and Storeatula HILL: predominantly

marine; the Chroomonas clade with Chroomonas HANSGIRG, Komma

HILL and Hemiselmis PARKE: marine or freshwater; the Teleaulax

clade with Geminigera HILL, Plagioselmis BUTCHER, Teleaulax HILL:

predominantly marine; the Guillardia clade with Guillardia HILL ET

WETHERBEE and Hanusia DEANE, HILL, BRETT ET MCFADDEN; the

marine monospecific genera Falcomonas HILL and Proteomonas HILL

ET WETHERBEE) [54]. Most of the clades were mixtures of poly- or

paraphyletic genera, likely due to unidentified heteromorphic life

cycles indicative also for sexual reproduction [33] [55].

Cryptophytes as such can be easily identified by their

asymmetric cell shape and subapical flagellar insertion site causing

a wavy rotation along the longitudinal axis during swimming.

Around 200 species have been described, but proved to be based

on unreliable or unspecific morphological characters in the genera

Cryptomonas and Hemiselmis [20] [50]. Only the latter genera have

been revised to date [20] [33][50]. The two revisions of the genus

Cryptomonas have been based on comprehensive sampling of 122

clonal strains, ordered from diverse culture collections around the

world and newly isolated [20] [33]. For a representative subset of

these strains completely congruent data sets comprising 59-partial

28S rDNA and ITS2 of the nuclear ribosomal operon and the 18S

rRNA gene of the nucleomorph ribosomal operon have been

published. Since nuclear and nucleomorph ribosomal operons are

not linked, potential artifacts, e.g. caused by base composition

biases or unequal evolutionary rates, could be ruled out by

examining single-gene phylogenies of nuclear and nucleomorph

genes for conflicting branching patterns. Whereas in the first

revision, species level has been assigned to terminal clades (except

for Cryptomonas borealis CBCs proved to be absent in the ITS2

sequences of the species), the second revision was entirely based on

the CBC concept [20]. For the unrevised Chroomonas clade a large

congruent data set of nuclear 59-partial LSU and SSU rDNA and

of nucleomorph SSU rDNA was also available [56].

The previously published highly resolved and comparably

densely sampled phylogenies of the genus Cryptomonas and of the

Chroomonas clade provided the means to monitor the performance

Pitfalls of DNA Barcoding in Cryptophytes
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of the tested barcode markers as an alternative to misleading

morphology. This study addresses species identification and

potential species delimitation methods in cryptophytes. Some

weaknesses in barcoding methods are demonstrated that should be

taken care of when establishing a barcode system in protists.

Blast searches against a reference database belong to the species

identification methods. The INSDC databases represented the

most comprehensive archive of sequenced taxa. Data of the

Barcode of Life database BOLDSystems have been imported,

whereas BOLDSystems included only a subset of sequences from

INSDC, namely animal, fungal and plant barcodes [16] [57]. To

date people working on protists are, thus, forced to use NCBI’s

blast tools for an identification of taxa at different classification

levels. The performance of candidate DNA barcodes using cross-

eukaryote searches have been tested under different sampling

scenarios in this study. As queries, a cryptophyte COI-5P sequence

and 59-partial nuclear LSU rDNA sequences of differently well

sampled clades in the cryptophytes have been used. Of the 21

novel sequences in this study (eleven 59-partial nuclear LSU rDNA

sequences in the Chroomonas clade, eight 59-partial nuclear LSU

rDNA sequences in the genus Cryptomonas, one 59-partial nuclear

LSU rDNA sequence of a Rhodomonas strain and a new COI-5P

sequence of a Cryptomonas species), only sequences representing

new lineages at different classification levels have been used in the

blast searches.

Frequency distributions of genetic distances have been used to

identify a barcode gap assumed to separate intra- from interspe-

cific frequency distributions [2]. Thus, this method has been

suggested for species delimitation. Based on the barcode gap,

thresholds of genetic divergence in percent have been proposed to

identify new species. This practice has been shown not to work in

all cases and to have been biased by wrong computation of

frequency distributions [8] [58]. Several alternative methods for an

automatic delimitation of species, thus, have been invented. Pons

et al. proposed the general mixed Yule-coalescent (GMYC) model

for a large scale delimitation of species [59]. The authors stressed

that, different from other introduced methods for automatic

species delimitation, no a priori knowledge of biogeographic

distribution was required for GMYC. Since protists are usually

not biogeographically distributed [60–61], this method could be

suited for species delimitation in protistan lineages. GMYC

requires an ultrametric tree to generate a plot showing the

increase of lineages during the course of time (lineage-through-

time plot, LTT) and to identify a switch in branching rates

indicating a change from speciation events to coalescence

(intraspecific variation at population level) [59] [62]. Pons et al.

termed the time intervals from one to the next speciation event

‘‘waiting times’’. The threshold between speciation and coales-

cence is found in a maximum likelihood computation by

optimizing the sum of log-likelihoods of waiting times across the

tree. To assess whether a differentiation between speciation and

coalescence during the course of time is more probable than the

notion of coalescence events only (i.e. all terminal nodes represent

members of one population) a likelihood ratio test can be

performed with coalescence-only as a null hypothesis [59]. Since

most sequences do not evolve following a strict molecular clock,

Monaghan et al. suggested to use a relaxed clock for tree inference

instead and also invented a multiple threshold algorithm for

GMYC that allowed for different switching times from speciation

to coalescence adjusted to different evolutionary lineages across

the tree [63].

In this study, 59-partial LSU rDNA is used to assess the before-

mentioned two different methods of automatic species delimita-

tion. Phylogenetic trees with this DNA region were congruent with

the phylogenies derived from nucleomorph SSU rDNA, thus, tree

artifacts as mentioned above are unlikely. Two different 59-partial

LSU rDNA data sets (sequences of the Chroomonas clade and an

alignment of Cryptomonas sequences) have been used to examine

how evolutionary models and changes in taxon sampling shape a

frequency distribution of genetic distances and the position and

shape of potential barcode gaps. Also species delimitation by the

GMYC model, both with the multiple threshold and the single

threshold models have been tested with the better sampled

Cryptomonas data set. Usually, the ultrametric trees for GMYC have

been calibrated. Since no fossil record was available for

cryptophytes, an uncalibrated tree has been used instead.

Results

Species Identification
Performance of blast algorithms in an extremely badly

sampled group using COI-5P as a query. The National

Center of Biotechnology Information (NCBI) offers three different

settings for nucleotide versus nucleotide queries with different

scoring and word size schemes (Table 1) [64–65]. Per default, the

search strategy is set to ‘‘megablast’’, an algorithm supposed to be

used for highly similar sequences, i.e. for intraspecific comparisons

with identities equal or higher than 95%. At time of the blast

experiments, only four cryptophyte COI-5P or complete cox1

sequences have been available in the INSDC databases, only one

of them, Cryptomonas ovata strain NIES-274 (acc. no. AB009419),

belonged to the same genus as the query sequence (Cryptomonas

curvata strain CCAC 0080; Table 2). Thus, the COI-5P sequences

of the class Cryptophyceae represented an example for a bad

sampling driven to the extreme.

When using the megablast algorithm, stramenopile sequences,

but no cryptophyte sequences appeared among the first 100 hits

(Table 2). Top hit was an oomycete, Aphanomyces laevis, second and

third hits were brown algae of the order Fucales. In all cases the

megablast algorithm inserted many gaps (up to 6% of the covered

query) in the pairwise alignments, usually severely violating the

triplet structure of the genes. The maximum identity of 80% of the

three top positions was below the threshold of 95% considered

the minimum for megablast to operate well. Constraining the

megablast search to ‘‘cryptomonads (taxid:3027)’’ yielded no hits

at all.

Switching to the discontiguous megablast algorithm resulted in

a shuffling of positions. First hit was the only available Cryptomonas

COI-5P sequence (C. ovata strain NIES-274). The next crypto-

phyte sequence, however, was ranked only in position 24 (Guillardia

theta strain CCMP2712; Table 2). All other first 100 hits were

stramenopiles with the giant kelp Macrocystis pyrifera in positions 2

to 10. The third cryptophyte sequence, Hemiselmis andersenii

CCMP644 showed up somewhere between positions 500 and

1000, and the fourth cryptophyte sequence Rhodomonas salina in a

position between 1000 and 5000 (positions have been inferred by

increasing step-wise the number of hits to be shown, followed by a

search for the genus name in the listing).

Only when using the blastx algorithm (translation of the query

sequence to amino acids and comparing it to a protein database),

all four cryptophyte COI-5P sequences appeared among the first

100 hits, but not in consecutive order in top four positions.

Whereas the sequences of C. ovata strain NIES-274 and G. theta

strain CCMP2712 were placed in positions 1 and 2, H. andersenii

strain CCMP644 and R. salina appeared only in positions 8 and

31, respectively (blastx results not shown). Different from the

nucleotide versus nucleotide searches, viridiplant taxa, embryo-

phyte plants and Chlorophyta, prevailed among first 100 hits.

Pitfalls of DNA Barcoding in Cryptophytes
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The megablast and discontiguous megablast results indicated

that the sequences in GenBank may have reached substitution

saturation. Thus, a data set with 12 COI-5P sequences was

assembled (the new COI-5P sequence of C. curvata, the four

cryptophyte sequences and the non-cryptophyte sequences flank-

ing each cryptophyte entry from beyond and below) to examine

genetic distances under different evolutionary models and to

perform a test for substitution saturation according to Xia and

Lemey [66] (Tables 3 and 4). Since the cryptophyte Rhodomonas

salina was embedded between spider sequences, the taxon

sampling finally crossed three supergroups/kingdoms, the Hacro-

bia (cryptophytes), the remains of the ‘‘chromalveolates’’ alias SAR

group (stramenopiles) and the Opisthokonta (spiders).

K2P inferred by maximum likelihood resulted in slightly higher

values than K2P distances estimated by the maximum likelihood

parameters in the COI-5P data set (Table 3). The steepest increase

in distances was found in the GTR+I+C model. Under all three

settings, C. ovata proved to be the closest relative to C. curvata with

distances of 0.200 (K2P), 0.209 (K2P estimated by ML) and 0.293

(GTR+I+C ). Under none of the evolutionary models, however,

ranking order approximated correct relationships. The giant kelp

Macrocystis pyrifera always seemed to be the next-closest relative to

C. curvata and Hemiselmis andersenii was always in 9th position with 5

non-cryptophyte sequences seemingly closer related to C. curvata.

Only in the genetic distances to R. salina and its neighboring

discontiguous megablast hits, two spider sequences (Nephila pilipes

and Agelenopsis aleenae), differences indicated that the simple blast

scoring scheme may be more limited than an evolutionary model.

If the position of R. salina would have been inferred by GTR+I+C
modeled distances, it would have been ranked close to G. theta.

Neighbor-joining tree inference, however, proved to be slightly

more robust than a simple ranking according to distances. Under

K2P as well as under GTR+I+C , the cryptophyte sequences were

monophyletic with high bootstrap support (both: 94%; 1000

replicates), but the oomycete Aphanomyces laevis grouped with high

support with the two spider sequences (K2P: 91.1%; GTR+I+C :

91.4%) (trees not shown).

For all data sets the proportions of invariable sites have been

determined prior to the tests for substitution saturation and

gapped sites have been excluded. In COI-5P, the tests have been

performed separately for a data set consisting only of 1st and 2nd

codon positions and for a data set comprising 3rd codon positions

(Table 4). Whereas the data set with 1st and 2nd codon positions

passed the test (IssvIss:c and difference between �HH and Hss

significant; see Table 4), a high substitution saturation could be

confirmed for 3rd codon positions. Assuming a symmetrical tree

topology, the differences between �HH and Hss proved to be not

significant, meanwhile the ratio of Iss versus Iss:csym approached 1

or reversed (Table 4). This combination indicated a considerable

saturation. For asymmetrical trees the situation was worse. Iss

became larger than Iss:casym with a significant difference between
�HH and Hss, meaning that the most important positions for species

delimitation were useless for phylogenetic analyses. Since these 13

taxa crossed three eukaryote supergroups/kingdoms, a phyloge-

netic tree likely would have been considerably asymmetric.

Table 1. Scoring schemes of different nucleotide versus nucleotide search algorithms from the NCBI blast pages.

Search algorithm Word size Matches Mismatches Gap costs

Megablast 28 1 22 Existence: 0, Extension: 22.5

discontiguous megablast* 11 2 23 Existence: 25, Extension: 22

Blastn 11 2 23 Existence: 25, Extension: 22

Megablast is supposed to perform best in comparisons of closely related sequences with identities beyond 95%, whereas discontiguous megablast and the slower
blastn algorithm should be better suited for cross-species comparisons. All blast types used a default expectancy threshold of 10.
1st�, settings of discontiguous megablast differed from previously reported settings [64].
doi:10.1371/journal.pone.0043652.t001

Table 2. Performance of blast searches in a badly sampled group using the COI-5P sequence of Cryptomonas curvata strain CCAC
0080 as a query (570 nt): rankings and statistics of the discontiguous megablast search.

Rank Description Score bits Expectancy Identities Gaps Coverage

1 Cryptomonas ovata mitochondrial COXI gene (AB009419.1) 580 (642) 4E–162 470/569 (83%) 0/569 (0%) 99%

2 Macrocystis pyrifera haplotype H5 (HM153261.1) 509 (564) 7E–141 455/570 (80%) 0/570 (0%) 100%

24 Guillardia theta strain CCMP 2712 (GQ896379.1) 489 (542) 6E–135 452/570 (79%) 2/570 (0%) 99%

.500 Hemiselmis andersenii strain CCMP 644 mitochondrion, complete
genome (EU651892.1)

443 (490) 8E–121 434/560 (78%) 0/560 (0%) 98%

.1000 Rhodomonas salina mitochondrial DNA, complete
genome (AF288090.1)

R. salina 1 113 (124) 8E–102* 76/85 (89%) 0/85 (0%) 94%

R. salina 2 379 (420) – 359/457 (79%) 1/457 (0%) –

Except for C. ovata and G. theta, no other cryptophytes among first 100 hits; all others: stramenopile sequences, predominantly brown algae. Discontiguous megablast
and blastn resulted in the same ranking among first hits. No changes were observed with blastn word size reduced to 7. The R. salina cox1 sequence was interrupted by
a group 2 intron in the COI-5P region, thus yielded two alignments. Its low ranking did not allow for viewing of pairwise alignments. Query coverage and expectancy
values according to list view, but score bits, identities, and gaps statistics have been taken from a search constrained to cryptomonads (expectancy values change under
these circumstances).
doi:10.1371/journal.pone.0043652.t002
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The impact of gap costs on the performance of blast

searches in a protein-coding gene. In the pairwise alignment

of C. curvata with G. theta CCMP2712 two gaps have been inserted

by discontiguous megablast to facilitate matching of three

nucleotides – TGC – between query and G. theta sequence

(Fig. 1A; Table 2). One gap has been inserted in the G. theta

sequence upstream of these three nucleotides, the other gap in the

query sequence downstream, thus disturbing the open reading

frames of both genes (Fig. 1A). To examine the impact of the two

gaps on the ranking position of G. theta, two test searches under

elimination of the gaps have been performed. Since the published

G. theta sequence itself could not be modified, the query sequence

was altered manually instead (Fig. 1B; modified positions labeled

in red). The G placed in position 424 of the query sequence was

deleted and the gap position that has been inserted between

positions 427 and 428 was filled with a G or a T (Fig. 1B). In the

first case, the G would result in a mismatch (Fig. 1B, top row) and

in the latter case, query and G. theta sequences would exactly

match in the modified part (Fig. 1B, bottom row). As a

consequence of these slight modifications in the C. curvata

sequence, the ranking of the G. theta sequence improved from

rank 24 (489 score bits) up to positions 7 (mismatch with a G; 499

score bits; results not shown) or 5 (match with a T; 504 score bits;

Fig. 1C and Table 5). The slightly different query sequence

expectedly resulted in changes of scoring and expectancy values,

but sequence entries of positions 1 to 4, query coverage and

maximum identities remained the same (Table 5). In the case of an

exact matching region between query sequence positions 424 and

427, the G. theta sequence obtained the same overall scoring and

expectancy values as the Macrocystis pyrifera clones. It differed from

the latter only in maximum identity by 1%. Thus, the insertion of

only two single-position gaps with a total penalty of 210 into an

alignment had an extreme impact on ranking position in a

conserved protein-coding gene usually devoid of gaps in closely

related groups such as COI-5P. A search with a lower gap cost of 2

resulted in position 25 with even more gaps inserted into the

pairwise alignment of C. curvata and G. theta. A single sequencing

error, thus, may have fatal effects.

Query coverage between the C. curvata COI-5P sequence and

the worst-ranked cryptophyte sequence, Rhodomonas salina, was 4 to

5% lower than between C. curvata and the other cryptophytes. The

output also indicated a split between positions 110 and 111 of the

query sequence into two separate alignments (Table 2). Both may

add to the low ranking. According to annotation a group II intron

separated the cox1 gene in the COI-5P region between positions

Table 3. K2P and K2P and GTR+I+C distances computed by maximum likelihood in Cryptomonas curvata CCAC 0080 COI-5P
versus cryptophyte and non-cryptophyte sequences.

Rank Description K2P K2P (ML) GTR+I+C

1 Cryptomonas ovata (Hacrobia, Cryptophyceae; acc. no. AB009419) 0.200 0.209 0.293

2 Macrocystis pyrifera (stramenopiles, Phaeophyceae; acc. no. HM153261) 0.235 0.252 0.385

23 Aphanomyces laevis (stramenopiles, Oomycetes; acc. no. HQ708195) 0.250 0.270 0.437

24 Guillardia theta (Hacrobia, Cryptophyceae; acc. no. GQ896379) 0.250 0.267 0.427

25 Saccharina coriacea (stramenopiles, Phaeophyceae; acc. no. AP011499) 0.255 0.272 0.427

.500–1 Pterygophora californica (stramenopiles, Phaeophyceae; acc. no. FJ409188) 0.272 0.292 0.479

.500 Hemiselmis andersenii (Hacrobia, Cryptophyceae; acc. no. EU651892) 0.275 0.296 0.497

.500+1 Alaria praelonga (stramenopiles, Phaeophyceae; acc. no. EF218902) 0.272 0.292 0.465

.1000–1 Nephila pilipes (Metazoa, Chelicerata; acc. no. AY052597) 0.318 0.350 0.660

.1000 Rhodomonas salina (Hacrobia, Cryptophyceae; acc. no. AF288090) 0.255 0.270 0.428

.1000+1 Agelenopsis aleenae (Metazoa, Chelicerata; acc. no. AY770786) 0.313 0.345 0.678

The non-cryptophyte sequences have been found one position below or beyond a cryptophyte sequence in the discontiguous megablast hit list and have been aligned
with the cryptophytes to infer genetic distances (11 taxa from discontiguous megablast search and the query sequence; 570 positions). In the spider sequences two
gaps had to be inserted, corresponding to two codons.
doi:10.1371/journal.pone.0043652.t003

Table 4. Results of the tests for substitution saturation.

Data set

Iss Iss:csym Psym Iss:casym Pasym

COI-5P, 1st and 2nd codon
positions only

0.252 0.700 0.000 0.522 0.000

COI-5P, 3rd codon positions
only

0.690 0.675 0.501 0.508 0.000

59-partial LSU rDNA,
Chroomonas clade

0.244 0.741 0.000 0.436 0.000

59-partial LSU rDNA, genus
Cryptomonas

0.253 0.749 0.000 0.436 0.000

59-partial LSU rDNA,
combined data

0.268 0.736 0.000 0.421 0.000

Proportions of invariant sites have been taken from maximum likelihood
estimators, since DAMBE crashed during their computation: COI-5P, 1st and 2nd

codon positions = 0.283; COI-5P, 3rd codon positions = 0.000; 59-partial LSU
rDNA, Chroomonas clade = 0.652; 59-partial nuclear LSU rDNA, genus
Cryptomonas = 0.627; 59-partial LSU rDNA, combined data sets, including
Rhodomonas sp. strain CCAP 978/13; Rhodomonas sp. strain M1480 (acc. no.
AM396399) and Storeatula sp. strain CCMP1868 (acc. no. FJ973366) = 0.594. Iss,
index of substitution saturation as inferred from the mean value of sitewise

entropies ( �HH) divided by global entropy of nucleotides (Hss); Iss:csym ,

saturation threshold of Iss for symmetrical trees; Iss:casym , saturation threshold

for asymmetrical trees. If IssvIss:c and difference between �HH and Hss is
significant (Pv0:05), saturation probably is low in the data set. If IsswIss:c and

the difference between �HH and Hss is significant, the data set is useless for

phylogenetic analyses. If IsswIss:c and the difference between �HH and Hss is
not significant, the quality of the data set for phylogenetic analyses is poor.
Resampling of OTUs is required for data sets larger than 32 taxa, because no
critical Iss values for larger data sets were available from simulations [67] [66].
For the 59-partial LSU rDNA data sets, the values for resampling of 32 taxa are
shown.
doi:10.1371/journal.pone.0043652.t004
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34837 and 38929 of the R. salina mitochondrial genome (acc. no.

AF288090).

Performance of blast algorithms in 59-partial nuclear LSU

Rdna. Three scenarios have been set up to test the performance

of blast with 59-partial nuclear LSU rDNA as a candidate barcode

marker: (a) using a query sequence from one of the badly sampled

large clades within the cryptophytes; (b) using a query sequence

that belonged to a better sampled clade, but represented a new

lineage; (c) using a sequence that represented a new variety of an

already submitted species in a revised and densely sampled group.

Only unpruned sequences containing also indel regions have been

used for the tests.

To test scenario (a), a partial LSU rDNA sequence of a not yet

submitted lineage of the Rhodomonas clade (included also the genera

Storeatula and Rhinomonas), strain CCAP 978/13, has been used as a

query (1093 nt). For the other testing scenarios, newly obtained

sequences of the Chroomonas clade (1125 and 1015 nt; Fig. 2A,

OTUs labeled in green) (b) and of Cryptomonas curvata strains

Figure 1. Examples for pairwise alignments of the COI-5P query sequence of Cryptomonas curvata strain CCAC 0080 with the
Guillardia theta COI-5P region using the discontiguous megablast algorithm. A – Discontiguous megablast inserted two gaps into the
alignment at high gap costs. B – Manual modifications of the query sequence to test the impact of gaps on ranking. Top row: Shifting the G (red) by
three positions downstream resulted in disappearance of both gaps with one mismatch. Bottom row: Deletion of a G and insertion of a T three
nucleotides downstream resulted in a perfect match in this short DNA stretch. C – Result of a discontiguous megablast search using the modified
query sequence with an exact matching four-nucleotide string.
doi:10.1371/journal.pone.0043652.g001
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(1076 nt; Fig. 2B, OTUs labeled in green) (c) have been submitted

to the blast search engines.

Different from the megablast search with a COI-5P region as a

query, the default setting ‘‘megablast’’ yielded only cryptophyte

sequences among first 100 hits under all three testing scenarios

(Table 6). Similar to the tests with the COI-5P region, megablast

inserted a considerable number of gaps into the pairwise

alignments (Table 6). Query coverages were lower than in the

megablast search with the COI-5P sequence of C. curvata CCAC

0080, but identities reached higher percentages, and expectancy

value were zero (Table 6).

Testing scenario (a): At time of this study, only two other

sequences belonging to the Rhodomonas clade have been available

in GenBank (‘‘Rhodomonas’’ sp. M1480 acc. no. AM396399 and

‘‘Storeatula’’ sp. CCMP1868 acc. no. FJ973366). Both sequences

appeared in positions 1 and 2, respectively (Table 6), followed by

other cryptophyte genera, with a Chroomonas sequence first. In the

alignments of the latter three, the number of inserted gaps

increased from rank 1 to 3 (2 to 4%; Table 6).

Testing scenario (b): The sequence of the ‘‘Chroomonas caudata’’

strain NIES-712 represented a new, but long-branch lineage in the

data set (subclade 3; see green labels in Fig. 2A). If this sequence

was used as a query sequence, the next-related sequence ‘‘Komma

caudata’’ strain M1074 was ranked in top position, followed by two

other, but not closely related sequences of the Chroomonas subclade

4 (Table 6; Fig. 2A). Despite the fact that the Chroomonas clade was

better sampled with respect to partial nuclear LSU rDNA than the

Cryptophyceae as a whole with respect to COI-5P, identities did

not even approach 90% (Table 6). Since megablast was supposed

to function best in closely related sequences with a sequence

identity higher than 95%, also discontiguous megablast and blastn

have been tested. The results were worse than with megablast.

Whereas the closer related ‘‘Komma caudata’’ strain M1074

remained in top rank, positions 2 and 3 were taken over by two

Cryptomonas phaseolus sequences, both belonging to a genus not part

of the Chroomonas clade. Due to the higher penalty of gaps in

discontiguous megablast, the number of gaps was reduced from 52

to 50 in the pairwise alignment with ‘‘Chroomonas caudata’’ NIES-

712, but at the same time resulted in a reduced query coverage

(from 91 to 87%) and in a slight decrease of the number of

identities (from 88 to 87%) (not shown). If the short-branch

sequence of the newly sequenced strain M3416 was chosen as a

query in megablast (1015 nt), top four ranks were occupied by its

closest relatives, the strains CCAP 978/3, SAG 980–1 (both 95%

max. identity), M2291 and M0851 (the two latter with 92% max.

identity; Fig. 2A; blast results not shown). Similar results were

obtained with discontiguous megablast.

Testing scenario (c): Concerning sampling density, the fresh-

water genus Cryptomonas represented the best-sampled group within

the cryptophytes (Fig. 2B). Over 60 59-partial nuclear LSU rDNA

sequences have been available in the databases. If one of the new

C. curvata sequences was used as a query (strain M1488, labeled in

green in Fig. 1B; sequence length 1076 nt), the three search

algorithms, megablast, discontiguous megablast and blastn, ranked

all five published C. curvata sequences in positions 1 to 5 (Table 6).

In the megablast results, query coverages were as high as 98 to

99%, the number of inserted gaps was lower than in testing

scenarios (a) and (b) and score bits, non-normalized scores and

number of identities were highest among the three testing

scenarios (Table 6). Thus, 59-partial nuclear LSU rDNA sequences

in combination with megablast worked accurately even for cross-

eukaryote database searches.

Both 59-partial LSU rDNA data sets also have been tested for

substitution saturation, once each separately and once as a large

combined alignment (Table 4). In all three cases, the ratios of Iss
to Iss:c for symmetrical as well as asymmetrical trees were below 1

and the differences between �HH and Hss proved to be significant.

Thus these data sets with a taxon sampling restricted to

cryptophytes have not been saturated. The GTR+I+C distance

between the C. curvata strain CCAC 0080 and C. ovata strain NIES-

274 COI-5P sequences was considerably higher than between C.

curvata and C. ovata in the 59-partial LSU rDNA data set. Partial

LSU rDNA was not available for strain NIES-274, but between

the three C. ovata strains M0847, M1097 and M1171 and C. curvata

strain CCAC 0080, a distance of 0.090 substitutions per site has

been computed for 59-partial LSU rDNA, three-fold less than for

for COI-5P with 0.293.

Automatic Species Delimitation
Frequency distributions and the ‘‘barcode gap’’. The

unrooted maximum likelihood trees in Fig. 2 have been inferred

from the same 59-partial LSU rDNA sequences of the Chroomonas

clade (Fig. 2A) and of the genus Cryptomonas (Fig. 2B) also used to

compute genetic distances and frequency distributions (for acc. nos

see File S1). Non-alignable regions have been pruned from the

alignments prior to the analyses. The data set of the Chroomonas

clade yielded an analysis alignment with n = 45 taxa, 920 positions

and
n � (n{1)

2
~990 pairwise distances (Fig. 3).

Whereas in phylogenetic analyses usually complex evolutionary

models either identified by model testing as appropriate or directly

the absolutely best, but most complex model GTR+I+C have been

chosen [68], computations of distances addressing DNA barcoding

mostly have relied on the simple Kimura-2-parameter (K2P or

K80; [2] [69]) model or on p-distances.

Uncorrected or p-distances are computed by counting identities

across two aligned sequences, subtracting the number of identities

from the total alignment length and dividing this number of

divergences (gaps and mismatches) by total alignment length. The

Table 5. The impact of gap costs in a saturated DNA barcode marker: discontiguous megablast search using a manually modified
Cryptomonas curvata CCAC 0080 COI-5P sequence as a query.

Rank Description Score bits Expectancy Identities Gaps Coverage

1 Cryptomonas ovata mitochondrial COXI gene (acc. no. AB009419.1) 576 (638) 5E–161 469/569 (82%) 0/569 (0%) 99%

2 Macrocystis pyrifera haplotype H5 (acc. no. HM153261.1) 504 (558) 3E–139 456/571 (80%) 0/571 (0%) 100%

3 Macrocystis pyrifera haplotype H4 (acc. no. HM153260.1) 504 (558) 3E–139 456/571 (80%) 0/571 (0%) 100%

4 Macrocystis pyrifera haplotype H3 (acc. no. HM1532590.1) 504 (558) 3E–139 456/571 (80%) 0/571 (0%) 100%

5 Guillardia theta strain CCMP2712 (acc. no. GQ896379.1) 504 (558) 3E–139 453/569 (80%) 0/569 (0%) 99%

Shown: Modification with an exact match between positions 424 and 427 of the 570 nt query sequence (see text and Fig. 5).
doi:10.1371/journal.pone.0043652.t005
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resulting proportional value (‘‘p’’) multiplied by 100 corresponds to

divergence in percent. Distances computed under the assumption

of an evolutionary model (i.e. corrected distances) do not represent

proportional values, but represent expected substitutions per site

and are open to infinity. The frequency distributions in this study

therefore have not been expressed in percent.

Evolutionary models consist of several parameters. Substitution

rate matrices correct for different evolutionary rates in point

mutations. The general time reversible model (GTR) represented

the most complex rate matrix assigning to each of the six possible

reversible point mutation types a different evolutionary rate [70].

All other possible reversible substitution rate matrices were special

cases of the GTR model and, thus, were covered by it. The

proportion of invariable sites (I) addresses conserved positions in

an alignment. The among-site rate variation parameter (C)

accounts for differences in mutation rates across positions of an

alignment, i.e. identifies hot spots of mutation that more likely

contain homoplasies [71]. The two latter parameters can be

combined with any type of substitution rate matrix.

Modeltesting programs try to find a trade-off between

approximating the evolutionary model fitting a data set as best

as possible and complexity of evolutionary model. They search for

the least complex evolutionary model that is not significantly worse

than the absolutely best model. The Chroomonas alignment has

been tested with jModeltest 0.1.1 [68]. According to the Akaike

information criterion (AIC; [72]), the TIM2+I+C model was

ranked first, followed by GTR+I+C, whereas K2P was the third-

worst among 88 tested models. Four frequency distributions, thus,

have been computed with the distance measures commonly used

in DNA barcoding (p-distances and K2P; Fig. 3A and B) and with

two complex models, TIM2+I+C and GTR+I+C (Fig. 3C and D).

The substitution rate matrices K2P and TIM2 differ in that K2P

uses two different mutation rates (transitions versus transversions),

whereas the transition model TIM2 differentiates between four

substitution rates [68]. The two types of transitions (AG or CT),

and transversions involving either an A or a G are assigned

separate mutation rates, respectively. Although proportional and

evolutionary distances are not directly comparable, all frequency

distributions have been depicted with same scaling of axes in Fig. 3.

Class widths in Fig. 3 correspond to steps of 0.005 proportional

distance or expected substitutions per site (closed to the lower and

open to the upper limit). To allow for a readable labeling of the

abscissa, the classes have been numbered.

Figure 2. Unrooted maximum likelihood trees of partial nuclear LSU rDNA sequences of the Chroomonas clade and of the genus
Cryptomonas. For both, phylogenetic tree construction and for computing distances, the same data sets with unalignable positions being pruned
have been used. Evolutionary models: GTR+I+C; support values: maximum likelihood/posterior probabilities, support of 100%/1.0 as bold lines; scale
bar = expected substitutions per site. A – The Chroomonas clade included three different genera. In rooted phylogenies, the genus Chroomonas was
paraphyletic with the genus Hemiselmis being nested within Chroomonas [56]. Only the genus Hemiselmis has been subject to a previous revision
using an integrated taxonomy approach, thus, assignment of Hemiselmis species corresponded to tree topology [50]. New sequences labeled in bold
face, sequences used for blast queries in green (see text and Table 5). 45 taxa, 920 positions. B – Partial LSU rDNA phylogeny of the genus
Cryptomonas. Species designations according to previous revisions. Turquoise branches: intraspecific distances in distance classes 4 and 5; red
branches: interspecific distances in class 2, green branches: interspecific distances in class 3 (see Fig. 4 and text). 64 taxa, 975 positions; new
sequences in bold face, taxon label in green: sequence has been used for blast searches (see text).
doi:10.1371/journal.pone.0043652.g002

Table 6. Performance of megablast searches (default settings) using cryptophyte 59-partial nuclear LSU rDNA as query sequences.

Rank Description Score bits Expectancy Identities Gaps Coverage

Testing scenario (a): ‘‘Chroomonas salina’’ strain CCAP 978/13 (1093 nt) as a query*

1 Rhodomonas sp. M1480 partial 28S rRNA gene (AM396399.1) 1652 (894) 0.0 1009/1062 (95%) 17/1062 (2%) 96%

2 Storeatula sp. CCMP1868 28S ribosomal RNA gene (FJ973366.1) 1459 (790) 0.0 947/1020 (93%) 24/1020 (2%) 92%

3 Chroomonas coerulea partial 28S rRNA gene, strain UTEX 2780
(AM901343.1)

1138 (616) 0.0 879/1001 (88%) 38/1001 (4%) 89%

Testing scenario (b): ‘‘Chroomonas caudata’’ strain NIES-712 (1125 nt) as a query

1 Komma caudata partial 28S rRNA gene, strain M1074
(AM901329.1)

1155 (625) 0.0 909/1038 (88%) 52/1038 (5%) 91%

2 Chroomonas sp. CCMP 270 partial 28S rRNA gene (AM901316.1) 1107 (599) 0.0 898/1034 (87%) 54/1034 (5%) 91%

3 Chroomonas mesostigmatica partial 28S rRNA gene, strain
CCMP 269 (AM901315.1)

1107 (599) 0.0 898/1034 (87%) 54/1034 (5%) 91%

Testing scenario (c): Cryptomonas curvata strain M1488 (1074 nt) as a query

1 Cryptomonas curvata 5.8S rRNA gene (partial), 28S rRNA gene
(partial) and ITS2, strain CCAP 979/25 (AJ715443)

1893 (1025) 0.0 1052/1065 (99%) 2/1065 (0%) 99%

2 Cryptomonas curvata partial 5.8S rRNA gene, ITS2, and partial
28S rRNA gene, strain CCAC 0080 (AJ566148)

1869 (1012) 0.0 1050/1067 (98%) 7/1067 (1%) 98%

3 Cryptomonas curvata partial 5.8S rRNA gene, ITS2, and partial
28S rRNA gene, strain CCAC 0006 (AJ566147)

1869 (1012) 0.0 1048/1065 (98%) 4/1065 (0%) 98%

All other 100 first hits in testing scenario (a): cryptophyte sequences only. Only cryptophytes among first 100 hits in testing scenario (b); mixture of representatives of
the Chroomonas clade and other genera. Only cryptophytes among first 100 hits in testing scenario (c); sequences of the genus Cryptomonas ranked in positions 1 to 47,
followed by other cryptophyte genera.
*RW Butcher revised cryptophyte genera in 1967, but the classification resulted in an unnatural systematics [156]. Genus names thereafter have not been corrected by
the culture collection.
doi:10.1371/journal.pone.0043652.t006
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The frequency distributions indicated an extreme underestima-

tion of mutation rates in uncorrected distances and in the K2P

model compared to the complex models (Figs. 3 and 4). Whereas

computation resulted in genetic distances from 0.0000 up to

0.1312 and 0.1470 in uncorrected distances and K2P, respectively,

the range of distance estimates almost doubled under the two

complex models TIM2+I+C (max. distance: 0.2816) and

GTR+I+C (max. distance: 0.2803) at cost of the number of

counts in several classes.

All frequency distributions in Fig. 3 proved to be multimodal

with peaks in classes 1 [0.000–0.0050[ and 4 [0.0200–0.0250[ and

with a broader peak between distance classes 12 and 18 in p-

distances and K2P (Fig. 3A and B). This peak flattened and shifted

towards higher classes in the complex models (Fig. 3C and D). The

shifts in distance range and in counts of distances per class also

affected the position of gaps. The K2P model showed a gap in

class 10 (genetic distances from 0.045 to 0.050) (Fig. 3B), whereas

the distribution of gaps in the two models with gamma correction

were similar in the lower distance classes (classes 3 [0.0100–

0.0150[, 7 [0.0300–0.0350[ and 12 [0.0550–0.0600[) (Fig. 3C and

D). A clear identification of a putative barcode gap required a gap

with clear and stable slopes flanking both sides. Given the irregular

shapes of the frequency distributions, however, none of gaps could

serve as a barcode gap to set a threshold between intra- and

interspecific distances for an identification of new species. The

evolutionary model also had an effect on the ranking of the genetic

distances. In uncorrected distances and in the K2P model the

largest distances have been found between strain UTEX 2000

belonging to the Hemiselmis clade and strains NIES-706/NIES-711

(subclade 3), respectively (see Fig. 2A), whereas in both complex

models the distances between strain NIES-712 on one hand side

and strains NIES-706/NIES-711 on the other side were found to

be largest. The two complex models resembled each other in

shapes of frequency distribution and distance ranges, whereas the

correcting effect of K2P versus p-distances was less pronounced

(Fig. 4). Only in a small interval from 0.000 to approximately 0.02

the distances inferred from p-distance or K2P have been

comparable to TIM2+I+C and GTR+I+C, whereas the underes-

timation of substitution rates and, thus of potential homoplasies,

became considerable in the distance classes beyond 0.050.

The presence of gaps not only depended in the type of the

assumed evolutionary model, but also in taxon sampling. As for

the Chroomonas data set, unalignable regions have been pruned

from the alignment prior to phylogenetic analyses in the genus

Cryptomonas (phylogeny in Fig. 2B). The final analysis alignment

contained n = 64 taxa and 975 positions. To reduce the number of

identical sequences predominantly found in C. erosa and obovoidea,

both subclades have been restricted to 5 and 4 OTUs, respectively.

The genetic distances in this data set also proved to be highly

underestimated under the K2P model (largest distance: 0.145;

largest distance under GTR+I+C: 0.333). Thus the GTR+I+C

model has been used to compute
n � (n{1)

2
~2016 pairwise

distances (Fig. 5A). Since the genus Cryptomonas has been revised

according to phylogeny, a consistent systematics allowed for a

separation the distances into 114 intra- (red) and 1092 interspecific

(blue) distances.

The frequency distribution of genetic distances in the

Cryptomonas data set also proved to be multimodal. Except for

two intraspecific distances in the classes 4 [0.030–0.040[and 5

[0.04–0.05[, all intraspecific distances were found in distances

classes 1 and 2 encompassing expected mutation rates from 0.000

up to 0.02 (Fig. 5A). The two offside intraspecific distances

belonged to Cryptomonas borealis (branches labeled in turquoise in

Fig. 2B). The three strains lacked distinctive morphological

characters, but displayed considerable genetic divergence, thus,

likely do not belong to the same biological species. The leak of

intraspecific into interspecific sequences therefore would be solved

by splitting C. borealis into two species, with strain CCAC 0113

representing one species and the strains M2808 and SCCAP K-

0063 the other (Fig. 2B). Apart from this, a minimum resembling a

blurred potential barcode gap was found in distance class 3

[0.020–0.030[. The interspecific distances leaking into the

intraspecific distances in distance class 2 [0.010–0.020[originated

from pairwise comparisons of C. erosa with the strain M2089

(branches labeled in red in Fig. 2B). The two distances found in the

class with minimum counts in the putative barcode gap have been

computed from the two sister strains to C. erosa, M2089 and

M1634, and from C. pyrenoidifera strain CCAP 979/61 and

C. tetrapyrenoidosa strain M1092 (green branches in Fig. 2B). In

both cases, it does not make sense to merge strains to eliminate this

overlap. M2089, M1634 and the five C. erosa isolates would consist

as a new ‘‘species’’ of photoautotrophic as well as heterotrophic

members, whereas C. pyrenoidifera and C. tetrapyrenoidosa were clearly

separated by genetic divergence supported by their morphology

(i.e. the number of their pyrenoids).

Genetically identical isolates have been found in freshwater

samples across large areas. C. loricata has been sampled from a river

close to Cologne (strain M2287) and from a puddle close to

Braunlage in the hilly area Harz (strain M2088). The distance

between these two German locations comprises over 300 km. The

sampling sites of the C. loricata were even farther apart. Most

strains originated from German freshwater bodies, but one sample

has been drawn from a Finnish lake (File S1). The species that

participated in blurring the putative barcode gap were clearly

undersampled in this data set. How does the frequency

distribution reshape under an improved sampling? To simulate

this situation, the sequences of the strains M2089 and M1634 have

been duplicated several times to result in an artificial ‘‘M2089’’

clade and an ‘‘M1634’’ clade comprising 5 identical sequences

each, corresponding to the situation in C. erosa in the data set. In

addition the three C. borealis sequences have been recoded to

represent two different species. The number of sequences in the

alignment increased, thus, from 64 to 72 resulting in 2556 genetic

distances, 132 intraspecific and 2424 interspecific ones (Fig. 5B).

The gap in class 3 filled up to similar levels as the neighboring

classes 4 and 5, the leak into intraspecific distances became larger

and the ratio of intraspecific to interspecific distances in class 2

decreased from 8.8 (44 intra- and 5 interspecific distances) to 1.76

(44 intra- and 25 interspecific distances). Expectedly, in class 1,

encompassing identical sequences, the counts increased. But the

Figure 3. Frequency distibutions of genetic distances in the Chroomonas clade under p-distances and three different evolutionary
models. The distances have been computed from 59-partial nuclear LSU rDNA using the same data set as in Fig. 2A. The simpler the evolutionary
model, the smaller the range of genetic distances due to an underestimation of the number of mutations. The positions of putative barcode gaps
changed with evolutionary models (arrows). Sizes of the distance classes in steps of 0.005 with closed lower and open upper limits: class 1 = [0.000–
0.005[, class 58 = [0.285–0.290[. A – The frequency distribution of p-distances does not show gaps. B – K2P distances with a gap in distance class 10
[0.0450–0.0500[(1). C – TIM2+I+C. D – GTR+I+C. (2) Gaps in the complex evolutionary models TIM2+I+C and GTR+I+C in the distance classes 3
[0.0100–0.0150[, 7 [0.0300–0.0350[and 12 [0.0550–0.0600[.
doi:10.1371/journal.pone.0043652.g003
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shape of the multimodal distribution also changed in classes 19 to

22 and became more irregular.

The general mixed Yule-coalescent model. The Bayesian

and subsequent GMYC analyses with the Cryptomonas data set

yielded the ultrametric tree and the lineage-through-time plot

depicted in Fig. 6. The tree inferred under the assumption of a

random local clock has been imported also into Paup to compute

likelihood scores for an unconstrained tree and for evolution under

the constraint of a strict molecular clock. The null hypothesis of a

strict clock was rejected in a likelihood ratio test with P = 0.000.

Also the likelihood ratio tests of coalescence only versus the mixed

Yule-coalescent models resulted in rejections of the null hypotheses

(coalescence only) with P,0.0001 (for both GMYC models,

multiple and single threshold). The authors of the R script for

performing GMYC analyses caution to use the multiple threshold

model, since it was still in beta test phase and would take a long

time for computation (see GMYC help text in R) [63] [73]. For the

Cryptomonas data set with 64 sequences, however, computation

succeeded within few minutes. The GMYC model accounting for

multiple thresholds identified two different switch positions, one at

20.0026 (red line in the LTT plot in Fig. 6) and one at 20.0003

(turquoise line) relative time units into the past (Fig. 6, bottom),

whereas in the single threshold model the switch was found at

20.0007 (not shown). The difference in likelihoods between the

two models, however, proved to be not significant (P = 0.553) and

both models also yielded similar results (bars to the right of the tree

in Fig. 6). Multiple as well as single threshold model identified 18

clusters (i.e. separate populations; confidence interval of multiple

threshold model: 17–19; confidence interval of single threshold

model: 16–18). Each of the two thresholds in the multiple

threshold model identified nine clusters, respectively. The two

models slightly differed in the absolute number of entities: 35 in

the multiple threshold and 37 in the single threshold model (Fig. 6).

The difference in counts was caused by a different treatment of C.

tetrapyrenoidosa (Cte), which was considered one species under the

multiple threshold model, whereas it was split into one cluster and

two singleton lineages under the single threshold model (Cte in

Fig. 6).

Both models, however, predicted more species than have been

erected in previous revisions based on a combination of molecular

Figure 4. Genetic distances in the Chroomonas clade under different distance measures (ordinate) plotted against GTR+I+C
(abscissa).
doi:10.1371/journal.pone.0043652.g004
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Figure 5. Frequency distributions of intra- and interspecific distances in the genus Cryptomonas in an unmodified and in a modified
data set. The distances have been computed using the GTR+I+C model. A – Frequency distribution of the unmodified data set. In Cryptomonas
borealis taxa with long branches have been lumped to one species. Distance class 3 [0.02–0.03[contained only two genetic distances, labeled in green
in Fig. 2B. B – Frequency distribution after duplicating the sequences of the strains M1634 and M2089 four times each to examine a hypothetically
better taxon sampling in these two species. The putative blurred barcode gap filled up.
doi:10.1371/journal.pone.0043652.g005
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markers and morphology (14 clusters and 6 singletons = 20

entities; Fig. 6). All of the species clusters, except for the unrevised

clade PyrX, C. commutata (Cco), C. loricata (Clo) and C. obovoidea

(Cob), have been subdivided into smaller clusters and singletons by

the GMYC analyses. Four species consisted exclusively of identical

sequences: C. commutata (Cco; 3 sequences), C. erosa (Cer; 5

sequences), C. loricata (Clo; 4 sequences) and C. obovoidea (Cob; 4

sequences) (Fig. 2B). One would expect to find all identical

sequences in one GMYC cluster and this proved to be true for

C. commutata, C. loricata and C. obovoidea. However, the five identical

sequences of C. erosa surprisingly have been split into two clusters

and one singleton by both GMYC models, corresponding to three

separate species (Fig. 6). The underlying ultrametric tree displayed

considerable differences in branch lengths in the latter species,

although no sequence divergence was present among the strains.

Additional experiments with ultrametric trees derived under other

clock model settings did not really solve the problem. In most

cases, C. erosa has been separated into three species. The best

results have been obtained with the – rejected – strict clock model

and the single threshold GMYC model. All four species were

predicted properly, likely because intraspecific branch length

variation in clades with identical sequences was lowest among all

generated trees, but at the cost of lowest number of clusters (14)

and highest number of singletons (21). In this tree no intraspecific

variation was accepted by the GMYC model. The predicted

species clusters contained only identical sequences. The same tree,

however, yielded the worst results under the multiple threshold

model, which identified 4 thresholds (not shown). All species with

more than three identical sequences have been split up into two

species or more (C. erosa, C. loricata and C. obovoidea), whereas at the

same time highly divergent clades became merged to one species,

C. borealis and C. lundii on one hand side as well as C. ovata and

C. marsonii on the other side (not shown).

Discussion

Species Identification
DNA barcoding can be used for two tasks that differ

considerably in complexity: (1) For an accurate identification of

already characterized species using a reference database and (2) for

an automatic delimitation of species that allows also for an

identification of new species. The latter of the two is more

challenging, but considered inevitable to cope with the masses of

sequence data derived from environmental DNA in combination

with next generation sequencing (‘‘DNA metabarcoding’’) [74–

75].

The advantages of DNA barcoding for protists are obvious.

Instead of time-consuming light microscopical observations of

Lugol-fixed cells using misleading morphological characters,

species diversity in a habitat could be assessed by PCR-amplifying

barcode markers from environmental DNA and by subjecting the

PCR products to next generation sequencing techniques. This

would allow for a rapid identification of species at large quantities

within a short time. Different from previous diversity assays using

nuclear SSU rDNA sequences [26–27], however, DNA barcoding

aims at correctly identifying the presumed smallest units of

evolution, species [2]. Monitoring of the performance of a

candidate barcode marker by morphology often is not possible

in protistan lineages due to their small sizes and due to a lack of

distinctive characters. Therefore testing of a candidate barcode

marker requires a culture collection covering the diversity of a

group as best as possible, time-consuming mating experiments to

identify biological species or an alternative species concept in

asexually reproducing lineages, and phylogenetic analyses to gain

an a priori knowledge of the presumably correct phylogeny of the

group [76–77]. It is, thus, tempting to skip this tedious testing

phase by using an algorithmic species delimitation method.

Instead of performing morphological examinations one could

use only a short highly variable DNA barcode marker for assessing

diversity and for delimitation and identification of new species at

once.

Task (1), an accurate identification of species, in first place

requires a well-sampled database with high quality reference

sequences and a pre-defined and consistent systematics down to

species level [8]. NCBI’s blast suite has been designed for finding

identities between pairs of sequences, yielding a hit list of identical

to similar sequences [64] [78]. The scores generated from awards

and penalties represent unproportional and uncorrected distances

[64]. This simple evaluation system may easily fail to identify close

relatives due to an underestimation of substitution rates and due to

substitution saturation [79]. In the case of the cryptophyte COI-5P

sequence, this vulnerability of the blast tools has been drastically

demonstrated. Since no cryptophyte sequences showed up under

the first 100 hits, the megablast search was repeated constrained to

cryptomonads. Constraining searches to a group has been

recommended to reduce the risk of misidentifications in non-

identical sequences [64]. This approach, however, yielded no hits

at all. Discontiguous megablast and blastn at least identified the

Cryptomonas curvata query as most closely related to the only

congeneric sequence in the databases, Cryptomonas ovata, albeit with

only 83% identity. The search results were not convincing,

though. Only one of the three other cryptophyte sequences was

found among first 100 hits in position 24, and the remaining two

cryptophyte cox1 sequences were found far below. Peculiarly, the

COI-5P sequences following the top hit C. ovata belonged to the

giant kelp Macrocystis pyrifera. The Cryptophyta and the strameno-

piles, to which the brown algae belong, represent two different

phyla in the eukaryotic tree of life [24–25]. An experienced blast

user without organismic knowledge could have interpreted the

only correct hit in top position as a contaminant, since almost all

other sequences belonged to stramenopiles.

Figure 6. Results of the GMYC analysis: Bayesian tree inferred from the Cryptomonas data set under the assumption of a molecular
clock (top) and the corresponding lineage-through-time (LTT) plot (bottom). Due to a lack of cryptophyte fossil record the tree could not
be calibrated, thus branch lengths and abscissa of the LTT plot represent only relative time scales. The vertical red and turquoise lines in the LTT plot
demarcate the two thresholds predicted by the multiple threshold model with speciation to the left and coalescence events to the right [63]. The red
and turquoise branches in the tree indicate clusters of species identified by the two thresholds, respectively. The bars to the right of the tree’s
terminal nodes represent the species predicted by the multiple threshold GMYC model (1), by GMYC with a single threshold (2) and according to
previous revisions using a combination of multiple molecular markers and morphology [33] [20]. Black bars represent singletons, gray bars unrevised
putative species. Clade PyrX has not been merged to one species in the previous revisions due to considerable divergence in internal transcribed
spacers 2, whereas the single strain of Cryptomonas gyropyrenoidosa has been described due to a unique set of morphological characters. The
ordinate of the LTT plot has been logarithmized. 0.000 in the abscissa represents present. Cbo, Cryptomonas borealis; Cco, Cryptomonas commutata;
Ccu, Cryptomonas curvata; Cer,Cryptomonas erosa; Cgy, Cryptomonas gyropyrenoidosa; Clo, Cryptomonas loricata; Clu, Cryptomonas lundii; Cma,
Cryptomonas marssonii; Cob, Cryptomonas obovoidea; Cov, Cryptomonas ovata; Cpa, Cryptomonas paramaecium; Cph, Cryptomonas phaseolus; Cpy,
Cryptomonas pyrenoidifera; Cte, Cryptomonas tetrapyrenoidosa.
doi:10.1371/journal.pone.0043652.g006
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In such an extremely badly sampled ‘‘reference database’’ with

only four cryptophyte sequences not only the restricted length of

COI-5P may have resulted in megablast failing to identify the

query sequence as a cryptophyte. In protein-coding genes, 3rd

codon positions evolve at higher rates than 1st and 2nd codon

positions. The test for substitution saturation in COI-5P indicated

that saturation of 3rd may be one explanation for the misleading

results of the blast searches. The high mutation rates probably

have resulted in background noise blurring information about

relatedness. Since megablast requires an exact match across 28

nucleotides as a seed to start searches with, this may have

accounted for its complete failure. A word length of 28 nt requires

9 exactly matching codons in a stretch. In discontiguous megablast

and blastn, seeds with a length of only 11 nucleotides seemingly

were sufficiently short to succeed in identifying the only congeneric

sequence C. ovata as the next relative to the query C. curvata.

Despite of a strong bias towards animal COI-5P sequences in the

databases, brown algal and oomycete sequences prevailed among

the megablast, blastn and discontiguous megablast hits (keyword

searches in Entrez with the strings ‘‘eukaryotes AND COI’’ and

‘‘Metazoa AND COI’’ resulted in roughly 780,000 and 764,000

hits, respectively, whereas a search addressing ‘‘stramenopiles

AND COI’’ yielded only 3,500 hits predominantly with plant-

pathogenic oomycetes and brown algae, both stramenopile

lineages). Similarities in codon usage have been found e.g. to

result in artifactual phylogenetic trees in dinoflagellates [15].

Biased codon preferences may also be causative for the search

results with COI-5P, since different from the majority of barcoded

animals, stramenopiles and cryptophytes use the standard code for

mitochondrial genes, reported for the cryptophyte Hemiselmis

andersenii, the brown alga Laminaria digitata, and the raphidophyte

algae Heterosigma akashiwo and Chattonella marina [80–82]. Also

potential sequencing errors or alignment artifacts resulting in gaps

may have severe impact on the ranking positions of protein-coding

sequences that are highly conserved at protein level. COI-5P

sequences can be aligned without gaps across cryptophytes and

stramenopiles, thus insertion of only one gap increases the scores

considerably. Editing the COI-5P sequence of C. curvata in only

two positions to avoid two gaps in the pairwise blast alignment

with the sequence of the cryptophyte Guillardia theta moved the

latter from ranking position 24 up to 5.

Queries with 59-partial nuclear LSU rDNA proved to be more

robust. Concerning the ‘‘Chroomonas (Rhodomonas) salina’’ strain

CCAP 979/13 sequence, taxon sampling of close relatives was

similarly bad to COI-5P in the genus Cryptomonas. Although only

two other sequences of the same clade have been available in the

databases, these two were ranked as first hits and other farther

related cryptophytes were found below in megablast searches.

Identification success of megablast, thus, proved to be also

dependent in the type of query DNA. In better sampled groups,

megablast safely identified the closest relatives of the respective

query sequence, in the Chroomonas clade as well as in the genus

Cryptomonas. The testing scenarios encompassed different classifi-

cation levels, cross-genus comparisons with the ‘‘Chroomonas

(Rhodomonas) salina’’ strain CCAP 979/13 sequence, congeneric

with the Chroomonas sequences and intra-specific in the genus

Cryptomonas. Ribosomal RNA genes consist of conserved regions

alternating with indel-rich highly variable regions that also

complicate alignment [83]. The conserved helical domains

probably facilitated finding of 28 nt long seeds by megablast,

whereas the naturally occuring indels resulted in high gap costs,

but at the same time may also have enhanced resolution. Possibly

the identification success of megablast with 59-partial nuclear LSU

rDNA was not only related to the structure of rRNA genes. On

one hand side, the 59-partial nuclear LSU rDNA sequence of

‘‘Chroomonas (Rhodomonas) salina’’ strain CCAP 979/13 was almost

twice as long as the COI-5P sequence of the C. curvata strain

CCAC 0080, on the other hand identities between the query

sequence and the two top hits were higher in the RNA gene (95

and 93%, respectively) and its evolutionary rate at least in

C. curvata/C. ovata comparisons was three times less. Candidate

barcode markers have been shown to differ in evolutionary rates

and probably this is true also for ribosomal versus mitochondrial

protein genes in cryptophytes. Zhao et al. examined several

potential barcode markers of similar lengths in fungi (around 400

to 500 nucleotides) [84]. The two protein-coding genes b-tubulin

and EF-1a had higher evolutionary rates especially in interspecific

comparisons than the two ribosomal DNA regions ITS and partial

LSU rDNA. Future research in cryptophytes will also require such

comparative studies to assess resolution of different potential

barcode markers to determine the best-suited ones.

The results of this study underline the importance of a well-

sampled reference database for an accurate identification of

species. The better sampled a database was, the more accurately

identification worked. The increase in accuracy could be observed

in all types of nucleotide versus nucleotide blast tools. It can be

assumed also for COI-5P that blast searches will become more

reliable once a reasonable reference database has been set up with

a similarly dense sampling as the partial nuclear LSU rDNA

sequences in the genus Cryptomonas. In such a database, the

vulnerability of blast may even become irrelevant, since an

accurate identification of species relies on the presence of identical

conspecific reference sequences in the database. The simplest and

most primitive clustering algorithm as well as blast may, thus, do.

To work reliably, however, the reference sequences need to be of

high quality. Low quality reference sequences may cause severe

setbacks in protistan research, because they pass on in a snowball

system of biased results [47] [85]. The latter cautions against using

next generation sequencing techniques instead of double-stranded

Sanger sequencing especially for generating reference sequences

[47] [85]. Also PCR and subsequent cloning may reduce the

quality of reference sequences [47]. Although ribosomal DNA

such as the LSU rDNA fragment used in this study seem to be less

vulnerable, a high quality of the reference database should be self-

evident for all chosen barcode markers.

In practice, erroneous identifications as observed for the COI-

5P sequence in this study most likely occur in blast searches

performed to rule out contaminants or unspecific PCR amplifi-

cations in badly sampled groups. Misidentifications also have to be

expected during test runs in the process of establishing a reference

database, but may as well affect the assignment of environmental

sequences to higher classification levels. In such cases using a

translated COI-5P sequence instead could be an option to rule out

severe misidentifications. Blast searches with protein (blastp) or

translated nucleotide (blastx) queries have been usually preferred

over nucleotide searches to circumvent issues with substitution

saturation, codon usage or compositional biases [86]. A higher

similarity due to a higher conservation at amino acid level and due

to better search algorithms based on pre-defined substitution

scoring matrices such as BLOSUM62, thus, could result in a better

performance. The blastx results in this study were better than in

the search with nt versus nt searches, since all cryptophyte

sequences have been found among first 100 hits. But surprisingly

not even a blastx search resulted in a ranking of all cryptophytes in

top positions 1 to 4. Anderson and Brass reported a bad

performance of all tested search algorithms if the number of

amino acids was below 200 [86]. The latter was true for the cox1

fragment used in this study. A nucleotide sequence of 570 nt yields
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a protein sequence of only 190 amino acids. Such blastx search

results, thus, have to be considered with great caution. For a safe

identification at higher classification levels protein sequences more

than 200 amino acids are required.

Except for the search tools of the blast suite (INSDC databases)

or searches with profile hidden Markov models (BOLDSystems),

other methods of species identification have not been implemented

in these public databases. The search algorithm of the Barcode of

Life Database, BOLDSystems, combines blast with profile hidden

Markov models, that are supposed to outperform the blast

algorithms [16] [87]. HMM software has to be trained on an

alignment of the respective gene. The resulting HMM profile is

based on probabilites for matches, mismatches and transitions

between character states and can be used to identify similar

sequences from a database. A detailed description of the search

algorithm implemented in BOLDSystems has not been published to

date. As of March 2012, the identification engine allowed only for

a choice between animals, fungi and embryophyte plants using the

barcode markers COI-5P, ITS, and rbcL/matK, respectively.

Several projects addressing protistan lineages have been started,

but were not accessible for searches with a query sequence. This

refers also to a COI-5P project ‘‘Cryptophyte culture collection

barcodes’’ (CPTO). Thus, the performance of BOLDSystems’

identification engine could not be tested with the COI-5P

sequence of Cryptomonas curvata.

Most other methods of species identification rely on sequence

similarity and may be distance- or character-based in combination

with or without phylogenetic tree inference [74–75][88]. The most

straightforward possibility to identify a species using a local data

set is phylogenetic analysis. The new sequences are added to an

alignment that represents the reference database followed by tree

inference. In this study maximum likelihood trees have been

computed under the GTR+I+C model for a direct comparison

with the blast search results. The strains M1488, M1489, M1490

and M1799 have been identified as Cryptomonas curvata, because

they were nested in the highly supported Cryptomonas curvata clade.

If a phylogenetic tree is used only to assign a species name to a

sequence by clustering, i.e. to identify it by its grouping with

identical or almost identical conspecific sequences without

considering deeper nodes of a tree, also an analysis with a simple

evolutionary model probably will yield accurate results. In most

previous studies species identification has been performed with the

faster distance-based neighbor-joining algorithm in combination

with the simple K2P model, e.g. [89–90]. K2P is a special case of

the GTR+I+C model. If K2P approximates molecular evolution

in a data set, its distance measures will be comparable to those

computed under GTR+I+C . Under the latter model the distance

ranges in the Chroomonas and Cryptomonas data sets, however, almost

doubled, indicating an extreme underestimation of mutation rates

by K2P. Plotting all computed distances measures of the

Chroomonas data set against GTR+I+C , demonstrated that the

simple distance measures started diverging from the two complex

models already at genetic distances as low as 0.02 expected

substitutions per site. The distance range of the 59-partial nuclear

LSU rDNA sequences in the genus Cryptomonas was even larger

than in the Chroomonas clade. Thus, already in intrageneric

comparisons the genetic distances exceeded considerably the

threshold for which K2P or p-distances can be expected to be

congruent with those of the complex models. Consequently, cross-

genus, -family or -order comparisons under a simple evolutionary

model will likely result in extremely biased distance estimates and,

thus, can not be trusted [11–13]. In pairwise comparisons of

Cryptomonas curvata versus Cryptomonas ovata COI-5P sequences,

distance measures under GTR+I+C were three-fold higher (0.293

expected substitutions per site) than for the same combination of

species with different C. ovata strains in 59-partial LSU rDNA

(0.090), indicating a higher variability of COI-5P compared to

partial nuclear LSU rDNA and as a consequence that the

underestimation of substitution rates by K2P may be even more

severe.

Similar to an identification by phylogenetic trees most other

proposed species identification methods not implemented in the

public databases usually require setting up a suitable bioinfor-

matics pipeline on a local computer, i.e. the installation of the

respective software tools and of the reference databases (e.g. as an

alignment). To circumvent some of the shortcomings of blast, its

ignorance of phylogenetic and taxonomic context, but also to

avoid the permanent maintenance of large alignments as reference

databases on a local computer, Munch et al. introduced an

automated character-based species identification method that

included inference of phylogenetic trees [91]. The method uses

Bayesian statistics with Markov chain Monte Carlo sampling to

compute posterior probabilities for an affiliation of the new

sequence to a clade [91]. Blast is used to retrieve sequences from

NCBI’s nucleotide database. Also the corresponding taxonomic

information for each sequences is obtained from the taxonomy

browser of NCBI. By a heuristic sampling strategy, that also

includes cut-offs for blast scores, the number of sequences is

restricted to facilitate computation within a reasonable time, but

with optimal coverage of species diversity and under consideration

of higher rank classification. The sequences are aligned with the

query sequence by ClustalW and subjected to a Bayesian analysis.

The program generates a vector graphics as an output with a

ladderized tree showing all higher rank taxonomic affiliations

down to species with posterior probabilities for each assignment.

The performance of the software obviously depends in the

taxonomic annotation of the NCBI taxonomy browser. As the

authors pointed out, identification will be inconsistent in groups

with an unnatural systematics [92]. At time this study has been

conducted, cryptophyte classification in NCBI’s taxonomy brows-

er severly deviated from phylogeny. Some plastid-bearing

cryptophytes have been merged with the phagotrophic and

aplastidic genus Goniomonas into one order Cryptomonadales,

whereas related taxa have been separated. The genus Hemiselmis

and its synonym Plagiomonas have been assigned to two different

orders, similarly Plagioselmis and its – presumably – alternative life

stages Teleaulax and Geminigera [93–95]. Under such circumstances

it cannot be expected that the method by Munch et al. will work

reliably.

Species identification methods will work accurately only in

groups with known taxonomic context and with an appropriate

representation of species diversity in the reference database [8]

[88][91–92]. If a query sequence is found outside of reference

clades, e.g. as a sister to a known species, the sequence may belong

to the closely related species, but may as well represent a new

species [88] [96]. Sequences that can not be safely assigned to a

clade require further research [96].

Species Delimitation
The masses of sequences generated from environmental DNA

in combination with next generation sequencing resulted in

taxonomy to lag behind considerably especially in microscopic life

[48]. In addition, many new evolutionary lineages have been

found that could not be assigned even to higher classification

ranks, not to mention species, e.g. [26–27]. Thus, the option of

delimiting species – including the identification new species –

without prior knowledge of taxonomy, was brought into focus as a

potential application in DNA barcoding. The computation of a
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frequency distribution based on genetic distances with a subse-

quent search for a barcode gap to differentiate between intra- and

interspecific distances probably represented the oldest and simplest

method [2] [97].

A barcode gap formed by nature during speciation processes

should become obvious also in frequency distributions of genetic

distances without distinguishing between intra- and interspecific

distances. In this study, frequency distributions have been

generated from two different data sets. In the Chroomonas data

set, systematics was still in a state of mess, thus, its frequency

distribution could be examined without being prejudiced by the

idea of species limits. The revised genus Cryptomonas provided a

data set with a consistent systematics at species level, that could be

used to differentiate between intra- and interspecific distances. The

frequency distributions inferred from the two data sets proved to

be highly volatile in shapes depending in evolutionary models and

in taxon sampling. No matter, which evolutionary model has been

chosen, the Chroomonas data set yielded frequency distributions

with irregular and multimodal shapes. Neither were the positions

of gaps stable nor was an obvious ‘‘barcode gap’’ discernible.

Different from the Chroomonas data set, a minimum at distances

between 0.0200 and 0.0299 in the frequency distribution of the

Cryptomonas data set resembled a blurred barcode gap separating

most intra- and interspecific distances from each other. Two astray

intraspecific distances in the frequency distribution of interspecific

distances have been caused by a too wide species definition of

Cryptomonas borealis and could be eliminated in a future revision by

splitting the species into two. The latter would be reasonable since

the two lineages probably were genetically too divergent to be

interbreedable. The putative ‘‘barcode gap’’, however, proved to

be an artifact caused caused by unequal taxon sampling. Two

distances were present in the gap, one inferred from a comparison

of strains M1634 and M2089, the other from a comparison of C.

curvata strain CCAP 979/61 with C. tetrapyrenoidosa strain M1092.

Since no other representatives of these species were available, a

better taxon sampling was simulated by duplicating the sequences

of strains M1634 and M2089 several times. Considering that most

of the intraspecific distances in this frequency distribution

belonged to distance class 1 with genetic distances between

0.000 and 0.010, the simulation situation represented a likely

scenario of a better taxon sampling. As a result, the ‘‘barcode gap’’

filled up. In a massively extended data set it can be expected that

most of the gaps will disappear under reshaping of the frequency

distribution with positional changes of minima and maxima.

Overlaps in intra- and interspecific frequency distributions have

been critically discussed in several metazoan taxa, e.g. in [8]

[90][98–99]. Wiemers and Fiedler examined COI-5P frequency

distributions in butterflies and came to the conclusion that the

barcode gap was an artifact of insufficient taxon sampling [100],

whereas Little and Stevenson used a hypothetical alignment of

four sequences to explain why fixed thresholds of sequence

divergence in distance-based analysis do not work [88]. These

results were not surprising from an evolutionary point of view.

Only in a data set with strict clock-like evolutionary rates and with

speciation events synchronized in time across all lineages a real

barcode gap would form. Development of species, however, is

influenced by many environmental factors such as geography,

climate or intra- and interspecific interactions, resulting in

irregular patterns of speciation events within a genus [101–102].

Also time intervals required for completion of speciation differ

across lineages. Whereas some species may have been reproduc-

tively separated, other species within the same genus may still be

able to hybridize [101–102]. The changes in selective pressures are

also reflected at molecular level. A lack of recombination, genetic

bottlenecks or changes in mode of nutrition, e.g. from photo-

autotrophy to heterotrophy or from free life to parasitism,

correlated with accelerated evolutionary rates in genes or complete

genomes [103–105]. Loss of photosynthesis has been found to be

accompanied by massive losses of photosynthesis-related genes

[106–108], whereas in retained genes, e.g. in rbcL, relaxed selective

constraints have resulted in increased substitution rates [109–110].

Unequal evolutionary rates and base composition biases have been

found also in mitochondrial genomes, thus likely affect also COI-

5P [111]. Substitution rates of mammalian mitochondrial genes

e.g. depended in position of a gene relative to the origin of

replication [112].

Despite of these findings, sometimes blurred, but nevertheless

pronounced barcode gaps have been reported e.g. from birds,

moths and bivalves [113–115]. This may be related to the use of

mean interspecific distances for plotting frequency distributions.

Meier et al. pointed out that the use of mean instead of smallest

interspecific distances results in an exaggeration of the barcode

gap [58]. In a publication addressing DNA barcoding in

anthozoans, the McFadden et al. followed the recommendations

of Meier et al. and plotted frequency distributions of largest

intraspecific versus smallest interspecific distances [99]. As a result

not even a faint barcode gap was observable. Also in a study

addressing intraspecific, congeneric and confamilial frequency

distributions of COI-5P in birds and fishes, no barcode gap has

been discernible [116]. Not only from the point of view of creating

an artifactual ‘‘barcode gap’’ computation of mean values and of

standard deviations seems unreasonable. In the Cryptomonas data

set only congeneric sequences have been examined. The frequency

distribution derived from the total number of interspecific

comparisons was multimodal with three major peaks, whereas

the asymmetric intraspecific frequency distribution had highest

counts in identical sequences. High counts for identical sequences

in single species were rather the rule than the exception in this

study and have been observed also in animals, e.g. in fishes and

birds [116]. Under such conditions, mean values will be extremely

biased and may even result in negative values for one- or two-fold

standard deviations below the computed mean in intraspecific

distances. Population geneticists preferred mismatch distributions

inferred from absolute counts of divergent sites between pairs of

sequences to examine the genetic structure of panmictic popula-

tions. In a simulation study addressing non-recombinant mito-

chondrial genes in stagnating and in exponentially growing

populations, the shape of mismatch distributions depended in

the current status of a population and displayed a chaotic pattern

[117]. Populations in stationary phase resulted in highly irregular

multimodal mismatch distributions that differed between each

replication of the simulation. Only in exponentially growing

populations, mismatch distributions approximated Poisson distri-

butions as would be expected in a random process with discrete

characters.

An automatic delimitation of species by fixed thresholds of

genetic divergence became more and more doubtful, resulting in

proposals of alternative methods. Protistan researchers, however,

are confronted with some problems when trying to apply these

methods, since they usually have been established to delimit

metazoan species. Species delimitation methods can be roughly

subdivided into methods that use discrete characters as diagnostic

features and phylogeny-based methods [59] [118–119]. Most

species delimitation methods require a priori knowledge about

biogeography, that proved to be difficult to predict even in

multicellular organisms [59]. Protists do not necessarily show a

biogeographical distribution. Planktonic organisms drift in the

oceans’ streams and even freshwater species may be globally
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distributed. The smaller the cell size of a species, the more likely it

spreads globally [60]. Fenchel and Finlay based their hypothesis of

cosmopolitan distribution in microscopic life on the misleading

morphospecies concept. However, environmental DNA not only

unveiled an unexpected protistan diversity and potential endemic

species, but also that the notion of cosmopolitan distribution

nevertheless may be true for many protistan lineages [61] [120].

Pons et al. introduced as a method for species delimitation the

general mixed Yule-coalescent (GMYC) model and pointed out as

one of its advantages that it required no priorily defined

biogeographical distributions of populations [59], thus this method

could have offered a solution to the problem of species delimitation

in protistan lineages. The improved GMYC model invented by

Monaghan et al. used trees inferred under the assumption of a

relaxed uncorrelated clock and accounted for differences in

speciation/coalescence events across lineages by multiple transi-

tion thresholds to predict species clusters [63]. Usually, calibrated

ultrametric trees have been used for GMYC to obtain absolute

branching times for the species. Only protistan lineages producing

sufficient inorganic material at least during some stages of their life

history can be found in a fossilized form, e.g. diatoms (silica

frustrules), foraminifers (calcite, aragonite or silica cell walls),

haptophyte coccolithophorids (calcium carbonate scales), chryso-

phytes or testate amoebae (silica scales) [23]. For cryptophytes, as

for most protists, however, no fossil record was available that could

be used to calibrate an ultrametric tree. Therefore the analyses

have been performed without dating information resulting in a

scaling of unspecified relative time units. Also, the least constrain-

ing clock setting, the random local clock has been chosen for

inferring the ultrametric tree. According to Drummond and

Suchard all other clock models were special cases of the random

local clock, which, thus, accounted for all of them [121]. The R

scripts used by Monaghan et al. for computing the GMYC models

have been implemented in the R package SPLITS, but according

to the supplied help text the multiple threshold model was still in

beta test phase [63] [73]. Thus, both GMYC models, the

presumably more stable single threshold as well as the potentially

less reliable but putatively more appropriate multiple threshold

model, have been tested in this study using the Cryptomonas data set.

At first site the results seemed reasonable with species

predictions of single and multiple threshold models being largely

congruent, although the multiple threshold model differentiated

between species under two transition thresholds. The only

difference was found in Cryptomonas tetrapyrenoidosa, which was split

into three species under the single, but merged to one species

under the multiple threshold model. Previous species delimitations

using phylogenetic information and ITS2 secondary structure in

combination with morphology, resulted in 14 described species,

one of which was a singleton with distinctive morphology, whereas

5 strains had not been assigned a species name, since as singletons

they did not allow for an identification of synapomorphies or

unique combinations of molecular characters, but also displayed

no distinctive morphological characters [20] [33]. Together with

clade PyrX, which was considered to consist of 2 putative species

due to too variable ITS2 regions, 21 species have been identified

[20]. Under the GMYC models, however, most of these species

have been split up, increasing the number of putative species in the

Cryptomonas data set to 35 (multiple threshold) and 37 (single

threshold model), respectively. For those species that displayed

some intraspecific variation, such as C. curvata, C. pyrenoidifera or C.

paramaecium, a decision for splitting up did not seem implausible.

Only few Cryptomonas species can be identified solely by

morphology (C. gyropyrenoidosa, C. ovata and at least by their

campylomorph morphotype also C. curvata and C. pyrenoidifera) [33].

Splitting the latter three into several species would further

complicate species identification in Cryptomonas, but would be

required, if these really represented separate biological species.

However, the observation that a clade consisting of identical

sequences only was predicted to comprise three biological species

casted doubts on the reliability of the GMYC species predictions in

this data set. In most cases the clade with the highest number of

identical sequences was affected (C. erosa with 5 strains), whereas

the species with the lowest number of sequences was never subject

to this artifact (C. commutata with 3 sequences). The GMYC model

included likelihood ratio tests that required trees to be strictly

bifurcating. Forcing a tree to be dichotomous poses constraints on

tree inference. For the dichotomous trees BEAST had to compute

divergence times and to assign branch lengths to each terminal

node also in clades with identical sequences. In C. erosa this resulted

in a relatively early coalescence possibly overlapping with

speciation in other lineages assigned to the same transition

threshold. The problem probably increases with the number of

identical sequences in a clade and was present in both, multiple

and single threshold models. The only correct prediction of species

with identical sequences was achieved in a tree inferred under the

strict clock, which has been rejected in a likelihood ratio test, and

in combination with the single threshold model assuming a

synchronized transition from speciation to coalescence. Under this

threshold, however, no intraspecific variation at all was accepted

and only identical sequences were predicted to belong to one

species. For the same tree, extreme artifacts were found in species

delimitation under the multiple threshold model. Under the four

putative transition thresholds, three of four species with identical

sequences have been split up into several species and twice two

genetically highly divergent species were merged into one. In the

latter setting, the combination of an inappropriate clock model

with the possibly more vulnerable multiple threshold GMYC

model in beta test phase may have contributed to these drastic

effects.

The GMYC model has been increasingly used for species

delimitation in diverse animal groups, but has been reported to

work also in bacteria, fungi, or macroalgae [122–124]. Lohse

demonstrated in simulation studies, that the GMYC model highly

depended in taxon sampling and in population structure, i.e.

undersampling caused biased numbers of clusters [125]. Papado-

poulou et al. responded to the criticizms raised by Lohse pointing

out that GMYC predictions were hypotheses and every method

would be sensitive to undersampling, which likely is true [126]. To

identify erroneous results in a GMYC analysis, they considered a

plausibility control of the output necessary by comparing the

GMYC results with biogeographical distribution and morphology,

and by using multiple barcode markers. However, a not required a

priori knowledge of biogeography was originally mentioned by

Pons et al. as one of the advantages of their method [59], which

was the rationale for testing the GMYC model for species

delimitation in protistan lineages.

What was the situation in the Cryptomonas data set used in this

study? (1) The taxon sampling was not optimal for a GMYC

analysis: Individual species were highly unequally sampled,

singletons were present and some species did not display any

intraspecific variation. (2) The species were neither biogeographi-

cally distributed nor did they represent populations. The C.

obovoidea strains M2811 and CCAC 0031 e.g. have been isolated

from German lakes, whereas the strain UTEX 2194 originated

from a lake in the USA. The C. erosa strains derived from different

lakes in Germany, Austria and Finland. The situation was similar

in species that displayed a higher intraspecific variability. C. curvata

strains have been retrieved from different lakes in UK and
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Germany, C. pyrenoidifera strains from Australia, Germany, Czech

Republic and UK. All strains represented clones of individual cells,

in most cases isolated by the capillary method. (3) Many species

can not be safely identified by morphology due to a lack of

distinctive characters (e.g. C. commutata, C. erosa, C. phaseolus and

C. obovoidea).

It may be possible that some of the weird results (i.e. the splitting

of identical sequences into several species) were artifacts caused by

an unequal taxon sampling, but it is also clear that the plausibility

controls, Papadopoulou et al. considered necessary to rule out false

clustering by the GMYC method, could not be applied to this data

set [126]. Also, achieving a good sampling of species is generally

difficult in protistan lineages. Rather than being biogeographically

distributed, many planktonic species show temporal patterns of

distribution, e.g. in dimictic lakes [127–129]. Different species

competing for the same resources may be found at different times

in a habitat, following a chaotic oscillation pattern [130]. Thus, if

DNA samples are drawn from lakes for an environmental

sequencing project, they may not reflect the species diversity in

the respective habitats. Species that reside as resting stages in the

mudd bloom perhaps in one of the following years and will be

overlooked at time of sampling, resulting in a severe sampling bias.

Recently, Esselstyn et al. provided a study assessing the

reliability of the GMYC model in simulation and on a real data

set of DNA sequences from Philippine bats [131]. They found a

reciprocal relation between accuracy of species prediction and

effective population size and/or speciation rate. Only in data sets

with low haploid effective population sizes and with low speciation

rates, the GMYC model predicted species limits correctly.

Whereas the single threshold model switched between over- and

underestimation of the number of species depending in the settings

of the simulations, the multiple threshold model tended to

overestimate the numbers of species [131]. As possible reasons

for GMYC to fail, Esselstyn et al. mentioned the unrealistic

assumptions underlying the Yule and the coalescent models

(constant speciation rates without extinction in the Yule and

panmictic populations of constant size in the coalescent model)

[131]. Thus, not only information about biogeographical distri-

bution or morphology, but also about effective population sizes

and speciation rates are required to properly interprete the results

of a GMYC analysis.

Conclusions: DNA Barcoding in Protists
Whether the GMYC model will become more reliable in larger

cryptophyte or other protistan data sets remains to be tested in

future. Effective population sizes especially of planktonic protistan

species tend to be large and speciation rates may be high due to

short generation times at least in some lineages. Thus, considering

the results of the simulation study by Esselstyn et al., the opposite

effect may be encountered [131]. In addition, the vulnerability of

GMYC against undersampling will likely affect data sets contain-

ing a high number of rare species, that can not be sampled densely

[119]. It is also obvious, that the phylogeny-based GMYC model

will fail to predict species limits properly in naturally non-

monophyletic species [9]. A lack of possibilities for plausibility

controls in protistan lineages (distinctive morphological characters,

knowledge about biogeographical distribution, effective population

sizes and speciation rates) rather speak against using the GMYC

model for an automatic species delimitation. Rigorous testing of

the GMYC model will be possible only in morphologically well

identifiable protistan groups or in groups for which biological

species limits can be tested in mating experiments. Possibly

searching for a or several transition thresholds is as arbitrary as

searching for a barcode gap, but perhaps an adjustment of the

underlying models of speciation and coalescence will improve the

GMYC model. Also the effects of constraining non-clock like and

potentially non-dichotomous trees to evolve according to a

molecular clock and in a strictly bifurcating pattern are not clear

at all.

DNA barcoding doesn’t seem to be suited to solve problems in

systematics or to define species based soley on short and highly

variable DNA tags. The latter is related to the problems inherent

in automatic species delimitation discussed above. Nevertheless,

species identification methods can be expected to work properly in

known species. Even a simple search method probably will work

accurately, provided the reference database is well sampled and

filled with sequences of high quality. However, different methods

may be differently vulnerable to sequencing or alignment errors,

which apparently also depends in the chosen barcode marker.

Since next generation methods became notorious for higher error

rates than Sanger sequencing [132], the influence of such errors on

species identification also have to be examined in greater detail

and assessed for each potential DNA barcode separately.

The establishment of an accurately working species identifica-

tion system, however, throws protistan researchers back to time-

consuming and tedious work not compatible with current speed at

which new sequences are generated. The first step towards an

accurate barcoding system in a protistan group requires integrative

taxonomy by examining morphology and molecular phylogeny

covering species diversity as best as possible. This is best achieved

in examining clonal cultures, but establishment and maintenance

of strains will not be possible in all groups. An alternative could be

the isolation of single cells from field samples, their morphological

examination and subsequent single-cell PCR as proposed by

Auinger et al. or a mixture of examining clonal cultures and field

material [38] [133]. Since also the usually longer and more

conserved phylogenetic markers may be subject to the problems

encountered in barcode markers (incomplete lineage sorting,

compositional biases, pseudogenes, unequal evolutionary rates,

intragenomic variation, gene duplications), the best option

probably will be to sequence at least two, better more, unlinked

genes to rule out incongruences and to use them thereafter for

supermatrix trees. A species-level taxonomic revision, necessarily

has to include DNA regions sufficiently variable to facilitate an

identification of species. If unique molecular signatures derived

from one or several genes have been included as diagnostic

characters into the species descriptions, these could of course also

be used as DNA barcodes in character-based identification

methods. This will work only, if species are monophyletic, since

non-monophyletic species require complex workarounds (e.g.

different sets of molecular signatures for one species). Only in

biological species, however, natural paraphylies may occur due to

hybridizations or due to isolated island speciation. A taxonomic

revision of protists usually confronts a researcher with the problem

of how to reproducibly delimit species in groups that can not be

subjected to crossing experiments or that propagate only asexually,

and at the same time lack resolution at morphological level, but

are genetically too diverse to be merged to one species [134].

The next step to establish a DNA barcoding system could be

testing of additional candidate barcode markers, if no suitable

DNA region was included in the taxonomic revision. Coleman’s

species concept of compensatory base pair changes is based on the

secondary structure of internal transcribed spacer 2. For this part

of the ribosomal operon, intragenomic variation has been reported

that may complicate its use as a barcode marker [135–137].

Consequently, an accurate identification by ITS2 would require

sequencing of all variants present in the protists’ genomes. A

supermatrix tree from a taxonomic revision facilitates identifica-

Pitfalls of DNA Barcoding in Cryptophytes

PLOS ONE | www.plosone.org 20 August 2012 | Volume 7 | Issue 8 | e43652



tion of problems in barcode markers or in identification methods

by comparing the two trees. During this phase of establishing a

barcode system, failures in species identification as demonstrated

in this study may be most likely, when using the blast algorithms to

confirm the identity of sequences at genus or higher classification

levels.

The last step requires setting up of a database and implemen-

tation of a reliable search algorithm. It cannot be taken for granted

that character-based methods using even shorter tags e.g. the V4

region of the SSU rRNA gene will perform better than COI-5P in

a database crowded with sequences from all kinds of organisms [7]

[138]. Identification failures could be reduced by restricting

searches to the group of interest. This, however, will not work in

biodiversity surveys based on sequencing environmental DNA

with standard cross-eukaryote primers. This requires PCR

amplification with group-specific primers as has been done e.g.

for the Foraminifera or the haptophytes [7] [138]. If DNA

barcoding is supposed to work reliably across eukaryote kingdoms,

a set of molecular markers resolving at different levels could be the

best option. Isolating of single cells from field samples, e.g. by

fluorescence-activated cell sorting and multi-plex PCR allows for a

safe assignment of all markers to the same individual cell. It seems,

though, that no fast and easy bypasses for systematics and DNA

barcoding can be currently recommended for protistan research-

ers. The automatic species delimitation methods tested in this

study proved to be highly dependent in taxon sampling and prone

to artifacts.

Materials and Methods

Algal Cultures
Clonal cultures of cryptophytes were grown under light dark

cycles of 14 10 h at either 16uC or at 23uC list of strains: File S1).

As culture media either a modified WARIS-H medium (freshwater

strains) or modified versions of the artificial seawater medium

ASP-2 (marine and brackish water strains) have been used [139–

142]. Instead of the usual trace metals recipes, the richer trace

metals solution of the L1 medium has been added to both

freshwater and marine media (WARIS-H: 100 mL/L; ASP-

2:1 mL/L) [143]. The different ASP-2 versions contained either

no additives or soil extract (1 ml/L) or 31.7 mM Na2-glycero-

phosphate.

DNA Isolation, PCR and Sequencing
For DNA isolation, resuspended cell pellets obtained from

centrifugation (5 min. at 18,0006g) of up to 8 mL of culture have

been pipetted onto Whatman FTAH Mini cards (VWR, Darm-

stadt, Germany). Prior to PCR, small disks of 2 mm diameter were

stanced out and washed in 0.2 mL PCR tubes according to the

manufacturers protocol. To the DNA – still attached to the paper

carrier – the PCR master mix was added. Nuclear partial LSU

rDNA sequences (59 terminus of the nuclear LSU rDNA,

comprising domains A to C and parts of D) have been PCR-

amplified with a nucleus-specific primer combination and

sequenced completely double-stranded using previously estab-

lished procedures (for accession numbers, see File S1) [56].

At time of primer construction, only three of the four

cryptophyte COI-5P or cox1 sequences have been available in

the joint EMBL/GenBank/DDBJ databases (complete mitochon-

drial genomes of Hemiselmis andersenii strain CCMP644, acc. no.

EU651892 and of a not specified Rhodomonas salina strain, acc. no.

AF288090, and a partial cox1 gene of Cryptomonas ovata strain

NIES-274, acc. no. AB009419). These sequences were used to

design PCR and sequencing primers for cryptophyte COI-5P

sequences .500 nt (File S2). Due to the high variability of the

gene, possibilities to construct a more stable forward primer have

been restricted, thus annealing temperature had to be reduced to

50 C. The resulting COI-5P sequence of Cryptomonas curvata strain

CCAC 0080 has been submitted under the accession no.

HE855366 to EBI-EMBL.

Data Analyses
Blast searches have been performed with unpruned sequences.

The newly obtained COI-5P sequence of Cryptomonas curvata strain

CCAC 0080 and several 59-partial nuclear LSU rDNA sequences

representing new lineages at different classification levels in

different cryptophyte clades have been used as query sequences

to test the performance of the different nucleotide versus

nucleotide search algorithms offered at NCBI [78]. The partial

LSU rDNA sequences represented either a species of the

Rhodomonas clade not yet available in GenBank (1 sequence), new

lineages in the Chroomonas clade (2 sequences) or a new sub-lineage

within the species C. curvata (1 sequence). According to Kim et al.

the codon usage in the mitochondrial genome of the cryptophyte

Hemiselmis andersenii strain CCMP644 corresponded to the standard

code table, thus this setting was used for a blastx search with the

C. curvata CCAC 0080 COI-5P sequence as a query [80].

For phylogenetic analyses and frequency distributions, two

different alignments have been assembled from 59-partial LSU

rDNA sequences. The Cryptomonas data set comprised 64 OTUs,

including 8 new sequences, the Chroomonas data set 45 sequences,

including 11 new sequences (File S1). Both alignments contained

no outgroup taxa and were automatically pre-aligned with

MUSCLE [144]. Alignment errors have been corrected by eye

using the multiple sequence alignment editor SeaView 4.3.3 [145].

Non-alignable regions have been excluded for phylogenetic

analyses, distance computations and saturation tests. The final

Cryptomonas data set consisted of 975 and the Chroomonas data set of

920 positions. Phylogenetic analyses have been performed using

the threaded version of RAxML 7.2.6 (maximum likelihood) and

the MPI version of MrBayes 3.1.2 (Bayesian analyses) [146–147].

For maximum likelihood analyses, GTR+I+C has been used as an

evolutionary model including 1000 bootstrap replicates for each

data set. MrBayes was set to 2 runs with four chains each, 4 million

generations and GTR+I+C. The burn-in phase for each data set

has been determined and removed using the ‘‘sump’’ command.

To compare genetic distances and saturation among COI-5P

sequences, the C. curvata CCAC 0080 COI-5P sequence, all

cryptophyte sequences and their neighboring sequences found one

position up and down in the discontiguous megablast ranking have

been aligned (12 sequences, see results and Table 3) and subjected

to comparative distance analysis with the K2P and GTR+I+C
models. All three alignments, the small COI-5P alignment as well

as the two 59-partial LSU rDNA data sets have been subjected to

tests for substitution saturation [66–67]. Substitution saturation of

the data sets has been examined using the test according to Xia et

al. in DAMBE 5.2.57 under exclusion of gaps [67].

Genetic distances have been computed with Paup 4.0b10 [148].

For a comparison of the effects of different distance measures on

frequency distributions, four different distance measures have been

inferred from the Chroomonas data set. For computation of the two

most common distance measures in DNA barcoding, uncorrected

p- and Kimura-2-parameter distances, the algorithms implement-

ed in Paup under the distance criterion have been used. A run of

jModeltest 0.1.1 yielded TIM2+I+C as the best trade-off between

complexity and appropriate approximation of molecular evolu-

tionary processes [68]. For distances under the latter and under

the most complex evolutionary model, GTR+I+C, the respective
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maximum likelihood parameters have been estimated given a

Jukes-Cantor neighbor-joining tree and thereafter used for

distance computation. For the Cryptomonas data set intra- and

interspecific GTR+I+C distances have been coded separately to

yield frequency distributions for each. The distances inferred from

both data sets were exported from Paup as column formatted text

files and were imported into OpenOffice.org Calc 3.2.1 for further

processing [149]. The genetic distances were sorted into distance

classes to generate frequency distributions for the Cryptomonas and

Chroomonas data sets. This procedure did not include computation

of mean values or standard deviations to avoid biased frequency

distributions.

For GMYC at first Bayesian analyses with BEAST 1.7.2 have

been performed to obtain an uncalibrated tree under the

assumption of a molecular clock [150]. To account for all possible

clock models, the random local clock setting has been chosen and

clock rates were estimated [121]. Tree prior was set to Yule

process [151–152]. Two Markov chain Monte Carlo runs with 40

million generations and sampling of every 1000th generation have

been performed to increase effective sample sizes (ESS) for each

run beyond 200. Burn-in was determined with Tracer 1.5.0

(400,000 and 17,000,000 generations, respectively) [153]. After

excising the trees drawn during burn-in process, the samples of

two runs have been merged. The representative tree selected by

the treeannotator modul of the BEAST software suite was

imported into the statistics software R 2.15.1 [154]. GMYC

analysis required the R package SPLITS obtainable from the R-

Forge website [63] [73]. The results of the analyses (ultrametric

tree plot and semi-logarithmic lineage-through-time plot with

identified thresholds) have been saved in portable document

format (PDF) and thereafter processed with Inkscape 0.47 [155].

Supporting Information

File S1 Nuclear 59-partial LSU rDNA: list of taxa with
accession numbers to database entries.
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region in cryptophytes.

(PDF)

Acknowledgments

KHE wishes to thank the Computing Centre of the University of Cologne

(RRZK) for access to the compute server CHEOPS for phylogenetic

analyses, Michael Melkonian for access to his work group’s resources, Joe

Felsenstein for fruitful input and two anonymous reviewers for helpful

comments resulting in a considerable improvement of the manuscript.

Author Contributions

Conceived and designed the experiments: KHE. Performed the experi-

ments: KHE. Analyzed the data: KHE. Contributed reagents/materials/

analysis tools: KHE. Wrote the paper: KHE.

References

1. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards

writing the encyclopaedia of life: an introduction to DNA barcoding. Phil

Trans R Soc B 360: 1805–1811.

2. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological

identifications through DNA barcodes. Proc R Soc Lond B 270: 313–321.

3. Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madriñán S, et
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123. Powell JR, Monaghan MT, Öpik M, Rillig MC (2011) Evolutionary criteria

outperform operational approaches in producing ecologically relevant fungal

species inventories. Mol Ecol 20: 655–666.

124. Leliaert F, Verbruggen H, Wysor B, De Clerck O (2009) DNA taxonomy in

morphologically plastic taxa: algorithmic species delimitation in the Boodlea

complex (Chlorophyta: Cladophorales). Mol Phylogenet Evol 53: 122–133.

125. Lohse K (2009) Can mtDNA barcodes be used to delimit species? A response to

Pons, et al. (2006). Syst Biol 58: 439–442.
126. Papadopoulou A, Monaghan MT, Barraclough TG, Vogler AP (2009)

Sampling error does not invalidate the Yule-coalescent model for species
delimitation. A response to Lohse. Syst Biol 58: 442–444.

127. Cloern JE (1996) Phytoplankton bloom dynamics in coastal ecosystems: a

review with some general lessons from sustained investigation of San Francisco
Bay, California. Rev Geophys 34: 127–168.

128. Watson SB, McCauley E, Downing JA (1997) Patterns in phytoplankton
taxonomic composition across temperate lakes of differing nutrient status.

Limnol Oceanol 42: 487–495.
129. Feuchtmayr H, Thackeray SJ, Jones ID, De Ville M, Fletcher J, et al. (2012)

Spring phytoplankton phenology – are patterns and drivers of change

consistent among lakes in the same climatological region? Freshwater Biol
57: 331–344.

130. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations
and chaos. Nature 402: 410.

131. Esselstyn JA, Evans BJ, Sedlock JL, Khan FAA, Heaney LR (2012) Single-locus

species delimitation: a test of the mixed Yule–coalescent model, with an
empirical application to Philippine round-leaf bats. Proc R Soc B, advance

access.
132. Ledergerber D, Dessimoz C (2011) Base-calling for next-generation sequencing

platforms. Brief Bioinf 12: 489–497.
133. Stern RW, Horak A, Andrew RL, Coffroth MA, Andersen RA, et al. (2010)

Environmental barcoding reveals massive dinoagellate diversity in marine

environments. PLoS One 5: e13991.
134. Boenigk J, Ereshefsky M, Hoef-Emden K, Mallet J, Bass D (2012) Concepts in

protistology: species definitions and boundaries. Eur J Protistol 48: 96–102.
135. Wörheide G, Nichols SA, Goldberg J (2004) Intragenomic variation of the

rDNA internal transcribed spacers in sponges (Phylum Porifera): implications

for phylogenetic studies. Mol Phylogenet Evol 33: 816–830.
136. Nieto Feliner G, Gutiérrez Larena B, Fuertes Aguilar J (2004) Fine-scale

geographical structure, intra-individual polymorphism and recombination in
nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae).

Ann Bot 93: 189–200.
137. D’Alelio D, Amato A, Kooistra WHCF, Procaccini G, Casotti R, et al. (2009)

Internal transcribed spacer polymorphism in Pseudo-nitzschia multistriata

(Bacillariophyceae) in the Gulf of Naples: recent divergence or intraspecific
hybridization? Protist 160: 9–20.

138. Shalchian-Tabrizi K, Reier-Røberg K, Ree DK, Klaveness D, Bråte J (2011)
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