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An approach to the coalescent, the fractional coalescent (f-
coalescent), is introduced. The derivation is based on the discrete-
time Cannings population model in which the variance of the
number of offspring depends on the parameter α. This additional
parameter α affects the variability of the patterns of the waiting
times; values of α<1 lead to an increase of short time intervals,
but occasionally allow for very long time intervals. When α= 1,
the f-coalescent and the Kingman’s n-coalescent are equivalent.
The distribution of the time to the most recent common ancestor
and the probability that n genes descend from m ancestral genes
in a time interval of length T for the f-coalescent are derived.
The f-coalescent has been implemented in the population genetic
model inference software MIGRATE. Simulation studies suggest
that it is possible to accurately estimate α values from data that
were generated with known α values and that the f-coalescent
can detect potential environmental heterogeneity within a pop-
ulation. Bayes factor comparisons of simulated data with α<1
and real data (H1N1 influenza and malaria parasites) showed an
improved model fit of the f-coalescent over the n-coalescent. The
development of the f-coalescent and its inclusion into the infer-
ence program MIGRATE facilitates testing for deviations from the
n-coalescent.
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In 1982, Kingman (1, 2) introduced the n-coalescent. The
n-coalescent describes the probability density function of a

genealogy of samples embedded in a population with fixed size.
Extensions to this probabilistic description of the genealogical
process include changing population size (3, 4), immigration (5,
6), population divergence (7), selection (8), and recombination
(9). These theoretical advances resulted in several widely used
computer packages that estimate various population parameters
(for example, refs. 10–12). While the waiting times for events
in the n-coalescent are exponentially distributed, a more gen-
eral framework of these waiting times is offered by the field
of fractional calculus (13–18). Fractional calculus has attracted
considerable interest because of the ability to model complex
phenomena, such as continuum and statistical mechanics (19)
and viscoelastic materials (20). We introduce fractional calcu-
lus into population genetics. Our work concentrates on the use
of the fractional Poisson process (21) in the context of the
coalescent, and we introduce a model of coalescence, the frac-
tional coalescent, or f -coalescent. We derive the f -coalescent
based on the discrete-time Cannings model and present the
properties of the f -coalescent. This f -coalescent is then imple-
mented in a Bayesian estimator of effective population size;
we discuss the implementation and runtime characteristics. We
explore the quality of the inference for simulated datasets
and also apply the method to three real datasets: mitochon-
drial sequence data of humpback whales (22), mitochondrial
data of the malaria parasite Plasmodium falciparum (23), and
complete genome data of the H1N1 influenza virus strain col-
lected in Mexico City in 2014. The biological motivation of this
model is discussed by using a simulator that assigns an envi-
ronmental quality affecting the chance of having offspring to
each individual of a population. The dataset which is derived
based on this simulator shows the potential heterogeneity within
a population. It is shown that the f -coalescent is a better

model than the n-coalescent to describe the variability of this
dataset.

Motivation
It is common to assume that, within a population, all individu-
als are affected in the same way by the environment (3–7, 9–12).
Neglecting this heterogeneity may lead to biased parameter esti-
mates. Development of multiple-merger coalescence focused on
either strong selection (24) or large offspring variance (25); both
could be induced by environmental heterogeneity. But, these
approaches do not allow estimating a parameter that reflects this
heterogeneity. The f -coalescent allows nonexponential waiting
times; therefore, it should be able not only to handle datasets
generated under such conditions, but also give estimates about
the magnitude of this heterogeneity.

Model
We derive the f -coalescent based on the nest-site model which
was introduced by Wakeley (26). We included the derivation of
the f -coalescent from the discrete Cannings model (SI Appendix,
section B) and an alternative derivation of the f -coalescent as a
semi-Markov process, in an equivalent way as the n-coalescent
emerges as a continuous-time Markov process (SI Appendix, sec-
tion C). Since we compare the f -coalescent with the Kingman’s
n-coalescent, we have included a derivation of Kingman’s n-
coalescent for the Wright–Fisher and the Cannings model in SI
Appendix, section A.

The f -Coalescent Based on the Nest-Site Model. The nest-site
model allows for different qualities of nest sites, therefore lead-
ing to differences among offspring numbers, leading to the
Canning model. The habitat structure determines the distribu-
tion of offspring numbers. Consider a haploid population model

Significance

The fractional coalescent is a generalization of Kingman’s
n-coalescent. It facilitates the development of the theory
of population genetic processes that deviate from Poisson-
distributed waiting times. It also marks the use of methods
developed in fractional calculus in population genetics. The
fractional coalescent is an extension of Canning’s model,
where the variance of the number of offspring per parent is a
random variable. The distribution of the number of offspring
depends on a parameter α, which is a potential measure of
the environmental heterogeneity that is commonly ignored in
current inferences.

Author contributions: S.M. and P.B. designed research, performed research, contributed
new reagents/analytic tools, analyzed data, and wrote the paper.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).y

Data deposition: MIGRATE output files are available in the GitHub repository, https://
github.com/pbeerli/fractional-coalescent-material.y
1 To whom correspondence should be addressed. Email: smashayekhi@fsu.edu.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1810239116/-/DCSupplemental.y

Published online March 13, 2019.

6244–6249 | PNAS | March 26, 2019 | vol. 116 | no. 13 www.pnas.org/cgi/doi/10.1073/pnas.1810239116

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/pbeerli/fractional-coalescent-material
https://github.com/pbeerli/fractional-coalescent-material
mailto:smashayekhi@fsu.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810239116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1810239116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1810239116&domain=pdf


EV
O

LU
TI

O
N

with a fixed population size N . Individuals can occupy places
with reproduction conditions 1, . . . ,L. Consider N individuals
per generation, where fixed proportions β1, . . . ,βL≥0 of them
have condition i (

∑
i βi = 1) and the total number of offspring

of all individuals in condition i is Nχi , where χi ∈ [0, 1] fixed
with

∑
i χi = 1. Assume the Nχi offspring are produced by their

Nβi parents via Wright–Fisher sampling. In this model, βi and
χi are fixed and constant across generations; therefore, King-
man’s coalescent, by changing the time scale to Ne =N /σ2, is
an appropriate model, where σ2 =

∑L
i=1 χ

2
i /βi (details are in SI

Appendix, section D).
If in this model the quality of nest sites is a random vari-

able, then the probability of coalescence becomes a random
variable and Kingman’s coalescent cannot be an appropriate
model to describe this probability. Suppose χi is a discrete ran-
dom variable, which is drawn once and is identical for each
generation, whose possible values are χj

i , j = 1, 2, . . ., where∑
i χ

j
i = 1, j = 1, 2, . . .. For each case, for example χj

i , Nχ
j
i

offspring are produced by their Nβi parents via Wright–Fisher
sampling. Similar to ref. 26, the probability that two individ-
uals come from the same parent in the immediately previous
generation is

P{coal|χ1 =χj
1, . . . ,χL =χj

L}=

L∑
i=1

χj
i

(
Nχj

i − 1

N

)(
1

Nβi

)
.

[1]
As N increases, the probability of coalescence, which is a random
variable, becomes

P{coal|χ1 =χj
1, . . . ,χL =χj

L}≈
1

N

L∑
i=1

(χj
i )

2

βi
. [2]

This argument shows that, in each case j = 1, 2, . . ., with proba-
bility βi , the individual will have a Poisson number of offspring
with mean and variance equal to χj

i/βi . Then, the expected num-
ber of its offspring is equal to 1. By conditioning on the type of
nest site, the individual ends up occupying and the variance of the
number of offspring then σ2 becomes a random variable whose
possible values are σ2

j with j = 1, 2, . . ., where

σ2
j =

L∑
i=1

βi

(
χj
i

βi
+

[
χj
i

βi

]2)
− 1 =

L∑
i=1

(χj
i )

2

βi
. [3]

Using Eqs. 2 and 3, we have

N j
e =

N

σ2
j

, [4]

and

P{coal|χ1 =χj
1, . . . ,χL =χj

L}≈
1

N j
e

=
σ2
j

N
. [5]

Assume that the variance of the number of offspring is a random
variable [σ2 ∈ (0,∞)] which has the probability mass function
ω(σ2,α) where 0<α≤1. Suppose this probability mass function
has a closed form which has been introduced in SI Appendix, Eq.
S60; since 0<α≤1 is a parameter, ω(σ2,α) can have different
forms depending on the α. The relation between the probabil-
ity mass function of χi and ω(σ2,α) is presented in SI Appendix,
section O.

By this assumption, similar to SI Appendix, Eq. S5, the proba-
bility that the two lineages remain distinct for N units of scaled
time is

P{not coal |σ2 =σ2
j }=

(
1−

σ2
j

N

)
Nτ . σ2

j ∈ (0,∞). [6]

By using SI Appendix, Eq. S62, the average of Eq. 6 over the
distribution of σ2 ∈ (0,∞) shows the probability that the two
lineages remain distinct for N units of scaled time as

Eω

((
1−

σ2
j

N

)
Nτ

)
=
∑
j

ω(σ2
j ,α)

(
1−σ2

j
1

N

)
Nτ→Eα(−τα),

[7]
as N goes to infinity, Eα(−τα) is the Mittag–Leffler function
(SI Appendix, section N) (27). We choose the time scale as
τ = t/(N 1/α); thus, in the limit, the coalescence time for a
pair of lineages is distributed as the fractional generalization
of the exponential distribution (28). We can generalize the f -
coalescent from two lineages to k lineages by changing τ→
τ
(
k
2

)1/α
. The probability that the two lineages among k lineages

remain distinct for N units of scaled time is

∑
j

ω(σ2
j ,α)

1−σ2
j

(
k
2

) 1
α

N

Nτ→Eα(−

(
k

2

)
τα). [8]

Choosing the time scale as τ = t/(N 1/α) keeps the parameter
(population size) the same as the n-coalescent (SI Appendix,
section B).

Based on Eq. 6, each value of the random variable σ2
j leads to

Kingman’s n-coalescent genealogy on a suitable timescale which
is a bifurcating genealogy (SI Appendix, Eq. S12). Eq. 7 shows
that the average of these bifurcating genealogies leads to the
f -coalescent on a suitable timescale, which still is a bifurcat-
ing genealogy (SI Appendix, Eq. S15). An alternative derivation
which characterizes the f -coalescent as a semi-Markov process
(SI Appendix, section C) shows that the f -coalescent does not
require multiple mergers, similar to the n-coalescent. These dif-
ferent derivations of the f -coalescent suggest that we have a
versatile framework that maintains the strictly bifurcating prop-
erty of the n-coalescent, but permits more variability in waiting
times between coalescent events. Thus, this versatility may allow
us to infer processes that change the waiting times—for exam-
ple, selection—better. Currently, coalescent models that allow
multiple mergers, such as the BS-coalescent (cf. 24), are used to
discuss such forces. The f -coalescent may be a viable alternative.

Properties of the f -Coalescent. The n-coalescent has two steps:
First, choose a pair to coalesce by using the concept of equiva-
lence classes; second, pick a waiting time in which two lineages
need to coalesce. For the f -coalescent, we changed the second
step, resulting in a different time to the most recent common
ancestor (TMRCA) compared with the n-coalescent. We derive
this new distribution of the TMRCA of the f -coalescent and com-
pare it with the TMRCA of the n-coalescent. We also present
the probability that n genes are descendants from m ancestral
genes using the f -coalescent and compare these results with the
n-coalescent. To do this, we extend the work of ref. 29 to the f -
coalescent. In the following theorems, we use Eq. 7. These lead
to the probability density of waiting times of the f -coalescent

f (t) = tα−1λEα,α(−λtα). [9]

For α= 1, this is equivalent to an exponential distribution which
is used for the n-coalescent.

Theorem 1. Suppose fTi (t) = tαi−1λiEαi ,αi (−λi t
αi ) is the distri-

bution of a waiting time in the f -coalescent, where Ti , i = 2, . . . ,n
are the coalescent times and λi =

(
i
2

)
if α1 =α2 = . . .=αn , then

the distribution of TMRCA =
∑n

i=2 Ti is

fTMRCA (t) =

n∑
i=2

 n∏
k=2
k 6=n

λk

λk −λi

fTi (t), [10]
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or, equivalently, this can be presented as

fTMRCA (t) =

n∑
i=2

(
(2i − 1)(−1)in[i]

n(i)

)
fTi (t), [11]

where n[i] =n(n − 1) . . . (n − i + 1), n(i) =n(n + 1) . . . (n + i −
1).

Proof: For the proof, see SI Appendix, section E.
In the next theorem, we derive the probability that n genes are

descendants from m ancestral genes in the f -coalescent.

Theorem 2. With the same assumption in Theorem 1, in the f -
coalescent, the probability Pnm(T ) that n genes descended from
m genes T units of time ago is

Pnm(T ) = [12]

n∑
i=m+1

(
n∏

k=m+1
k 6=n

λk
λk−λi

)(
λi

λm−λi
Eα(−λiT

α)

+ λi
λi−λm

Eα(−λmTα)
)

1<m <n

n∑
i=2

(
n∏

k=2
k 6=n

λk
λk−λi

)
(−Eα(−λiT

α) + Eα(0)) m = 1

Eα(−λnT
α) m =n.

Proof: For the proof, see SI Appendix, section E.

Corollary. The parameter α in Theorem 1 affects the variability in
the patterns of the waiting times which, as a result, affects the dis-
tribution of time to the most recent common ancestor, fTMRCA (t).
While for the n-coalescent, as the sample size increases, the distri-
bution of fTMRCA (t) converges on a distribution with mean equal
2, which corresponds to a period of 2N generations in the haploid
Wright–Fisher model, for the f -coalescent, we have a heavy-tailed
distributions as the sample size increases. By using Eq. 12, in the
f -coalescent, it is more likely that n genes sampled from a pop-
ulation have more ancestors in a unit time compared with the
n-coalescent. We give some numerical value of Eq. 12 for different
values of α in SI Appendix, section F. In the n-coalescent (α= 1)
m decreases quite rapidly as T increases, but this is not the case in
the f -coalescent (SI Appendix, section F).

More details related to these two theorems are presented in SI
Appendix, section E. We also derive the time to the most recent
common ancestor in Methods and Results empirically, to com-
pare the f -coalescent with the Bolthausen–Sznitman-coalescent
(BS-coalescent).

Probability Density Function of a Genealogy Based on the f -
Coalescent. To extract a particular genealogy G out of the many
possible topologies defined by the interval times u2, u3, . . . , uK ,
we need to take into account the number of possible configura-
tions at any time uk ; by using Kingman’s n-coalescent for any
uk and k lineages, there are

(
k
2

)
potential configurations, and we

pick one particular one. If we use the same assumption for f -
coalescent that only two lineages per generation can coalesce,
then we get:

f (G|Θ) =

K∏
k=2

uα−1
k

[
k(k − 1)

Θ

]
Eα,α(−λku

α
k )

1(
k
2

) , [13]

=
K∏

k=2

(
uα−1
k

[
2

Θ

]
Eα,α(−λku

α
k )

)
, [14]

where K is the number of samples and Θ is the mutation-scaled
population size (details are in SI Appendix, section H).

Implementation. We implemented our model in the existing
framework of the software MIGRATE (10). In this framework,
we approximate the Bayesian posterior density f (ρ|X ,α) =
f (ρ)f (X |ρ,α)/f (X |α), where X is the data and ρ is the param-
eter set for a particular population model—here, it is the
mutation-scaled population size Θ—and α is a fixed parameter
for the Mittag–Leffler function. The software uses Markov chain
Monte Carlo (MCMC) to approximate the posterior density, cal-
culating f (ρ) and f (X |ρ,α). To choose a tree genealogy during
the MCMC, we draw new times for events. Details of the tree-
changing algorithm are described by ref. 30. To draw a new time
(t0), we solve

P(t > t0) = 1−
∫ t0

0

uα−1λkEα,α(−λku
α)du = Eα(−λk t

α
0 ),

[15]
where k and α are fixed numbers, and we choose random
numbers between (0, 1) for P(t > t0).

Using Eq. 15 to draw times directly is time-consuming. There-
fore, we use the sampling method of the Mittag–Leffler distri-
bution which has been introduced by MacNamara et al. (28).
Since the Mittag–Leffler function can be expressed as a mixture
of exponential functions, the fast simulation of geometric stable
distributions can be used to sample the time. As a result, the time
derived from the Mittag–Leffler function is

t0 =−
(

1

λk

)
1
α (

sin(πα)

tan(πα(1− r1))
− cos(πα))

1
α log(r2), [16]

where r1 and r2 are two independent random numbers. More
details for Eq. 16 have been presented by MacNamara et al. (28).
The details related to the implementation of the Mittag–Leffler
function are shown in SI Appendix, section I (31).

Methods and Results
Time to the Most Recent Common Ancestor for the f-Coalescent.
We compared empirical distributions of the TMRCA for a sample
of five individuals for the f -, n-, and BS-coalescent (32) (more
details are in SI Appendix, section J) (33). Fig. 1 shows exam-
ples of empirical distributions of the TMRCA for a sample of five
individuals for the n-coalescent, the f -coalescent with two dif-
ferent values for α and the BS-coalescent. Each curve is based
on 100,000 simulated TMRCA values. With α< 1, the distribu-
tion becomes more peaked with more short time intervals and
rare large time intervals, leading to heavier tails than with the n-
coalescent; median values for the TMRCA of the different models
were 0.00379 for the f -coalescent with α= 0.9 and 0.00026 with
α= 0.8; 0.00667, 0.00343, and 0.00031 for the n-coalescent with
no growth, strong growth, and strong shrinkage, respectively;
the BS-coalescent had medians of 0.00576 with TC = 0.01 and
0.00288 with TC = 0.005. The expectation of the TMRCA for the
n-coalescent for five samples simulated with a Θ = 0.01 is 0.008.
The expected TMRCA for the f -coalescent is infinite because of
the heavy tail (cf. 34). Comparisons with the BS-coalescent are
more difficult because of the parametrization (details are in SI
Appendix, section J). We recognize that distributions of some the
f -coalescentTMRCA and some of the BS-coalescentTMRCA look
rather similar compared with the others, but the mapping of the
parameter Tc and Θ and comparison of the f -coalescent with the
BS-coalescent will need further investigation.

Simulation. We evaluated the algorithms using simulations. We
updated our simulator package (available at https://github.
com/pbeerli/fractional-coalescent-material) to allow generating
genealogies from the f -coalescent (details are in SI Appendix,
section J) (35–38). In general, it will be difficult to recover
the parameter α that was used to simulate the data (SI
Appendix, Fig. 2); data simulated with a particular α have
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Fig. 1. Empirical distribution of the time of the most recent common
ancestor for various coalescents: strictly bifurcating (A) and f-coalescent
vs. n-coalescent and multifurcating BS-coalescent (B). The x axis is trun-
cated at 0.03. Each curve represent a histogram of 100,000 draws of the
TMRCA.

a considerable range when estimated. A problem with these
simulations is that the number of variable sites is dependent on
the mutation-scaled population size Θ and the simulated branch
length. Despite having the same Θ = 0.01 among all simulations,
the number of variable sites varies considerably over the range
of α: With an α= 0.4, ∼ 78

10,000
sites (mean) are variable, com-

pared with α= 1.0 with 253
10,000

sites. With α≤ 0.4, it is common
to see no variable sites in a locus; median among 100 loci is zero.
Low-variability datasets are difficult to use in any coalescent
framework.

Simulated Heterogeneity and the f-Coalescent. Environmental het-
erogeneity can have an effect on the capacity to produce
offspring. We have developed a simple forward population
simulator (open source software on https://github.com/pbeerli/
fractional-coalescent-material) that assigns an environmental
quality affecting the chance of each individual of having off-
spring; otherwise, the simulator assumes a Wright–Fisher pop-
ulation with constant population size and every generation the
parental population dies. If the simulator runs long enough, then
one can generate a population genealogy out of which we can
draw a coalescent sample of n individuals. Using these genealo-
gies, we then generated DNA-sequence datasets that come from
different regimes: (i) the environmental quality is the same for
all (“equal”); (ii) the environmental quality is different, with
three categories with relative rates of 1, 2, and 4 (“skewed”); and
(iii) with relatives rates of 1, 2, and 8 (“more skewed”). Fig. 2A
shows the distribution of the TMRCA for the three scenarios. The
results suggest that variable environments change the TMRCA to
become more recent than those in invariant environments on

which the standard coalescent is based. We compared the f -
coalescent with our heterogeneity simulations, and Fig. 2B shows
that the f -coalescent with α< 1 may give good descriptions of the
fluctuating environment in the past when we use Bayesian-model
selection criteria.

Comparing the f-Coalescent with Structured Coalescence and Popu-
lation Growth. The f -coalescent has an additional parameter α
which could reflect hidden structure. To explore whether the
parameter α responds to population structure, we simulated data
using the structured coalescent for two populations exchanging
migrants using three different magnitudes of gene flow (details
are in SI Appendix, section K). These datasets were evaluated
under two different scenarios: For scenario A, we sampled data
from both subpopulations, and for scenario B, we collected data
only from subpopulation 1. For scenario A, we ran models that
assumed that the population is (i) not structured with α< 1, (ii)
the standard single-population n-coalescent, and (iii) a struc-
tured n-coalescent model. A Bayesian-model selection approach
excludes all models with α< 1. The nonstructured standard
n-coalescent model is rejected for the low and medium gene-
flow scenarios, but the single-population n-coalescent model is
the best model for data simulated with high immigration rates
(details are in SI Appendix, section K). For scenario B, we ran
models that assume that the population is (i) not structured with
α< 1, (ii) the standard single-population n-coalescent, and (iii) a
model that assumes a ghost population (39). Models that include

A

B

Fig. 2. Comparison of the effect of variable environment on genealogy
and estimation. (A) Effect on the time of the most recent common ancestor;
histogram of 1,000 independent genealogies of 10 individuals. (B) Ln mL of
a single-locus dataset for different values of α as a measure of the effect of
the environment on the data.
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A B C

Fig. 3. Model selection using relative mLs of an H1N1 influenza eight-locus (A), a P. falciparum mtDNA (B), and a humpback whale mtDNA (C) dataset.
The solid line connects the ln mLs of models with different α values; the dashed line marks the mutation-scaled effective population size Θ; and the square
marks Θ of the best model for each dataset.

high to very high immigration picked the n-coalescent model
as the best, rejecting the f -coalescent and the ghost-population
model. With low immigration rates, the f -coalescent model had
higher marginal likelihoods (mLs) at α= 0.9, suggesting that
rare migrants will disturb the exponential waiting time pattern
of a single n-coalescent population (SI Appendix, Tables S2
and S3).

Real Data Results. We used three biological datasets to explore
whether the f -coalescent could be a better fit than Kingman’s
n-coalescent: an H1N1 influenza dataset of the Mexico City out-
break in 2014, a malaria parasite (P. falciparum), and a dataset
of North Atlantic humpback whales (Fig. 3; detailed description
is in SI Appendix, section J) (40–42). For the humpback whale
data, model selection using mL suggests that models within the
range of 0.8<α≤1.0 are preferred with relative log mL (relative
lmL) >− 2.07, which translates to model probabilities of >0.04;
models with an α<0.6 had a model probability of 0.0000. The
maximum mL was at α= 0.95. The estimated mutation-scaled
population size, Θ, varied considerably in this range. At α= 0.8,
Θ was 0.03030, and at α= 1.0, Θ was 0.01170. The best model
had a mode of Θ = 0.01470 and a 95%−credibility for Θ from
0.0000 to 0.03480. Kingman’s n-coalescent is a good fit for the
humpback whale dataset. For the malaria-parasite data, mod-
els within the range of 0.55<α≤0.85 had relative lmL >− 3.49;
all tested models within the range of 0.55<α<0.85 had model
probabilities >0.01. The maximum mL was at α= 0.7. The esti-
mated mutation-scaled population size, Θ, varied considerably
in this range. At α= 0.55, Θ was 0.11007, and at α= 0.85, Θ
was 0.00693. The best model had a mode for Θ = 0.03051 and
a 95%−credibility interval from 0.02340 to 0.03762. Kingman’s
n-coalescent was a poor fit the malaria-parasite data. The eight-
segment dataset of the H1N1 strain of influenza from Mexico in
2014 had a well-defined maximum mL at α= 0.7. Models within
the range of 0.60≤α≤0.80 had relative lmL >− 3.20; all tested
models within the range of 0.55<α<0.85 had model probabil-
ities > .01. The estimated mutation-scaled population size, Θ,
varied considerably in this range. At α= 0.6, Θ was 0.10530,
and at α= 0.80, Θ was 0.03210. The best model had a mode
for Θ = 0.05790 and a 95%−credibility interval from 0.02640
to 0.09504. Kingman’s n-coalescent was a poor fit the influenza
data. We also ran a model that used the n-coalescent and expo-
nential growth, estimating two parameters (growth g and Θ). The
mL for the θ+G model (lmL = −19,455.27) was lower than
the best model with α= 0.80 (lmL = −19,338.28) and also lower
than the constant-size n-coalescent model (lmL = −19,342.24);
the relative lmL comparison with the best model was −118.14,
suggesting that the growth model is inferior to the f -coalescent.
MIGRATE output files are available in the github repository
(https://github.com/pbeerli/fractional-coalescent-material).

Discussion
A feature of the f -coalescent is the ability to accommodate
very variable time intervals. Mixtures of very short branch
lengths with very large branch lengths are possible, whereas
the n-coalescent forces a more even distribution of these time
intervals. Extensions of the n-coalescent to allow for popu-
lation growth or population structure do not match the vari-
ability of time intervals of the f -coalescent. With exponential
population growth, time intervals near the sampling date are
enlarged, and near the root of the genealogy, the time inter-
vals are shortened; the n-coalescents with exponentially shrink-
ing populations also have heavy tails, but seem to have more
longer branches than the f -coalescent. In the f -coalescent,
time intervals near the tips are shortened, and time intervals
near the root are lengthened. Analyses of data that were sim-
ulated by using a structured n-coalescent model show that only
when we remove half of the simulated data and analyze a
single subpopulation with models that assume that this is an
isolated panmictic population will we get a better model fit
with a f -coalescent model when the immigration rate is 1 per
10 generations. The unique mix of short and long waiting times
of the f -coalescent thus may allow inferences with unknown
compartmentalization that may mimic environmental hetero-
geneity within a single population, but we will need to extend
our single-population f -coalescent to structured populations to
study these types of models. The three real data examples sug-
gest that the f -coalescent is a better fit to the data for the
pathogens and not for the long-lived humpback whales. The
mL comparison of different α for the humpback whales did
not reject the Kingman’s n-coalescent, but the malaria-parasite
data and the influenza data rejected the n-coalescent clearly.
This may indicate that the f -coalescent may improve our
understanding of evolution of long-lived vs. short-lived organ-
isms or fast-evolving organisms that are under selection. The
environmental heterogeneity within a population in these three
datasets could be explained by the f -coalescent. The three
datasets represent very different life-history strategies: Hump-
back whales live a long time, can move very far, and have only
few offspring; the malaria parasite needs to be able to live in
the saliva of mosquitoes and the bloodstream of vertebrates;
and influenza viruses may encounter individual immune sys-
tems that may lead to high variability in the resulting dataset.
Results show that environmental heterogeneity may have lit-
tle effect on humpback whales, whereas the malaria-parasite
and influenza data suggest that heterogeneity may need to
be considered if we want to make informed decisions. The
estimates of the effective population sizes and thus the diver-
sity estimates of the different species is highly dependent on
the heterogeneity parameter α—for example, the population
size of influenza is considerably underestimated when using
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Kingman’s n-coalescent. Our introduction of the f -coalescent
opens a window into further research that allows handling of
heterogeneity that cannot be explained by population growth
or population structure.
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