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A B S T R A C T   

The assessment of tissue chromophores at a volumetric scale is vital for an improved diagnosis and treatment of a 
large number of diseases. Spectral photoacoustic imaging (sPAI) co-registered with high-resolution ultrasound 
(US) is an innovative technology that has a great potential for clinical translation as it can assess the volumetric 
distribution of the tissue components. Conventionally, to detect and separate the chromophores from sPAI, an 
input of the expected tissue absorption spectra is required. However, in pathological conditions, the prediction of 
the absorption spectra is difficult as it can change with respect to the physiological state. Besides, this con
ventional approach can also be hampered due to spectral coloring, which is a prominent distortion effect that 
induces spectral changes at depth. Here, we are proposing a novel data-driven framework that can overcome all 
these limitations and provide an improved assessment of the tissue chromophores. We have developed a 
superpixel spectral unmixing (SPAX) approach that can detect the most and less prominent absorber spectra and 
their volumetric distribution without any user interactions. Within the SPAX framework, we have also imple
mented an advanced spectral coloring compensation approach by utilizing US image segmentation and Monte 
Carlo simulations, based on a predefined library of optical properties. The framework has been tested on tissue- 
mimicking phantoms and also on healthy animals. The obtained results show enhanced specificity and sensitivity 
for the detection of tissue chromophores. To our knowledge, this is a unique framework that accounts for the 
spectral coloring and provides automated detection of tissue spectral signatures at a volumetric scale, which can 
open many possibilities for translational research.   

1. Introduction 

The non-invasive assessment of molecular tissue components plays 
an essential role to facilitate improved medical diagnosis and treatment 
monitoring. In the past decade, there has been a clear emphasis to 
monitor physiological and pathological changes in a volumetric vision 
instead of specific 2-dimensional (2D) planar views of the respective 
organs [1]. Thus, most of the recent developments in pre-clinical im
aging are evolving in the direction of whole-body visualization. This 
enables the systemic follow-up of disease progression and also the 
visualization of multiple organs, by promoting the reduction and 
refinement of laboratory animals [2]. Many established tomographic 
imaging modalities facilitate whole-body imaging in pre-clinical studies. 
Although these imaging techniques are widely used, they also have some 
drawbacks. For example, preclinical MRI suffers from long acquisition 

time and expensive hardware to attain a homogeneous magnetic field to 
guarantee high spatial resolution [3,4]. Other alternatives, such as 
X-ray, CT [5,6], and PET [7] use ionizing radiation that can lead to 
undesired side effects in longitudinal studies [8]. 

Optical imaging modalities, such as fluorescence [9] and biolumi
nescence [10], represent a radiation-free option that enables 
whole-body imaging [11]. Further optical imaging modalities, such as 
optical coherence tomography [12,13], diffuse optical tomography [14, 
15], and hyperspectral imaging [16,17] have been investigated in 
pre-clinical research and also translated towards clinical applications 
[18–20]. Although optical imaging technologies are promising in 
monitoring molecular information due to their high sensitivity, most of 
these approaches suffer from lower spatial resolution and imaging depth 
[21]. 

The hybrid imaging techniques that combine complementary 
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modalities, represent the ideal solution to mitigate these limitations of 
imaging depth and spatial resolution. Recently, different combinations 
such as optical-CT, PET-CT, PET-MRI, and Ultrasound-Photoacoustic 
(US-PA), have been integrated to facilitate multimodal information of 
the tissues [22]. The combination of US-PA is a hybrid technique as it 
can simultaneously provide the anatomical, functional, and molecular 
information of the tissue of interest. 

Photoacoustic (PA) is a non-ionizing technology that is based on 
laser-induced ultrasound waves [23–25]. In PA, near-infrared (NIR) 
pulsed laser light is used for tissue excitation. The optical energy ab
sorption induces tissue thermoelastic expansion that leads to the gen
eration of acoustic signals, which can be detected just as conventional 
ultrasound. Since ultrasound scattering in biological tissues is almost 
three orders lower than optical scattering, US-PA guarantees higher 
spatial resolution and imaging depth (up to several cm) as compared to 
pure optical techniques [26]. 

In photoacoustic the signal generation is proportional to the optical 
absorption contrast. Thus, illuminating the tissues at different wave
lengths enables the detection of molecular tissue constituents. Particu
larly, since tissue chromophores have distinct spectral absorption 
signatures, spectroscopic PA imaging is intrinsically sensitive to detect 
biomarkers, endogenous, and exogenous contrast agents [27]. Recently, 
spectral photoacoustic imaging (sPAI) has shown potential for a wide 
range of applications such as tumor theranostics, oxygen saturation 
imaging, atherosclerotic plaque detection, and the imaging of sentinel 
lymph nodes [28–33]. 

Linear spectral unmixing is a commonly used method to differentiate 
specific tissue components from sPAI [34]. This is a fitting-based method 
to unmix the spectra, therefore it requires the user interaction to input 
the expected tissue chromophores. In the case of disease conditions, 
these types of supervised spectral unmixing can be challenging, as the 
actual absorption spectra of the chromophores could differ from the 
theoretical curves [35]. 

A highly sensitive spectral unmixing method that can accurately 
distinguish all the molecular tissue components, without any user in
teractions, is auspicious. Unsupervised Machine Learning (ML) ap
proaches such as Principal Component Analysis (PCA), Independent 
Component Analysis (ICA), Vertex Component Analysis, and Non- 
negative Matrix Factorization (NNMF) are label-free methods that 
extract characteristic components in a data-driven way [36,37]. On the 
other hand, various neural network architectures have been also pro
posed to automatically unmix oxy- and deoxy- hemoglobin spectra, by 
utilizing large training datasets of sPAI [38]. Generally, these algorithms 
follow an iterative optimization procedure that minimizes the cost 
function. Besides, the strong PA signal from the oxy/deoxy hemoglobin 
can obscure the presence of less prominent components, such as lipids 
and collagen, leading to incomplete identification of tissue constituents. 
Thus, if the majority of the observed pixels contain high absorbing tissue 
components, there is a significant probability that the less prominent 
absorbers are discarded in the iterative optimization, as the spectra of 
these can be overlapped. Hence, these approaches mainly detect the 
most prominent absorbers, such as melanin and oxy/deoxy hemoglobin 
[39]. 

Spectral coloring effect is a known artifact, that plays a crucial role in 
the sensitivity and specificity of tissue biomarkers detection and thus 
limits the current translational research applications. This is a corrup
tion effect that alters the spectrum of the incident light along the tissue 
heterogeneity at depth and consequently leads to misinterpretations of 
the absorption spectrum shape of the tissue components [40]. Specif
ically, due to light fluence attenuation along the depth, it is difficult to 
retrieve the actual absorption fingerprint of the tissue components from 
sPAI. For example, the same absorber at different depths might show a 
diverse absorption spectrum as the absorbed light is different. To 
compensate for the light fluence variations along the depth, pre-defined 
simulations can be used, but this approach is also complex as it requires 
detailed information about the tissue to be imaged [41]. Recently, 

Tzoumas et al. [42] have proposed an eigenspectra-based fluence 
correction approach and automatically estimated the blood oxygen 
saturation (SO2) in deep tissue. Their proposed approach is based on 
fluence modeling through the eigenspectra analysis which is mainly 
used to compensate for SO2. Hence, it is still challenging to automati
cally and accurately extract multiple molecular components, such as 
prominent and weaker tissue absorbers, from sPAI. 

In this work, we developed a novel data-driven superpixel PA 
unmixing (SPAX) framework to enable the differentiation of molecular 
tissue components, without any user interactions. The framework is also 
extended to compensate for the spectral coloring artifact. To compensate 
for the spectral coloring we are proposing an automated US image 
segmentation and spectral Monte Carlo (MC) light fluence simulations 
based on a predefined library of tissue optical properties. The approach 
is also optimized for the volumetric assessments of tissue composition. 
Besides, it includes an optimized visualization of the molecular com
ponents’ distribution with unprecedented details. This is a unique data 
processing procedure, that differentiates the SPAX framework from the 
other spectral unmixing algorithms. We benchmarked the sensitivity 
and accuracy of the proposed approach on tissue-mimicking phantoms, 
volumetric tissue composition, and also on whole-body animal imaging. 

2. Material and methods 

2.1. Theoretical background 

In photoacoustic (PA), nanosecond pulsed laser light is used as an 
excitation source, causing thermoelastic expansion of the tissues. The 
corresponding initial pressure distribution leads to the generation of 
acoustic waves that propagate toward the ultrasound (US) detectors. 
Therefore, the reconstructed PA image is a spatial representation of the 
initial pressure distribution p0( r→, λ) defined as follows: 

p0( r→, λ) = Γ( r→)μa( r→, λ)Φ( r→, λ; μa, μs, g) (1) 

where r→ represents the spatial coordinates of the voxel, λ is the 
wavelength, μa is the optical absorption coefficient, μs is the scattering 
coefficient, g is the optical anisotropy factor, Γ is the Grüneisen 
parameter, and Φ is the light fluence. As established by Eq. (1) the initial 
pressure distribution p0( r→, λ) depends on the wavelength of excitation λ 
and the fluence Φ. During spectroscopic photoacoustic imaging (sPAI), 
the intensity of each pixel at different wavelengths is proportional to the 
absorption spectrum of a combination of tissue components p0( r→, λi) ≈

μa( r→,λi), where λi ∈ {λi,…, λN} and N is the total number of wavelengths 
of the excitation light. This is a low-rank approximation of the sPAI. 
Hence, the pixels intensity of the sPAI and consequently the underlying 
initial pressure distribution can be represented as: 
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where q is the number of distinct dominant absorbers, [C1], ..., [Cq]

represent the concentrations of the different components, and ελi
C1
,…, ελi

Cq 

are the molar extinction coefficients of the components, ∀λi, where i ∈ {

1, ...,N}. 
In a Linear Mixture Model (LMM), the sPAI can be formalized as: 

X ≈ WH (3) 

where X ∈ Rp×N is the mixture matrix of p observations and N vari
ables. X contains per each column the vectored PA image at a specific 
wavelength. The matrices W ∈ Rp×q and H ∈ Rq×Ncontain the abundance 
maps and the absorption spectra of q source components, respectively. 

As described by Li et al. [43] the conventional approach to solve Eq. 
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(3) is to input the source spectra H as a priori information. Besides, blind 
source separation algorithms [44] can also be used to iteratively solve 
Eq. (3), where both H and W are unknown variables. 

2.2. Superpixel Photoacoustic Unmixing (SPAX) framework 

Fig. 1 shows the flowchart of the SPAX framework. Each procedure 

within the framework has been implemented and refined in order to 
minimize the user interaction. A detailed description of the SPAX 
framework procedures is provided below. 

2.2.1. Input data 
The high-resolution ultrasound (US) and multi-spectral photo

acoustic images (sPAI), within the wavelength range of 680 − 970nm, 

Fig. 1. Flowchart of the Superpixel Photo
acoustic Unmixing (SPAX) Framework. The 
numbers (1 − 6)represent the sequence of pro
cedures implemented within the SPAX frame
work. Symbols legend: λi: light wavelength; 

μa: absorption coefficient; μs: scattering 
coefficient; g: anisotropy coefficient; n: refrac
tive index; p0: initial pressure; r→: spatial co
ordinates; Φ: light fluence; Γ: Grüneisen 
parameter; X: mixture matrix; p: number of 
observations; N: number of variables; W : 
abundance maps; H: source spectra; U: left- 
eigenvectors; S: eigenvalues; V: right- 
eigenvectors; q: number of endmembers; 
E[HiHj]: cross-correlation; X̂s : mixed subset; k: 
number of mixed subsets; Ĥs : source spectra of 
X̂s .   
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represent the input of the proposed SPAX framework. 

2.2.2. Automated segmentation 
An automated segmentation approach that differentiates various 

tissue structures has been implemented to guide the light fluence 
compensation. Within this approach by utilizing the high-resolution US 
images, the skin line, tissue structures, and coupling medium can be 
detected. Specifically, the skin-line boundary was automatically ob
tained by determining a threshold from the ditch of the gradient histo
gram of the US image. After thresholding the US image, the Sobel filter is 
applied as edge detection method for finding the tissue boundaries. 
Thus, the detected skin line is then used as a watershed to distinguish the 
tissue structures and the background. Besides, in the case of phantom 
imaging, circular inclusions can be recognized by using the Hough 
Transform, which results in fully-automated segmentation. 

Once segmented, the images are labeled and tagged with optical 
properties gathered from literature in terms of absorption and scattering 
[45–48]. Thus, each cluster is linked with the spectral optical properties 
collected in a predefined library. This predefined collection of spectral 
optical properties of the tissue components is provided in detail in the 
Supplementary Materials (see Supplementary Materials; SupMatTable). 
The tissue optical properties values have been retrieved from literature 
at each wavelength of the sPAI acquisition. For exogenous agents, the 
absorption characteristics have been measured via spectrophotometer 
and the scattering properties were evaluated according to the concen
tration of the pigments by following the Mie scattering theory [49]: 

μs =
2 • 0.016

λ2.4 C; μ′

s = μs(1 − g); g(λ) = 1.1 − 0.58λ (4) 

where μs denotes the scattering coefficient in mm− 1, λ is the wave
length of the light in µm, C is the concentration in mL/L, μ′

s is the reduced 
scattering coefficient, and g is the anisotropy factor approximated by Eq. 
(4). 

2.2.3. Fluence compensation 
After the segmentation, the light fluence correction step has been 

incorporated into the SPAX framework. The light fluence distribution 
was simulated with MCXLAB [50] at each wavelength of light used 
during the sPAI acquisition. Fluence simulations were run with 109 

photons, all launched isotropically at each wavelength, and voxel linear 
length of 0.3mm. Although in the experiments we are using a double-side 
illumination as a light source, the two beams are converging, and thus 
guarantee a uniform illumination at the surface. Since during the US-PA 
image acquisition, we are normally positioning the surface of the sam
ple/animal close to this converging point, we could approximate the 
light source as a truncated Gaussian beam in the simulations. Thus, the 
excitation light source was set as a truncated Gaussian beam with a waist 
radius of 200 voxels, with its center on the top of the skin line. The 
fluence map is obtained by integrating the flux output from MCXLAB 
over time, using time steps of 0.01ns for a total range of 50ns. The light 
fluence distribution has been simulated in 2D per each slice of the 
volumetric domain. Finally, since the same energy has been used at each 
wavelength to attain the fluence in each voxel, this is normalized to the 
total energy from the light source. Thus, the obtained fluence maps were 
normalized and the results have been interpolated to render and match 
the volumetric imaging domain. 

2.2.4. Automatic estimation of the hyperparameter 
Singular Value Decomposition (SVD) is implemented to estimate the 

number of significant components, named hyperparameter (q), by 
inspecting the mixed sPAI data along orthogonal directions. The auto
matic tune of the rank hyperparameter is crucial to have an unbiased 
characterization of the tissue composition. In particular, the SVD 
method enables to determine and sort the directions along which the 
variables exhibit higher variation, which represents the low-rank 

approximation of the original data [51]. To estimate the number of 
significant components, the so-called elbow method has been applied 
[52]. Thus, the mixed sPAI matrix X, which is also described as a linear 
mixture in Eq. (3), is expressed as X =USVT, where U and V are matrices 
of the left- and right-eigenvectors respectively. S is the diagonal matrix 
of eigenvalues in decreasing order. The gradient operation has been 
applied to the eigenvalues to determine the “elbow”. By interpolating 
the eigenvalues after the elbow with linear fitting, the noise level is 
defined. We selected the SNR 2 : 1 as a watershed to automatically 
distinguish the relevant information above the defined noise level. 
Consequently, all the eigenvalues that have SNR higher than 2 : 1 are 
selected and thus it defines the actual number of endmembers q. 

2.2.5. Unsupervised unmixing of prominent absorbers 
The unsupervised unmixing of the prominent absorbers is based on a 

modified and optimized version of Non-negative Matrix Factorization 
(NNMF). This approach recognizes an initial set of underlying highly 
absorbing molecular components, such as oxy/deoxy hemoglobin. Thus, 
q source spectra (H) and the respective abundance maps (W) are ob
tained. The details of the optimized NNMF algorithm are described in 
our previous work [53]. 

2.2.6. Superpixel subsampling 
After the unmixing of the prominent absorbers, to differentiate the 

less prominent molecular components, a novel spectral superpixel sub
sampling (SS) approach has been implemented and integrated within 
the SPAX framework. In this procedure, we further analyze the spectra H 
and the respective distribution pixels W, where there is an overlapping 
of the prominent absorbers. A detailed workflow of the superpixel 
subsampling procedure is provided and described below. 

SS-Step1: Cross-correlation of the source components H. To 
select the overlapping wavelengths and pixels a cross-correlation is 
performed between all the prominent detected spectra H, obtained from 
2.2.5. The cross-correlation matrix E

[
HiHj

]
, where i, j ∈ {1,…, q}, is 

symmetric. The correlation coefficients can range from − 1 to 1, with 0 
representing no correlation, − 1 and 1 representing a direct negative or 
positive correlation respectively. 

SS-Step 2: Subsampling. Each matching pair of spectra (HiHj) with 
a positive correlation (E

[
HiHj

]
> 0) is analyzed in detail and the wave

lengths in which the components have similar intensity are selected for 
further analysis. 

In addition to the spectral analysis, the abundance maps (WiWj) 
obtained from 2.2.5 of the positively correlated components were also 
further analyzed. A pixel-to-pixel intensity comparison is performed 
between the respective abundance maps. A kernel of dimension three 
around each pixel is used to determine the pixels’ average used as a 
threshold. The pixels with similar intensities, which are above the 
threshold have been selected. In this way, subgroups of meaningful 
wavelengths and pixels are obtained for further analysis. 

In particular, by using the subgroup of wavelengths and pixels, a 
reduced subset (X̂s) is created from the original raw dataset (X). Where 
s ∈ {1, ..., k} and k represents the number of positively correlated com
ponents. 

SS-Step 3: Subsets Unmixing. To detect less prominent absorbers, 
per each subset X̂s , the unmixing procedures 2.2.4 and 2.2.5 are reit
erated till the process converges. Thus, per each subset ̂Xs , after SVD and 
NNMF a subgroup of spectral components Ĥs is obtained. This pro
cedure is repeated till all the k subsets have been analyzed and thus the 
condition s+1 > k is verified. 

SS-Step 4: Interpolation & Clustering. The spectral components 
Ĥs , obtained from each reduced subset X̂s , are linearly interpolated to 
have the original number N of variables/wavelengths. Finally, k-means 
clustering approach was used to classify all the detected source com
ponents H and resized Ĥs , obtained from the original mixture X and all 
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the subsets X̂s respectively. 
Further details of the superpixel subsampling data processing, with 

an example, are provided in Section 3.2. 

2.2.7. Output data 
Finally, the tissue spectral components are extracted in an unsuper

vised way from sPAI. A comparison with the reference absorption 
spectra known from the literature [47] has been performed. Thus, some 
of the endogenous tissue chromophores, such as oxy/deoxy hemoglobin, 
and fat can be recognized. Especially in the case of disease models, there 
is also a good chance to detect additional spectra that are unknown and 
that cannot be compared with spectra from the literature used as a 
reference. The increased number of automatically extracted spectra 
demonstrates the higher sensitivity of the proposed approach to reveal 
any spectral feature. 

Besides the spectral components, the respective distribution maps 
have been also obtained and refined to enhance the vessel structures by 
using the Frangi filter [54]. 

2.3. Data acquisition 

High-resolution Ultrasound (US) and spectral Photoacoustic imaging 
(sPAI) have been acquired by using the platform Vevo LAZR-X (FUJI
FILM VisualSonics, Inc., Toronto, ON, Canada). The imaging setup in
cludes a high-frequency US system (Vevo 3100), an optical parametric 
oscillator (OPO) integrated Nd:YAG nanosecond pulsed laser, and the 
animal imaging platform. The US system is equipped with a linear US 
transducer array (MX201) that consists of 256 elements at a nominal 
center frequency of 15MHz and bandwidth of 10 − 22MHz. This trans
ducer guarantees an axial and lateral resolution of 100μm and 220μm 
respectively. Light from the laser is delivered to the tissue through op
tical fibers, mounted on either side of the transducer. To obtain the 
homogenous light illumination, the sample to be imaged is placed on the 
converging area of the two light beams. The repetition rate of the laser is 
20Hz, and the spectral photoacoustic images can be acquired by tuning 
the laser wavelengths within the range of 680 − 970nm. The system 
allows the selection of any wavelength within this NIR range. In 
particular, for the experiments, we have used a step size of 5nm between 
the wavelengths to acquire the spectral PA images. 

During volumetric US-PA acquisitions, a stepper motor is used for the 
linear translation of the US transducer and optical fibers along the 
sample. The linear stepper motor moves in steps of a minimum of 0.1mm 
while capturing 2-D parallel images, for a maximum 3D range distance 
of 6.4cm. The voxel size used for the reconstructed US and PA imaging 
was (0.062× 0.051× 0.3)mm. A modified animal setup (see Supple
mentary Materials; SupMatFig) has been used for the whole-body sPAI 
acquisition. A small water container with an optically and acoustically 

transparent thin polyurethane membrane was used to guarantee the 
optimal acoustic coupling during the acquisitions. The water tempera
ture was kept at 34℃. During the whole-body acquisitions, the stepper 
motor translated along the animal body from cranial to caudal in steps of 
0.3mm. The configuration in epi-illumination, the ECG monitoring, and 
the respiratory gating have been maintained during all the in vivo whole- 
body experiments. 

2.4. Experimental validation 

The SPAX framework has been tested and validated by using tissue- 
mimicking phantoms and in vivo experiments. 

2.4.1. Agarose phantom 
The spectral coloring compensation approach included within the 

SPAX framework has been tested on a phantom made from agarose. The 
schematic illustration of the phantom is depicted in Fig. 2 (A). This in
cludes two absorbers secured into a 3D printed chamber, fixed at 18mm 
and 28mm from the transducer. The inclusions have been fabricated by 
mixing native gel wax (FF1 003, Mindsets Online, Waltham Cross, UK) 
with 0.05%w/v of black oil color (Winsor & Newton, London, UK) as 
described elsewhere [55]. The bulk material of the phantom is made of 
1.5%w/v Agar (Alfa Aesar, Heysham, Lancaster), mixed with Intralipid 
(IL) (20%, Sigma-Aldrich, Canada) and Verdye (Diagnostic Green 
GmbH, Aschheim, Germany). A 1 : 2 dilution of Verdye 0.03%w/v and 
IL 2%w/v have been used to achieve the absorption as μa = 0.15cm− 1 

and the scattering as μ′

s = 5cm− 1 of the bulk material 
(Agar-IL-Verdye). 

The absorption spectra of Verdye and Black ink were optically 
characterized with the spectrophotometer and the results were shown in 
Fig. 2 (B). The black ink used for the inclusions shows a broad absorption 
spectrum while the Verdye included in the bulk material has a charac
teristic spectrum with an absorption peak at 880nm. The spectral optical 
properties of the phantom absorber materials are reported in Supple
mentary Materials (see Supplementary Materials; SupMatTable) and 
these were used to set the Monte Carlo fluence simulations. In addition, 
water has been used as a coupling material to fill 15mm depth between 
the solid phantom and the US transducer. 

2.4.2. Tissue phantom 
A tissue phantom is used to evaluate the detection of multi-spectral 

components by SPAX framework. The phantom combines endogenous 
muscle-fat tissue layers and exogenous inclusions with different ab
sorption characteristics. The advantage of this approach is that this 
tissue phantom offers good approximations of realistic samples. A 
schematic illustration of the phantom is depicted in Fig. 3 (A). The 
phantom was prepared by using a muscle layer from veal meat of 15mm 

Fig. 2. Schematic of the agarose phantom (A); Absorption spectra of Verdye and Black Ink measured by spectrophotometer (B).  
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thickness. The tissue was selected to contain pure and untreated muscle 
tissue and not blood. Three cylindrical absorbers have been embedded 
within the muscle tissue. The cylindrical inclusions have been prepared 
by mixing gel wax (FF1 003, Mindsets Online, Waltham Cross, UK) with 
three different oil colors (Winsor & Newton, London, UK). Specifically, 
0.05%w/v of black, green, and blue oil colors have been mixed with 
melted gel wax respectively. Finally, these have been poured into 3D 
printed cylindrical curved molds, used to shape the three inclusions (see 
Fig. 3 (A)). The absorption spectra of the oil colors have been measured 
via spectrophotometer and reported in Fig. 3 (B). Besides, a 1mm thick 
fat layer, from porcine lard, has been embedded on top of the muscle 
layer. Thus, the tissue phantom is composed of multiple components: the 
cylindrical inclusions that are prominent absorbers and the fat layer that 
has less prominent absorption characteristics. Water has been used as a 
coupling medium during the US-PA imaging acquisition to fill 15mm 
depth between the phantom and the US transducer. 

2.4.3. In vivo experiments 
The in vivo experiments were conducted at FUJIFILM Sonosite/Vis

ualSonics facility in Amsterdam, The Netherlands. All the experiments 
involving animals were in full compliance with the protocol (AV 
D2450020173644) evaluated and approved by the Animal Use and 
Ethics Committee (CEUA) of The Netherlands. These were in accordance 
with FELASA guidelines and the National Law for Laboratory Animal 
Experimentation (Law No.18.611). For the hindlimb and whole-body 
imaging, a female CD-1 mouse model (Envigo, Horst, the Netherlands) 
and athymic nude-Foxn1nu mice (Envigo, Horst, the Netherlands) were 
used respectively. Mice were anesthetized with isoflurane (2%–3% by 
volume with 0.8l/min gas flow). The US and sPAI acquisition of the 
hindlimb region was performed with the animal in its supine position, 

while the whole-body imaging have been acquired from supine and 
prone positions with the transducer aligned perpendicularly to image 
the region of interest. 

3. Results 

This section presents the results of the SPAX framework on the tissue- 
mimicking phantoms and also on the volumetric animal imaging. 

3.1. Spectral coloring compensation 

The agarose phantom has been used to validate the spectral coloring 
compensation procedure included within the SPAX framework. Besides, 
the unmixing results obtained with and without the spectral fluence 
compensation have been evaluated. Fig. 4 (A) shows the US-PA image of 
the agarose phantom in cross-section at 800nm, where the inclusions at 
two depths are visible. The sPAI of the agarose phantom has been ac
quired within the range of 700 − 970nm. This wavelength range has 
been selected in accordance with the known spectral characteristics of 
the absorbers included within the agarose phantom, thus reducing the 
acquisition time. 

The two inclusions with black ink absorber (named Inclusion1and 
Inclusion2) show higher PA signal intensity than the surrounding. Since 
some fragments of black oil color may remain suspended in the gel wax, 
the US-PA signal within the inclusions could appear not homogenous. 
Fig. 4 (B) shows the PA intensity profiles from the absorbers in the 
wavelength range of 700 − 970nm. By following the conventional 
approach used to evaluate the spectral PA intensity, the shape of the 
inclusions and the respective spectra were obtained by manually 
drawing the ROI around the inclusions. The spectral measurements have 

Fig. 3. Schematic of the muscle-fat tissue phantom (A); Absorption spectra of Blue, Green, and Black oil colors measured by spectrophotometer (B).  

Fig. 4. US-PA image of the agarose phantom cross-section at 800nm, including the manually drawn ROIs around the inclusions at two depths (Inclusion1 and 
Inclusion2) (A); Averaged PA intensity of the pixels within the ROIs of Inclusion1 and Inclusion2 (B). 
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been performed over multiple slices of the phantom. To highlight the 
differences in the spectral shapes of the two inclusions, due to spectral 
coloring along depth, the spectra were normalized to visually enhance 
this effect. Specifically, the spectral data are shown in the graph as the 
normalized average of the pixels’ intensity within the ROIs and the 
standard deviation (shown as the lighter color band along the plotline). 

Although the inclusions are made of the same material, the obtained 
spectra show a different spectral trend. In particular, the PA spectrum 
from the superficial inclusion (Inclusion1) showed a broad trend that is 
more in accordance with the measured absorption spectrum of the black 
ink (Fig. 2 (B)). The spectrum from the deeper inclusion (Inclusion2) has 
shown a lower intensity within the range of [700 − 860]nm, while it 
follows the expected trend above 860nm. These differences in spectra at 
depth are a clear indication of spectral coloring artifact, as the incident 
light attenuates along the depth and thus changes the spectral shape. 

Fig. 5 (A) shows the automated segmentation obtained from the US 
image by using the SPAX framework. From the segmented image, it is 
clear that the phantom, two inclusions, and the coupling medium are 
accurately outlined. Based on the segmentation mask and the defined 
optical properties (see Supplementary Materials; SupMatTable), spectral 
Monte Carlo simulations have been implemented ranging from 700nm to 
970nm. Fig. 5 (B) represents the fluence map at a single wavelength 
(800nm), that qualitatively models the spatial distribution of light en
ergy along the geometry. 

Fig. 6 shows two different scenarios where the automatically un
mixed components were obtained with and without applying the light 
fluence compensation. 

Scenario 1: The spectra obtained without applying the fluence 
correction are shown in Fig. 6 (A-C), where four components have been 
automatically detected. Fig. 6 (A) shows two spectra that are similar to 
the manually obtained spectra from the inclusions (Fig. 4 (B)). In 
addition to the spectra of the inclusions, the SPAX framework has also 
detected two less prominent spectra that could represent the Verdye and 
the background (Fig. 6 (B-C)). 

Scenario 2: Fig. 6 (D-F) show the components detected by the SPAX 
framework, including the segmentation and fluence compensation 
approach. Unlike the previous scenario, here only three spectral com
ponents have been automatically identified. Most importantly, by 
applying the fluence correction, both inclusions have been identified as 
one component with a broad absorption spectrum as shown in Fig. 6 (D). 
The detected spectrum from both the inclusions is in accordance with 
the measured spectrum of the black ink obtained by using the spectro
photometer (depicted as a dashed line). This is clear evidence of over
coming the spectral coloring artifact by using the SPAX framework. In 
addition, improved spectra of Verdye and background have been 
detected and shown in Fig. 6 (E-F). 

Fig. 6 emphasizes the effect of the spectral coloring and the 

compensation of the SPAX framework. Besides, the correlation values 
between the spectra measured by the spectrophotometer and unmixed 
components obtained by the SPAX framework have been evaluated and 
reported in Table 1. Without the fluence compensation, two spectra 
were detected for Inclusion1, Inclusion2 and these have a correlation 
value of 0.87, 0.22 respectively, with the black ink spectrum. On con
trary, when including the fluence correction, the algorithm has detected 
only one spectral component from both the inclusions, which has a 
correlation value of 0.91. This is in accordance with the expectation 
from the fabricated phantom, where both inclusions are made of the 
same component. 

Furthermore, the correlation with the measured Verdye absorption 
spectrum has also been evaluated before and after the correction, and an 
improved value from 0.92 to 0.97 has been obtained. The Verdye (in 
Fig. 6 (E)) shows a slight shift of the absorption peak as compared with 
the Verdye spectrum measured via spectrophotometer (depicted as a 
dashed line). Since the Verdye absorption spectrum depends on the 
concentration of the dye, even small changes in the concentration may 
cause a change in the spectral shape. 

Besides, the automatically obtained background spectrum could be 
related to the Intalipid, since the corresponding abundance map is 
mainly distributed in the surroundings of the inclusions. 

3.2. Superpixel multi-component unmixing 

The spectral PA images of the tissue phantom have been used to 
validate the superpixel spectral unmixing procedures of the SPAX 
framework. Fig. 7 (A) depicts the cross-sectional view of the muscle-fat 
tissue phantom at 700nm, where the PA (red scale) is overlaid on the US 
image (grayscale). Fig. 7 (B) shows all the observed spectra from sPAI, 
after US segmentation and fluence compensation, which are defined as 
the original mixture matrix (X). 

The SVD analysis is performed on these data. This analysis is crucial 
to automatically determine the hyperparameter (q) which represents the 
number of eigenvalues (S) that are significantly above the noise floor. 
Fig. 7 (C) shows the eigenvalues obtained from the tissue phantom sPAI 
dataset, where 6 shown in red are automatically selected as the 
hyperparameter. 

After the identification of the hyperparameter, the unsupervised 
spectral unmixing procedure is performed on the matrix X, and the result 
is shown in Fig. 7 (D), where the 6 source spectra are depicted. These 
obtained components may not be fully unmixed or exclude some weaker 
absorbers. Therefore, after the detection of these 6 components, an 
advanced superpixel subsampling procedure is implemented to refine 
the unmixed spectra. Thus, the superpixel subsampling (SS) approach is 
applied by following the steps as described in Section 2.2.6. 

SS-step1: Within the superpixel subsampling procedure the cross- 

Fig. 5. Segmented mask obtained from the high-resolution US image (A); Light fluence distribution map obtained from the MCXLAB simulation at 800nm (B).  
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correlation values between each pair of these 6 components are evalu
ated. Fig. 8 (A) shows the cross-correlation matrix with the respective 
values obtained per each comparison. Hence, the pairs of spectra which 
have a similar trend will have a positive correlation, while the spectra 
which are easily distinguishable will have negative correlation values. 
To improve the specificity and also to detect the less prominent ab
sorbers, the pairs of spectra with positive correlation values are selected 

Fig. 6. Automatically unmixed spectra without the spectral fluence compensation (A-C); Automatically unmixed spectra including the spectral fluence compensation 
(D-F); The reference spectra of Black Ink* and Verdye* are included as dashed lines (D-E). 

Table 1 
Correlation Values of the Agarose Phantom Components.  

Component Without Correction With Correction 

Black Ink 0.87 (Inclusion1); 0.22 (Inclusion2)  0.91 
Verdye 0.92  0.97  
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for further analysis. 
SS-step2: Specifically, per each pair of positively correlated spectra, 

a subset of mixed data X̂s would be created by selecting specific wave
lengths and pixels. As an example, from the cross-correlation matrix, 
component1 and component2 show a positive correlation value of 0.45. 
For the wavelengths selection, the corresponding spectral intensities of 
component1 and component2 at each wavelength are shown in the scatter 
plot in Fig. 8 (B). Thus, the (x, y) coordinates of each point of the graph 
represent the intensities of the pair of spectra at a specific wavelength. 
Overall, the graph shows the positively correlated spectra at all the 
wavelengths, and the red lines depict the mean intensity values of each 
component of the considered pair. From this process, a subgroup of 
meaningful wavelengths, those that have comparable intensities can be 
selected. Generally, these would be located in the quadrants II and IV. In 
the example, in quadrant II both component1 and component2 result 
above their mean intensity values (red lines). In quadrant IV both 
components have intensity below their mean values. On contrary, the 
wavelengths that appear in quadrants I and III are excluded as their 
intensities are distinct, and thus directly distinguishable. Specifically, in 
quadrants I and III, one component results below and the other is above 
their mean values and vice-versa. 

After the selection of wavelengths, a similar analysis is performed to 
obtain the subgroup of pixels that still need to be distinguished. To this 
end, the abundance maps that display the spatial distribution of the 6 
components are further evaluated. The maps of the positively correlated 
components are used for the pixel-to-pixel intensity analysis, where the 
pixels with comparable intensities are selected. For the example, Fig. 8 
(C) shows a composite image where the abundance maps of component1 
and component2 are overlaid. White pixels in the composite image show 
where the two maps have the same intensities. Magenta and green re
gions show where the intensities are different. Thus, this graphically 

shows that the white pixels are selected for further reiterations, since the 
two positively correlated components are spatially overlapped in there. 

Overall this process of selecting the subgroups of wavelengths and 
pixels is called superpixel subsampling. The same analysis is repeated for 
all the positively correlated pairs of components and as a result, multiple 
subsets X̂s with a reduced number of wavelengths and pixels are ob
tained. 

An example, that represents a subset obtained from the original sPAI 
raw data X is shown in Fig. 8 (D). This represents one of the reduced 
subsets of observed spectra X̂s . In the graph, it is evident that in com
parison to the original mixture matrix X shown in Fig. 7 (B), this subset 
X̂s includes a smaller number of variables and observations. Specifically, 
the wavelengths around 850nm that are characteristics of the strong 
black absorber have been excluded. This example shows that the 
framework adapts the wavelengths and pixels selection to highlight the 
spectra that are generally obscured by the highly absorbing components. 

SS-step3: Per each subset X̂s the same procedures (2.2.4 and 2.2.5) 
are repeated, as for the raw matrix X. The SVD and unsupervised 
unmixing are performed till it converges to detect the meaningful 
components for each subset. 

SS-step4: All the spectral components Ĥs , obtained from each subset 
X̂s , are resized to the same original number of wavelengths N. Finally, k- 
means approach is used to classify the spectral signatures obtained from 
all the subset X̂s and the initial mixture X. Hence, the superpixel sub
sampling process increases the detection of less prominent tissue chro
mophores, those are generally obscured from the most absorbing 
chromophores. 

Fig. 9 (A) shows the spectral components obtained as output of the 
SPAX framework from the tissue phantom. In this case, in total 6 spectral 
components are obtained. Specifically, after superpixel subsampling 4 

Fig. 7. US and PA image at 700 nm of the tissue phantom in cross-section (A); PA spectra of the original mixture matrix X (B); Eigenvalues analysis for the automatic 
estimation of the hyperparameter q, where 6 components resulted above the noise floor (C); Source spectra obtained from the unsupervised unmixing of prominent 
absorbers (D). 
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chromophores have been distinguished as black, green, blue oil colors, 
and fat. The additional 2 components could be related to water and 
background tissue. Fig. 9 (B) shows the distribution maps of the 4 un
mixed components in the 2D cross-sectional view. The fat is the 
component depicted in yellow that is present as a top layer. Under the fat 
layer, the cylindrical inclusions made of highly absorbing dyes are 
depicted in blue, green, and red. Fig. 9 (C) shows the distribution of the 4 
unmixed components in 3D where the three curved cylindrical in
clusions and the layer of fat are distinguished. 

3.3. In vivo Validation 

For the in vivo validations, US-PA images of the mouse hindlimb have 
been used as input. Fig. 10 shows one of the cross-sectional views of the 
mouse hindlimb. 

Specifically, Fig. 10 (A) shows the US image before the image seg
mentation. From the US image, different anatomical structures are 
visible such as the muscle tissue, part of the inguinal region, and the 
popliteal lymph node fat pad (highlighted by the dotted yellow line). 
Fig. 10 (B) shows the PA image at 800nm, before the fluence compen
sation, where the hemoglobin is the prominent absorber. 

Fig. 11 (A) represents the segmentation mask where the skin line in 
yellow, the standard tissue in light blue, and the background in dark 
blue were identified with the automated approach. Fig. 11 (C) depicts 
the US image after the segmentation with the removed background. The 
MCXLAB simulations have been performed on the segmented masks 
between [680 − 970]nm, by utilizing the tissue optical properties sum
marized in the Supplementary Materials (see Supplementary Materials; 
SupMatTable). As an example, the result of the light fluence distribution 
at 800nm is shown in Fig. 11 (B). At each wavelength, the simulated light 

fluence map has been used to correct the corresponding PA image. The 
segmentation and the spectral fluence simulation have been performed 
per each 2D cross-sectional slice and finally extended to match the entire 
volume. Fig. 11 (D) shows the respective PA image at 800nm after the 
segmentation and fluence compensation. As a comparison, Fig. 11 (E) 
represents the PA intensity at 800nm, along the white dotted line 
depicted in Fig. 10 (B) and Fig. 11 (D). After the light fluence compen
sation, the PA intensity increases at depth within the tissue, leading to a 
higher contrast image. A smaller increase of the signal at the surface is 
also induced by the compensation, since the light fluence reaching the 
surface is already slightly diffused. While in deeper regions, the signal 
has a higher increase due to the spectral coloring compensation. 

After the spectral coloring compensation, the SVD analysis is per
formed on these corrected sPAI data. This automatically leads to 
determine the hyperparameter (q), which represents the number of 
components significantly above the noise floor. Specifically, for the in 
vivo validation, 7 is the number that has been automatically selected as 
the hyperparameter. Once the hyperparameter has been identified, the 
unsupervised spectral unmixing procedure is performed, and the initial 
7 spectral components are obtained. 

Finally, the advanced superpixel subsampling procedure is imple
mented to refine the unmixed components. Fig. 12 (A) shows the spec
tral components obtained as output of the SPAX framework from the 
hindlimb. In this case, 7 tissue chromophores have been detected. The 
correlation with theoretical spectra of endogenous tissue chromophores 
(see Supplementary Materials; SupMatTable) is performed and Fig. 12 
(B) shows the 4 spectra that have a positive correlation. Specifically, the 
obtained spectral signatures are matching with the theoretical spectra of 
oxy-hemoglobin, deoxy-hemoglobin, and fat with correlation values of 
0.98, 0.96, and 0.90 respectively. In addition, the spectral component6 

Fig. 8. Cross-correlation matrix of the detected spectral components (A); Component1 and Component2 are an example of positively correlated spectra, which are 
further analyzed to select a subgroup of wavelengths (B). Overlapped cross-sectional abundance maps of Component1 and Component2 used to select a subgroup of 
pixels (C); The scale bar size is 2mm; The subset of spectra obtained from the superpixel subsampling of Component1 and Component2 (D). 
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has shown a correlation value of 0.68 with the theoretical absorption 
spectrum of melanin. Although the correlation value is lower, within the 
abundance map of component6 this resulted mainly distributed along the 
skin line (see Fig. 14 (F)). Thus, this component could be related to skin 
pigmentation, and to have a real comparison with melanin a further 
investigation would be required. For a qualitative comparison of the 
spectra shapes, the theoretical absorption spectra of fat and melanin 
have been also overlaid in Fig. 12 (B) (depicted as dashed lines). 

Besides the tissue spectral curves, the SPAX framework also provides 
the distribution maps of the automatically extracted components. As a 
comparison, Fig. 13 (A-B) shows the unmixed maps of oxy/deoxy he
moglobin obtained from the linear unmixing approach of the hindlimb. 
These maps have been obtained by providing the theoretical spectral 
curves of oxy/deoxy hemoglobin as a priori information. 

On contrary, Fig. 14 represents the abundance maps obtained as 
output of the SPAX framework. The maps of oxy-deoxy hemoglobin have 

been reported before (Fig. 14 (A-B)) and after (Fig. 14 (C-D)) image 
optimization by means of the Frangi filter (FF). The vessel-like structures 
have been enhanced after applying the Frangi filter, thus leading to 
improved visualization of the oxy/deoxy hemoglobin distribution. In 
addition, to oxy/deoxy hemoglobin, the abundance maps of fat and skin 
(Fig. 14 (E-F)) have been detected. Specifically, the distribution map of 
fat obtained as output of the SPAX analysis, as expected, is distributed 
subcutaneously, within the inguinal region, and in the triangular fat pad. 

The maps automatically obtained by the SPAX framework show 
higher accuracy than the linear unmixing. This could be explained by 
the iterative approach that leads to converge to a more accurate solution 
than a fitting-based approach. 

3.4. Whole-body validation 

Furthermore, the data-driven SPAX framework has been extended to 

Fig. 9. Source spectra automatically obtained as output of the SPAX framework (A); Distribution maps of black, green, blue inclusions, and the layer of fat in the 2D 
cross-section (B), and in 3D view (C). 

Fig. 10. The US cross-sectional image of the mouse hindlimb before segmentation (A) where the yellow dotted region indicates the popliteal fat pad which is within 
the intramuscular tissue; The PA image of the mouse hindlimb obtained at 800nm before segmentation and fluence correction (B); The scale bar size is 2mm. 
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whole-body animal imaging. US and multi-wavelength PA volumetric 
images have been used as input for the SPAX framework. Specifically, 
two whole-body scans (30mm × 27mm × 64mm) have been performed 
with the animal in its prone and supine position. Fig. 15 (A-C) depict the 
coronal US images of the animal in prone and supine position 

respectively. The US image guides through the anatomical structures, 
such as kidneys and spine are visible in Fig. 15 (A). As an output of the 
SPAX framework, multiple spectra have been automatically detected 
and the correlation with known tissue chromophores has been per
formed. In addition to the oxy/deoxy hemoglobin, the spectrum of fat 

Fig. 11. Segmentation mask obtained from the 
US image (A); The light fluence distribution 
map at 800nm, where the dashed line indicates 
the light source position (B); The US cross- 
sectional image of the mouse hindlimb after 
segmentation (C) where the yellow dotted re
gion indicates the popliteal fat pad which is 
within the intramuscular tissue; The PA image 
of the mouse hindlimb obtained at 800nm after 
segmentation and fluence correction (D); The 
scale bar size is 2mm; The PA intensity at 
800nm before and after segmentation and flu
ence correction (E) of the pixels along the white 
dotted line in (D).   

Fig. 12. Source spectra automatically identified by the SPAX framework (A); Source components identified as oxy-deoxy hemoglobin, skin, and fat (B) after the 
comparison with the theoretical absorption spectra. 
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has also been detected. Fig. 15 (B-D) show the volumetric distribution of 
the respective chromophores along the whole-body of the animal. 

Specifically, the whole-body abundance maps of the oxy/deoxy he
moglobin are shown in red and green color respectively. The yellow 
color depicts the spatial overlapping of red and green, which are 
representative of oxy/deoxy hemoglobin. Since the hemoglobin content 
is mainly distributed within the blood vessels, from prone/supine view 
the dorsal vascular network and the mammary arteries are primarily 
observed in the 3-D rendering. The fat content has also been discrimi
nated, and its spatial distribution along the whole-body is shown in the 
prone and supine view. The fat content is delineated in blue color along 
the whole-body and mostly distributed in the neck region and in the 
abdominal area of the mammary glands, as qualitatively observed in the 
3-D rendering. Further investigations would be required to validate the 
components’ distributions. 

4. Discussion 

The main objective of this study was to automatically recover the 
unique spectral fingerprint of the tissue chromophores and their volu
metric distribution. To this end, we implemented a novel superpixel PA 

unmixing (SPAX) framework that can automatically detect the distri
bution of tissue chromophores with improved sensitivity and specificity. 
The highlight of this framework is the data-driven spectral unmixing 
approach without any a priori information and user interaction to detect 
the tissue chromophores. The SPAX framework also includes the 
modeling of light fluence distribution to compensate for the spectral 
coloring, and thus prevent the unmixing misinterpretations. The 
compensation approach utilizes US image segmentation and spectral 
Monte Carlo simulations, which are based on a predefined library of 
optical properties. 

Spectral coloring is one of the major limitations in sPAI, which causes 
spectral changes at depth due to light fluence attenuation. The con
ventional approach to overcome the spectral coloring artifact is either an 
assumption of homogeneous fluence distribution along the depth or 
using simulations of pre-defined geometries. This is a complex approach 
as it requires a lot of a priori information such as the tissue geometry and 
optical properties of tissue components. Thus, this has the limitation to 
be generalized to other tissue types. Therefore, within the SPAX 
framework, we have implemented the automated segmentation of the 
US image that is simultaneously obtained with the multi-spectral PA 
images. This enables the precise modeling and simulation of the light 

Fig. 13. Distribution maps of oxy-hemoglobin (A) and deoxy-hemoglobin (B) obtained from linear unmixing; The scale bar size is 2mm.  

Fig. 14. Abundance maps automatically unmixed by the SPAX framework of oxy-hemoglobin, deoxy-hemoglobin before (A-B) and after (C-D) Frangi filter. The 
distribution maps of fat (E), and skin (F) automatically obtained as output of the SPAX framework; The scale bar size is 2mm. 
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fluence distribution at each wavelength of light used during the sPAI 
acquisition. Overall the SPAX framework facilitates overcoming the 
spectral coloring artifact and improving the automated extraction of the 
spectral features. 

For the highly sensitive unmixing, an initial SVD analysis and the 
NNMF are applied to blindly reveal the prominent tissue components 
from sPAI. Besides, the framework includes a novel spectral superpixel 
subsampling approach to also identify less prominent tissue chromo
phores. Hence, less prominent tissue chromophores, such as fat, that 
generally remain obscured by the most prominent absorbers (like he
moglobin), can be identified. The conventional approach to detect the 
fat is to use the wavelengths within the Far Infrared (FIR) range, where 

the absorption from the hemoglobin is negligible. Since the PA excita
tion sources in the FIR range are having lower energy compared to NIR, 
the use of this range is constrained to superficial structures and micro
scopic applications. As the SPAX framework is optimized in the NIR 
range of [680 − 970]nm, where we have more availability of nanosecond 
pulsed laser sources, this can be used to detect the distribution of fat 
along the whole-body of the small animals. 

The SPAX framework has been validated on tissue-mimicking 
phantoms and animal imaging. Specifically, in the agarose phantom, 
we showed the correction of the spectral coloring distortions at depth. 
This spectral compensation also promotes the accurate unsupervised 
unmixing of the molecular components. Besides, the muscle-fat tissue 
phantom has been used to benchmark the sensitivity of the SPAX 
framework to detect less and most prominent components. Hence, the 
proposed SPAX framework corrects the spectral coloring and enables the 
accurate identification of multiple tissue chromophores. The SPAX 
framework has also been used for whole-body animal imaging. In this 
case, the fat component has been detected, despite the oxy- and deoxy- 
hemoglobin show absorption intensities of two orders greater than fat. 

Since the source components are extracted in an unsupervised way 
from sPAI, we could obtain more spectral characteristics in an unknown 
order. To facilitate the identification of known tissue chromophores, a 
correlation matrix could be evaluated between the automatically 
detected source spectra and a library of theoretical spectra. The corre
lation values are of significant importance to recognize known compo
nents from noise or unknown constituents. In healthy conditions, these 
values could enable to identify some of the automatically detected 
spectra as known components. While the identification in disease 
models requires further investigations, cause the tissue components tend 
to alter their spectral signatures in pathological conditions, due to 
changes at a molecular level. For example, the presence of methemo
globin is more pronounced during inflammation, and by using the SPAX 
framework we may be able to detect these early changes, as the corre
lation value with the respect to the oxy-hemoglobin might change. Thus, 
the SPAX framework may have the potential to monitor the spectral 
changes in disease conditions. However, some of the components could 
still remain unidentified and require further investigations to be 
interpreted. 

Currently, the framework design includes a fully-automated seg
mentation step to cluster the skin line, the tissue structures, and the 
background. For complex tissue structures, the user can guide the US 
segmentation by selecting some regions of interest for active contours. 
This refined segmentation will result in a semi-automated approach that 
could lead to an improved fluence compensation. Although we are using 
a predefined library of optical tissue properties for the light fluence 
simulations, it is challenging to retrieve the optical properties from 
literature or characterize these a priori. Besides, this represents a limi
tation for disease models where the prediction of the tissue properties is 
less accurate. Thus, Brochu et al. [41] have shown a possible optimi
zation to retrieve the tissue optical properties iteratively and speed up 
the computational time using finite element-based simulations, imple
mented on GPU cards. Very recently Gröhl et al. [56] have proposed an 
open-source simulation toolkit that could be feasible for these iterative 
approaches, by enabling realistic high-speed PA simulations. In addition 
to the tissue properties, to obtain the absolute quantification in PA im
aging, improved measurement of the system response, and Grüneisen 
parameter are required. In the future, we aim to address the absolute 
quantification, by implementing deep learning approaches based on 
non-explicit light fluence estimation [57]. 

Finally, further efforts would be required to adjust the tradeoff be
tween acquisition time and spectral resolution. As already demonstrated 
by Luke et al. [58], the selection of significant wavelengths facilitates 
the unsupervised unmixing and minimizes the acquisition time. In 
addition, the current volumetric acquisition setup is based on the 
translation of the linear array transducer along the animal body. For 
preclinical studies with high-frequency transducers, this approach 

Fig. 15. Whole-body US image of the mouse in prone and supine position (A- 
C); Oxy/deoxy hemoglobin distribution depicted in red and green respectively 
and fat distribution map in blue, in prone and supine view (B-D). 
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guarantees volumetric imaging with a better elevation focus and reso
lution. However, for clinical translation, the use of 2D matrix array 
transducers would be ideal as recently shown by Ron et al. [59]. 

Although the PA technology is already an established preclinical 
imaging modality, it has still some challenges for clinical translation. 
Therefore within the SPAX framework, we have included a combination 
of procedures to overcome the current limitations such as supervised 
unmixing techniques and misinterpretations caused by spectral color
ing. Besides, a superpixel subsampling approach has been implemented 
to automatically extract multiple tissue components at a volumetric 
scale without any a priori information. The framework also compensates 
for the changes of the spectral shape along depth due to light fluence 
variations. Thus, the SPAX framework would be beneficial and open 
many possibilities to monitor molecular changes at a volumetric scale in 
clinical applications. 

5. Conclusions 

In summary, we developed the SPAX framework as a strategy to 
detect molecular tissue components and their volumetric distribution 
from spectral photoacoustic imaging. The fully-automated unmixing 
approach has been validated in phantoms and healthy animals. Our 
initial results have shown that the proposed data-driven algorithm 
overcomes the spectral coloring limitations and prevents unmixing 
misinterpretations. To our knowledge, this is a unique algorithm that 
accounts for the spectral coloring and provides automated detection of 
tissue spectral signatures in the whole-body of the animal. The initial 
results show that the SPAX approach is sensitive to spectral unmixing 
and it has the potential to discern any spectral change, that might occur 
in pathological conditions. Hence, the SPAX framework could be used as 
a predictive and monitoring tool to identify early pathological condi
tions and facilitate the therapeutic follow-up. To this end, in our future 
work, we also plan to test the SPAX framework in disease models. 
Finally, the SPAX framework has the potential to expedite the clinical 
translation of photoacoustic, as it can provide enhanced volumetric 
tissue characterizations. 
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Regine Willumeit-Römer: Prof. Dr. Regine Willumeit-Römer 
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