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Background. Fructus mume pills (FMPs) have been clinically proven to be effective for treating ulcerative colitis (UC). However,
the therapeutic and protective mechanisms have not been fully studied. Aim. We aimed to explore the mechanism of FMPs in an
acetic acid (AA)-induced ulcerative colitis rat model.Methods. *e targets, GO terms, and KEGG pathways for the FMPs and UC
were screened and constructed using network pharmacology. A possible mechanism was verified in a 4% AA-induced colitis rat
model. Colitis activity and state were evaluated using the disease activity index, and colon ulceration and intestinal mucosal
damage were determined by histopathological observation through HE, AB-PAS, and Masson pathological staining. *e
concentrations of TNF-α, IL-6, IL-8, IL-10, MPO, MMP9, CXCR1, eNOS, and VEGF were measured to evaluate vascular
permeability effects. Results. *e network pharmacology results showed 108 active compounds, and 139 FMP-related targets were
identified. Twenty-nine targets were identified for FMPs against UC, which included MMP9, MMP3, ESR1, PTGS1, PPARA,
MPO, and NOS2. A total of 1,536 GO terms and 41 pathways were associated with FMP treatment of UC. *e pharmacological
evaluation showed that FMPs attenuated inflammation in AA-induced colitis by reducing the serum concentrations of TNF-α, IL-
6, IL-8, and IL-10 and the colonic concentrations of MPO,MMP9, and CXCR1. FMPs ameliorated hyperpermeability by reducing
the colonic VEGF and eNOS concentrations. FMPs also significantly decreased the VEGFA, VEGFR2, Src, and eNOS protein
expressions in colon tissue through the VEGF-PI3K/Akt-eNOS signaling pathway. Conclusion. *ese results suggest that FMPs
control UC inflammation by regulating inflammatory cytokine concentrations. FMPs alleviate AA-induced UC by regulating
microvascular permeability through the VEGF-PI3K/Akt-eNOS signaling pathway.

1. Introduction

Ulcerative colitis (UC) is a chronic nonspecific refractory
inflammatory colon disease with typical clinical symptoms
of diarrhea, mucopurulent bloody stool, rectal bleeding,
abdominal pain, and weight loss [1]. It is associated with
major morbidities in the Western countries [2], and its
incidence continues to increase, which is approximately
between 0.3/106 and 2/106 in China [3]. A report showed an
increased risk of colorectal cancer in up to 30% of affected

patients after 35 years of UC [4]. Multiple treatment
pathways are often required to facilitate long-term survival.
Evidence suggests that both traditional treatment and bio-
inhibitors have a considerable impact related to costs to
society, health systems, and individuals [5].

*e risk of UC is associated with genetic predisposition,
epithelial barrier defects, dysregulated immune responses,
and environmental factors. Inflammation is crucial in de-
termining whether mucous colitis is mitigated or exacer-
bated [6]. *e loss of immune tolerance leads to a persistent
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imbalance in the concentrations of proinflammatory cyto-
kines such as TNF-α, IL-6, and IL-8, as well as those of the
anti-inflammatory cytokine IL-10 [7]. *ese perturbations
contribute to chronic inflammation and colon tissue damage
associated. with UC.

*e herbal formulas of traditional Chinese medicine
(TCM) have the advantages for individual treatment. It is
characterized as “multicomponent and multichannel,”
which allows the treatment of complex diseases. Fructus
mume pills (Wumei Wan, FMPs) have been recommended
for treating ascarides and chronic diarrhea in China since
A.D. 200. FMPs have been used to treat various digestive
diseases, such as enteritis, irritable bowel syndrome, di-
arrhea, and colitis [8]. Based on the original work of Treatise
on Febrile Disease Caused by Cold (Shanghan Lun), FMPs
contain 10 herbs, including 25 g of Fructus mume (Wumei,
WM), 10 g of Rhizoma Zingiberis (Ganjiang, GJ), 16 g of
Phizoma Coptidis (Huanglian, HL), 6 g of Herba Asari (Xi
Xin, XX), 4 g of Radix Angelicae Sinensis (Danggui, DG), 6 g
of Radix Aconiti Praeparata (Fuzi, FZ), 4 g of Pericarpium
Zanthoxyli (Shujiao, SJ), 6 g of Ramulus Cinnamomi
(Guizhi, GZ), 6 g of Radix Codcnopsitis Pilosulas (Dang-
sheng, DS), and 6 g of Cortex Phellodendri (Huangbo, HB)
[9]. Studies indicate that FMPs effectively protect against UC
by regulating the imbalance of inflammatory cytokines,
improving analgesia, preventing oxidative stress, inhibiting
Bcl-2/Bax expression [10], and restoring the balance of the
intestinal bacterial population [11]. However, the chemical
and pharmacological foundations for the treatment of UC
with FMPs have not been globally evaluated using appro-
priate approaches.

Network pharmacology is a cross-discipline based on
systems biology, which combines polypharmacology, mo-
lecular network data, bioinformatics, and computer simu-
lation [12] that have revealed molecular phenotypic
robustness and a network structure [13]. *e type of
compound-protein/gene-disease network construction fa-
cilitates the analysis of multitargeted agents in complex
TCM prescriptions [14].

FMPs have been widely adopted for UC treatment, but
their active compounds, potential targets, and molecular
mechanisms are not known. Hence, we combined network
pharmacology with experimental pharmacology to evaluate
the possible protective effects of FMPs via an FMP-UC
network pharmacology study and verified the potential
mechanism of FMPs against 4% acetic acid (AA)-induced
UC in rats.

2. Materials and Methods

2.1. Network Pharmacology Analyses

2.1.1. Collection of FMP Compounds and Targets.
Compounds of the ten herbs in FMPs were collected from
the Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform [15] (TCMSP, http://lsp.
nwu.edu.cn/tcmsp.php). Two important in silico ADME
indexes, oral bioavailability (OB) of ≥30% and drug-likeness
(DL) of ≥0.18, were used to screen the candidate active

compounds. OB was used to determine the rate and extent of
absorption of active pharmaceutical ingredients in herbs,
and OB of ≥30% was generally considered to indicate that
these lead compounds in oral medicines may have good
utilization and development value. *e DL value was based
on the physical and chemical properties of the compounds
and topological structures, and DL of ≥0.18 suggested that
the lead compounds had the potential to become drugs [16].

*e compound-related targets of FMPs depend on their
chemical structures. We collected the SMILE forms of
compounds from PubChem [17] (https://pubchem.ncbi.nlm.
nih.gov/) and predicted potential targets from the “Homo
sapiens” species with a p-value of ≥0.5 in Swis-
sTargetPrediction [18, 19] (http://www.swisstargetprediction.
ch/, updated in 2019). *e target proteins were selected using
the criteria for the “Homo sapiens” species and a confidence
score of ≥0.7 in the STITCH database [20] (http://stitch.embl.
de/, version 5.0).

2.1.2. Collection of UC Targets. *e acknowledged UC-re-
lated targets were collected from Genecards [21] (https://
www.genecards.org/, vision 4.13), the *erapeutic Targets
Database [22] (TTD, http://db.idrblab.net/ttd/), and the
DisGeNET platform [23] (http://www.disgenet.org/, upda-
ted on May 13, 2019). *e standard target names were
identified using the Gene ID conversion tool from the
Database for Annotation, Visualization, and Integrated
Discovery [24] (https://david.ncifcrf.gov/home.jsp, DAVID
6.8).

2.1.3. Construction and Analyses of FMP-UC Networks.
*e shared targets of the FMPs and UC were obtained using
the Venny 2.1.0 online tool [25]. *ese target protein-
protein interactions (PPIs) were acquired from the STRING
database (https://string-db.org/cgi/input.pl, version 11.0).
*e minimum required interaction score for the PPIs was
≥0.7 [26]. All nets were constructed using Cytoscape v3.7.1
[27] and analyzed using the topological method. *e im-
portant targets were evaluated; degree centrality (DC), be-
tweenness centrality (BC), closeness centrality, DC≥ 2 ×

median DC, BC of ≥ median BC, and closeness centrality of
≥ median closeness centrality were considered key nodes.

2.1.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Enrichment Analyses.
Based on the above analyses, GO analysis and KEGG
pathway enrichment analyses were performed to further
understand the mechanism of FMPs for the treatment of
UC. *e enrichment results with a p value of <0.05 were
regarded as statistically significant.

2.2. Experiment Verification

2.2.1. Materials and Reagents. *e FMPs were obtained
from Sichuan Neautus Traditional Chinese Medicine Co.,
Ltd. (Sichuan, China). AA (AR, 99.7%) was obtained from
Alfa Aesar (China) Chemical Co., Ltd. AA was diluted with
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0.9% saline to a final concentration of 4%. Pentobarbital
sodium salt (98%) was obtained from Sigma-Aldrich (St.
Louis, MO, USA), dissolved in deionized water, and con-
figured at a 3% concentration. Fecal occult blood-testing kits
(orthotolidine method) were obtained from Shanghai
Yuanye Bio-Technology Co., Ltd. (Shanghai, China). Mye-
loperoxidase (MPO) was assayed using commercial test kits
from the Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). Interleukin-6 (IL-6), interleukin-10 (IL-
10), interleukin-8 (IL-8), C-X-C chemokine receptor type 1
(CXCR1), matrix metalloproteinase-9 (MMP9), and vas-
cular endothelial growth factor (VEGF) were obtained from
Biolianshuo Co., Ltd. (Shanghai, China); tumor necrosis
factor-α (TNF-α) kits were obtained from RayBiotech Inc.
(Peachtree Corners, USA), and endothelial nitric oxide
synthase (eNOS) ELISA kits were purchased from CLOUD-
CLONE CORP. (Houston, USA). A BCA Protein Assay Kit
(200T) and anti-α-tubulin rabbit pAb were purchased from
Beyotime Co., Ltd. (Shanghai, China). Anti-VEGFA rabbit
pAb, anti-Akt rabbit pAb, anti-Src rabbit pAb, anti-eNOS
rabbit pAb, anti-GAPDH rabbit pAb, anti-beta actin rabbit
pAb, and HRP-conjugated goat anti-rabbit IgG were ob-
tained from Sevier Biological Technology Co. (Wuhan,
China). Anti-PI3K rabbit pAb was obtained from BIOSS
Biological Technology Co. (Beijing, China), and anti-VEGF
receptor 2 (VEGFR2) rabbit pAb was obtained from Boster
Biological Technology Co., Ltd. (Beijing, China). Other
chemicals were of analytical grade and were purchased from
commercial sources.

2.2.2. FMP Aqueous Extract Preparation and Quality
Control. To simulate the medicinal and pill production
methods, aqueous high-dose FMPs (H-FMPs) were prepared
as follows: 900mg of FMP powder was accurately weighed
and placed in 10ml of ultrapure water and heated in a 100°C
water bath for 60min, and the mass lost was replenished by
adding an infinitesimal amount of ultrapure water. Aqueous
low-dose FMPs (L-FMPs) were prepared using the same
method with 450mg of FMPs in 10ml of water.*e prepared
aqueous FMP solution was stored at 4°C.

*e quality of the FMPs was analyzed using a Waters
e2695 Ultra performance liquid chromatograph (UPLC),
Waters 2489 ultraviolet detector, and Waters 2998 PAD
detector (Milford, USA). Please refer to the supplementary
materials for the specific methods (Supplement 1).

2.2.3. Animals and Treatment Design. A total of 43 male
220± 20 g SD rats were purchased from SPF (Beijing)
Biotechnology Co., Ltd. (Certification number SCXK-JING
2020–0033). All animals were allowed to acclimate for
1week before the experiment and kept at 25± 2°C with 50%
humidity and under 12 :12 h light:dark cycle lighting con-
ditions in an SPF feeding room, and water and food were
provided ad libitum. *is research adhered to the guidelines
of experimental animal ethics and was approved by the
Ethics Committee (BUCM-4-2020092905–3119).

*e rats were randomly divided into four groups: each of
the control, high-dose FMP (H-FMP), and low-dosage FMP

(L-FMP) groups comprised 10 rats, and the model group
comprised 13 rats. All rats fasted for 12 h before modeling.
According to a previous study, an enema with 4% AA was
used to induce the UC rat model [28]. Anesthesia was in-
duced by intraperitoneal injection of 3% pentobarbital so-
dium (30mg/kg). An enema tube (2mm× 10 cm) was
inserted through the anus for up to approximately 8 cm; it
was infused with 2ml of 0.9% saline and colonic content was
extracted to decrease fecal interference. Two milliliters of 4%
AA solution was infused with a new tube, and the rat
buttocks were elevated to prevent AA leakage. *e AA
solution was retained for 2min and extracted. To reduce anal
tissue damage, the anus and surrounding skin were gently
wiped dry. Rats in the control group received 2ml of saline
instead of AA. After 24 h, three rat models were randomly
selected to check whether the UC model was successfully
constructed.

On the ninth day, rats in the H-FMP group were orally
administered 900mg/kg of FMPs, and rats in the L-FMP
group were orally administered 450mg/kg of FMPs once
a day. *e dose selection for the FMPs was based on the
clinical therapeutic dosage that a 60-kg patient would take
an 8–10 g FMP every day. *e control and model groups
were administered the same volumes of saline. A schematic
of the experimental animal design is shown in Figure 1(a)
and 1(b).

2.2.4. Sample Collection. After the last administration, the
rats fasted for 12 h before sacrifice. Blood samples were
collected from the inferior vena cava, and the distal 8 cm of
the colon tissue was removed immediately after sacrifice.
Serum was collected by centrifugation at 3,500 rpm for
10min and stored at -80°C. One portion of colon tissue was
stored in 4% paraformaldehyde for fixation, and another
portion was stored at -80°C for detection.

2.2.5. Disease Activity Index (DAI). *e DAI in this study
was observed every other day to dynamically study rat colon
damage changes and FMP protective effects. *e DAI as-
sessment scores included weight loss, stool consistency, and
stool bleeding, and were calculated based on the average
score of these three parts [29]. Diarrhea was evident by the
mucus on feces stuck to animal fur, while rectal bleeding
ranged from occult blood to gross bleeding. Rectal bleeding
was detected using fecal occult blood test kits. Bodyweight
loss was scored as follows: no bodyweight loss, 0 points; loss
of 1–5%, 1 point; loss of 5–10%, 2 points; loss of 10–15%, 3
points; and loss of >15%, 4 points. Normal stool was scored
as 0 points, soft sticky stool was scored as 2 points, and loose
stool was scored as 4 points. Blood in stool was scored as
follows: bleeding stool, 0 points; occult blood (+), 1 point;
occult blood (++), 2 points; occult blood (+++), 3 points; and
gross blood, 4 points.

2.2.6. Colon Damage Observation. Colon damage was
evaluated using gross pathology and histopathology. A
microscopic assessment was performed using a magnifying
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lens. Histological samples were prepared from three or four
paraffin-embedded sections (4–5 μm thick) per specimen,
routine dewaxing, hematoxylin and eosin (H&E) staining,

Alcian blue-periodic acid Schiff (AB-PAS), and Masson
staining. *e stained sections were examined under an
Olympus BX53 microscope (Tokyo, Japan).
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Figure 1: UPLC profiles of standards and FMP aqueous extract. (a) Chromatograms of citric acid, phellodendron hydrochloride, coptisine
hydrochloride, berberine hydrochloride, ferulic acid, lobetyolin, cinnamic acid, hydroxy-α-sanshool, 6-gingerol, ß-asarum ether, and a-
asarum standards under 285 nm detection wavelength. S1: standard chromatograms, S2 : FMP chromatograms. (b) Chromatograms of
benzoylaconine, benzoyl neoaconitine, and benzoyl hypoaconitine standards under 235 nm detection wavelength. S3: standard chro-
matograms, S4 : FMP chromatogram.
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2.2.7. Detection of Cytokines. *e serum concentrations of
IL-6, IL-10, TNF-α, and IL-8 were determined using double-
antibody sandwich enzyme-linked immunosorbent assay
(ELISA) kits according to the manufacturer’s instructions.
*e plate was placed into a microplate analyzer (Bio-Rad,
California, USA) and the optical density (OD) values were
read at 450 nm.*e concentration is directly proportional to
the OD value. *e concentrations in the samples were
calculated using a standard curve.

*e colonic MMP9, CXCR-1, VEGF, and eNOS con-
centrations were detected using ELISA kits. *e colon su-
pernatant samples were collected from the colon tissue lysis
solution. *e colon tissue samples (0.1 g) were homogenized
with the corresponding tissue lysis buffer (1 : 20 w/v) and
centrifuged at 10, 000 × g for 5min, and the colon tissue
supernatant was collected as the sample. *e rest of the steps
were the same as those for serum cytokine detection.

2.2.8. MPO Assay. According to the kit instructions, 0.1 g of
colon tissue was homogenized with 1.9ml of reagent 2 to
prepare 5% tissue homogenate, and 0.5ml of the homoge-
nate was added to 0.1ml of reagent 3. *e test samples were
mixed thoroughly and heated in a 37°C water bath for
15min. *e centrifugal rotational speed settings were based
on the manufacturer’s instructions. Following the manual,
the samples were detected at 460 nm using a spectropho-
tometer (UV 2600, Shimadzu).

2.2.9. VEGF Signaling Pathway Assay. *e colonic protein
concentrations of VEGFA, VEGFR2, Src, PI3K, Akt, and
eNOS were detected by western blotting (WB). Colon tissue
(0.1 g) was lysed in 1ml of RIPA lysis buffer containing
phenylmethanesulfonyl fluoride. Approximately 100 or
150 μg of protein was separated on SDS-PAGE gels and
transferred to polyvinylidene fluoride (PVDF) membranes.
After blocking with QuickBlock™ Buffer at room temper-
ature for 30min, the PVDF membranes were incubated for
12 h with the corresponding primary antibodies at 4°C.
Primary antibodies against VEGF, Akt, and Src were diluted
to 1 :1000, and eNOS, PI3K, and VEGFR2 were diluted at 1 :
500. *e PVDF membranes were washed three times with
1× TBST for 10min. *e PVDF membranes were incubated
with a secondary antibody (1 : 3000) for 1 h at room tem-
perature. *e PVDFmembranes were washed with 1× TBST
for 10min three times, and the ECL agent was immediately
applied to the surface of the PVDF membranes for signal
detection on a chemiluminescence instrument (CLINX
6300, Shanghai, China). *e image grey values were pro-
cessed using Photoshop 2020 (Adobe, California, USA).

2.3. Statistical Analysis. *e data were analyzed using SPSS
(version 22.0; IBM, New York, USA) and Origin 2018
software (OriginLab, Northampton, USA). *e measure-
ment data are presented as the mean± standard deviation
(‾x ± s). Gaussian distribution was analyzed using the
Shapiro–Wilk results, p values for the Shapiro–Wilk results
of >0.05, and judged Gaussian data. Analysis of variance

(ANOVA) was used to analyze the data among groups that
were consistent with a Gaussian distribution. Non-Gaussian
data were analyzed using the Kruskal–Wallis test. *e dif-
ferences were considered statistically significant at p< 0.05,
and p< 0.001 was considered statistically significant. A
corresponding histogram of the results was derived using
Origin 2018.

3. Results

3.1. FMP Quality Control Results. *e UPLC results showed
that the retention durations of citric acid, phellodendron
hydrochloride, coptisine hydrochloride, berberine hydro-
chloride, ferulic acid, lobetyolin, cinnamic acid, hydroxy-
α-sanshool, 6-gingerol, ß-asarum ether, and a-asarum ether
in FMPs were 6.54min, 14.21min, 30.83min, 44.74min,
48.86min, 53.58min, 62.64min, 68.20min, 68.38min,
69.60min, and 70.56min, respectively. *e retention du-
rations were consistent with those of the standard reference
substances and the absorption waves were consistent with
those of the standard reference substances (Figure 2). *e
content of citric acid was approximately 56.47mg/g and the
RSD was 2.97%. *e retention durations of benzoyl neo-
aconitine, benzoyl hypoaconitine, and benzoylaconine in the
FMPs were 17.51min, 22.81min, and 47.2min, respectively,
at a wavelength of 235 nm (Figure 2).

3.2. Herb-Compound-Target Network of the FMPs. After
eliminating duplicates, 108 active compounds were identi-
fied in the FMPs from the TCMSP database and 139
compound-based targets were obtained from the databases.
*e compounds and targets obtained from the herbs are as
follows: WM, 8 active compounds and 104 targets; HB, 36
compounds and 113 targets; HL, 14 compounds and 103
targets; DS, 21 compounds and 49 targets; DG, 2 active
compounds and 7 targets; GJ, 5 compounds and 8 targets;
GZ, 7 compounds and 8 targets; SJ, 5 compounds and 96
targets; XX, 8 compounds and 43 targets; FZ, 21 compounds
and 13 targets (Supplement 2).

*e herb-compound-target network of the FMPs was
constructed from these 108 active compounds and 139
targets (Supplement 2). *is network contained 251 nodes
and 406 edges. In this network, quercetin, luteolin,
kaempferol, beta-sitosterol, stigmasterol, berberine, (2R)-
5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one, cam-
pesterol, poriferast-5-en-3beta-ol, and isocorypalmine were
the top 10 most important active compounds based on
topological analysis. *is suggests that these ten compounds
play the most vital roles in FMPs. Furthermore, AR,
CYP19A1, HMGCR, CYP51A1, NPC1L1, ACHE, NR1H3,
ABCC1, and CYP1B1 were identified as important targets
(Figure 3).

3.3. FMP-UC Targets Network. From the DisGeNET, Gen-
ecards, and TTD databases, 916 UC-related targets were
identified (Supplementary 3). Twenty-nine targets were
shared between FMPs and UC identified by the Venny 2.0
online tool: HTR7, ABCB1, GPR35, F2, PPARG, PPARA,
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PTGS2, EGFR, PTGS1, APEX1, RORC, MET, KDR, PTPRS,
MPO, CA1, CA2, MMP2, MMP3, MMP9, PLA2G1B, AHR,
INSR, AKR1B10, CBR1, CXCR1, ABCG2, ESR1, and NOS2
(Figure 4(a)). As shown in Figure 4(b), the FMP-UC net-
work had 51 nodes and 100 edges. Topology analysis in-
dicated that MMP9, ABCB1, PTPRS, CA2, MMP2, ABCG2,
and EGFR were pivotal targets in the FMP-potential target-
UC target network.

Twenty-nine targets revealed 25 PPIs and 16 targets were
involved in the FMP-UC PPI network that could be co-
expressed or interacted with each other. *ese 16 targets
were suggested to have strong interactions. In Figure 3(c),

the higher the degree value of the target, the darker the color
shown and the more proteins it connected. *e top five
targets were MMP9, MMP3, ESR1, PTGS1, and PPARA.
*ese targets are involved in oxidative stress, adhesion,
inflammation, repair and reconstruction, endothelial
growth, mass transfer, and neurotransmitter response,
among other processes.

3.4. GO andKEGGEnrichment Results. During GO analysis,
we obtained 1,536 GO terms enriched in biological processes
(BPs), molecular function (MF), and cellular component

Figure 3: Herb-compound-target network for FMP. *e FMP herb-compound-target network contained 10 herbs, 108 compounds, and
139 targets. *e herbs are depicted as pink squares. *e purple rectangle shapes represent compounds. *e yellow triangle shapes represent
FMP targets. *e lines represent the relationship between the compounds and target nodes.
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Figure 2: Experiment process design. Control, model, H-FMP, and L-FMP groups were set up on day 1, UC rat model was established with
4% acetic acid on day 8, and FMP administration lasted for seven days. Pharmacological evaluation of FMP was conducted using the disease
activity index, colon histopathological changes, UC basic pathological mechanisms, and network pharmacology results for predicted targets
and pathways.
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(CC) (Supplement 4).*e top 10 BP terms contained cellular
responses to oxygen-containing compounds, responses to
oxygen-containing compounds, and cellular responses to
chemical stimuli, among others. (Figure 5(a)). *e top
10MF terms included “transcription factor activity,” “direct
ligand-regulated sequence-specific DNA binding,” and
“nuclear receptor activity” (Figure 5(b)). *e top 10 CC
terms included “extracellular region,” “vesicle,” and “re-
ceptor complex” (Figure 5(c)).

KEGG enrichment analysis showed that these 29 targets
contributed to 41 pathways (p< 0.05), including pathways
for cancer, epithelial cell signaling in Helicobacter pylori
infection, VEGF signaling pathway, and adherence junction
(Supplement 5).*ese 41 pathways were closely linked to the
protective effects of FMPs against conditions related to UC,
including inflammation, permeability, adherence, and
cancer (Figure 5(d), (e)).

3.5. Effect of FMPs on Symptoms ofAA-InducedUC. *eDAI
score reflects the progression and recovery of UC. After
treatment with 4% AA, all rats showed rectal bleeding, di-
arrhea, and various degrees of weight loss on day 9. *e DAI
scores of the H-FMP and L-FMP rats on day 9 were sig-
nificantly increased, suggesting that UC was successfully
induced in rats (p< 0.001). Over the course of the experi-
ment, on day 15, the bodyweights of the model rats sig-
nificantly decreased (p< 0.05), and diarrhea and rectal
bleeding were detected (p< 0.05). *e DAI scores of the
model rats and control rats were significantly different
(p< 0.05), and H-FMP and L-FMP treatment eased the
symptoms of the defecation syndromes (p< 0.05). *e DAI
scores of the H-FMP and L-FMP groups were lower than
those of the model group (p< 0.05).*e dynamic changes in
the syndrome are shown in Figure 6. Over the course of the
experiment, three rats were sacrificed in the model group,
one in the H-FMP group and two in the L-FMP group.

3.6. Effects of FMPs on Histopathologic Changes. In the
control group, the colon tissue maintained a non-diseased
state and a smooth surface without any incrassation or
congestion (Figure 7(a)1). After AA enema, the rat colon
showed marked local swelling, congestion, and anabrosis,
and the lesion area was extended over 2 cm2, which sug-
gested that the models were successfully induced
(Figure 7(b)1). At the end of the experiment, the rat colon in
the model group still showed visible signs of local conges-
tion, swelling, incrassation, and anabrosis, although the
lesion area was reduced (Figure 7(c)1). In the two-dosage
FMP treatment groups, the colonic mucosa exhibited only
a small amount of local congestion and the colon tissue was
essentially restored (Figure 7(d)1, 7(e)1).

H&E staining results indicated that the colonic epithe-
lium structure of the control group remained intact and the
crypts were well-organized. *e submucosal and muscular
structures were clear and the inner circular and outer
longitudinal muscle layers were arranged neatly (Figure 7(a)
2). After modeling, H&E staining showed sharply de-
marcated ulcerations, the rat colonic epithelium structure
had disappeared, and the focal areas of extensive mucosal
distortion were exfoliated. *e crypts had disappeared and
atrophied, and the submucosa was infiltrated by the mucosa
(Figure 7(b)2). *e colonic tissue in the model group rats
also showed partial loss of colonic epithelium cells and the
crypts exhibited structural changes, branches, distortion,
and basal thickening. Plasma cells increased in the basal
mucosal layer (Figure 7(c)2). In the H-FMP group, the
colonic epithelium was restored, the crypts were arranged
closely, and plentiful mucus and lymphocytes were main-
tained (Figure 7(d)2). In the L-FMP group, lymphocyte
infiltration and crypt morphological alterations were ob-
served in the colon tissue (Figure 7(e)2).

AB-PAS histopathologic staining indicated that AA
enema caused a reduction in rat colon goblet cells and re-
duced mucus in the model group compared with the control

FMP UC

887
(86.9%)

(a)

(c)
(b)

29
(2.8%)

105
(10.3%)

Figure 4: FMP-UC target network. (a) Distribution of FMP and UC targets. (b) FMP-compound-target-UC network, purple triangles
representing shared targets between FMP and UC, Earth yellow octagons representing FMP compounds, and grass green representing
herbs. (c) FMP-UC PPI network.
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group. After FMP treatment, the number of goblet cells in the
H-FMP and L-FMP colons increased, and the large intestinal
glands showed increased evidence of mucus (Figure 7(a)
3–7(e)3). Masson histopathologic staining indicated that the
UC rat submucosa had different degrees of incrassation. *e
submucosa and lamina propria layers had incrassated and
uneven lower boundaries, which contained capillary fibro-
blasts. H-FMP and L-FMP decreased the number of capillary
fibroblasts in the UC rats (Figure7(a)4–7(e)4).

3.7. Effects of FMPs on Inflammatory Cytokines. FMP-UC
network analysis predicted that inflammation could be

a potential mechanism, and ongoing inflammation is part of
the pathogenesis of UC. *erefore, inflammation-related
targets and UC landmark inflammatory factors were veri-
fied, including the serum concentrations of IL-6, IL-10,
TNF-α, IL-8, and colonic concentrations of MPO, CXCR1,
and MMP9. As shown in Figure 8, compared with the
control group, the administration of AA significantly in-
creased rat serum concentrations of IL-6, IL-8, and TNF-α
(p< 0.001,p< 0.05, p< 0.05); promoted MPO, CXCR1, and
MMP9 expressions in the colon tissue (p< 0.05, p< 0.001,
p< 0.05); and reduced the serum concentration of IL-10 in
model rats (p< 0.05). Compared with the model group, the
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serum concentrations of IL-6, IL-8, TNF-α, and colonic
concentrations of MPO, CXCR1, and MMP9 in the H-FMP
group were significantly decreased (p< 0.001, p< 0.05,
p< 0.001, p< 0.05, p< 0.05, p< 0.05). *e serum concen-
tration of IL-10 showed an increased tendency in the H-FMP
group compared with the model group (p< 0.05). After low-
dose FMP treatment, the serum concentrations of IL-6, IL-8,
and TNF-α (p< 0.001, p< 0.05, p< 0.001) and colonic
concentrations of MPO, CXCR1, and MMP9 (p< 0.05,
p< 0.001, p< 0.05) were markedly reduced compared with
those of the model group rats. In addition, the serum
concentrations of IL-10 in L-FMP were evaluated (p< 0.05).

3.8. FMPs Prevent AA-Induced UC in Rats via Permeability
and VEGF Pathways. Based on the above results, the po-
tential pathways of FMPs against UC were significantly
enriched for the permeability and VEGF signaling pathways,
effects of FMPs on colonic VEGF, and eNOS level changes,
and the VEGF pathway regulation is a potential mechanism.
*e colonic concentrations of VEGF and eNOS were sig-
nificantly higher for the model group than for the control
group (p< 0.05, p< 0.001). Compared with the model
group, the high-dose FMP group showed markedly reduced

colonic VEGF and eNOS expressions (p< 0.05, p< 0.001),
and the low-dose FMP group showed significantly reduced
colonic VEGF and eNOS expressions (p< 0.05, p< 0.001)
(Figure 8).

For the VEGF pathway changes, the colonic VEGFA,
VAGFR2, Src, and eNOS concentrations were significantly
overexpressed in acute colitis rats (p< 0.05, p< 0.05,
p< 0.001, p< 0.05, respectively) and the PI3K concentra-
tions showed an upward trend (p< 0.05), while the Akt level
showed a decrease. High-dose FMP reduced colonic
VEGFA, VEGFR2, eNOS, and Src protein expressions
(p< 0.05, p< 0.05, p< 0.05, p< 0.05, respectively). Low-
dose FMP decreased colonic VEGFA and eNOS protein
expressions (p< 0.05, p< 0.05). *ese results indicate that
FMPs may prevent colitis damage via the VEGF signaling
pathway (Figure 9).

4. Discussion

Clinical studies have confirmed that FMPs are effective for
treating UC in China; however, the protective mechanism of
FMPs against UC requires further exploration.*erefore, we
used a network pharmacology method to identify targets
shared between UC and FMPs and explored the protective

Control group
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(a2) (b2) (c2) (d2) (e2)
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(a4) (b4) (c4) (d4) (e4)
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Figure 7: FMP relieved the histopathologic damage of AA-induced UC rats. (A1–E1) Macroscopic pathologic observations by the naked
eye. (A2–E2) H&E pathological staining of colon tissue from each group of rats. Arrow symbols indicate the infiltration of neutrophils and
mononuclear inflammatory cells; triangle symbols show the disappearance, distortion, and exfoliation of epithelial tissue; pentagram
symbols represent crypt structure changes. (A3–E3) AB-PAS pathological staining of colon tissue from each group of rats; in AB-PAS
staining, various glycoproteins of glycogen neutral mucins were purple-red. Acidic mucins, proteoglycans, and hyaluronic acid were blue.
(A4–E4) Masson pathological staining colon tissue from each group of rats. Fibrous tissue was stained blue, and the cells, cytoplasm,
erythrocytes, muscle tissue, eosinophilic granules, and connective tissue were stained red.
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effect of FMPs. *e 108 active compounds in FMPs were
flavonoids, natural phytosterols, and isoquinoline alkaloids,
including quercetin, luteolin, kaempferol, ß-sitosterol, and
berberine. *ese compounds play roles in regulating cyto-
kine concentrations and inflammation, restoring colon
damage, and altering the gut. It has been shown that
quercetin [29], luteolin [30], and berberine [31] suppress
inflammatory damage in UC organoids; dietary kaempferol
intake restores colon mucosal damage and inhibits MPO
expression [32]; ß-sitosterol reduces weight loss, decreases
proinflammatory factors, and resists pathogenic bacteria in
UC mice [33].

For the UC pathogenesis, the activation of immune cells
and persistent imbalance of inflammatory cytokines lead to
chronic intestinal inflammation and repeated mucous
stimulation. Inflammation-related biomarkers should be
explored to identify new effective UC therapies. Our pre-
dicted FM-UC targets, such as MPO, CXCR1, MMP-9, and
inflammatory cytokine biomarkers, namely TNF-α, IL-6, IL-
8, and IL-10, are associated with inflammatory responses.
TNF-α induces the apoptosis of epithelial cells and disrupts
the epithelial barrier; the monoclonal antibodies of TNF-α
golimumab and adalimumab have been successively used in

clinical studies [34]. IL-6 is a pleiotropic cytokine that an-
ticipates innate and adaptive immune responses and is
evaluated in both the blood and colonic mucosa of patients
and is positively associated with UC activity [35]. Serum
MMP9 concentrations are markedly higher in active UC;
specifically, MMP9 is positively correlated with serum IL-6
concentrations and platelet and leukocyte counts in UC [36].
Mutation or functional loss of IL-10 leads to UC severity and
IL-10 KO induces spontaneous chronic colitis [37]. As
a neutrophil-activating cytokine, IL-8, can be generated by
endotheliocytes, suggesting a pathological grade in UC [38].
CXCR1, a receptor for IL-8, constitutes the primary
mechanism of neutrophil recruitment, and its over-
expression is observed in colon tissue during UC, which may
increase the risk of colon cancer [39]. Activated neutrophils
release MPO in an inflammatory environment, and MPO in
colon tissue fragments can be used to evaluate inflammation
in UC [40]. *is study indicated that anti-inflammation is
one of the mechanisms by which FMPs alleviate AA-induced
colitis in rats by regulating the above cytokine markers by
reducing serum TNF-α, IL-6, and IL-8 concentrations and
colonic MPO, MMP-9, and CXCR1 concentrations. In
addition, histological observations suggest that FMPs aid
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goblet cell recovery and inflammatory infiltration
mitigation.

Permeability changes are strongly associated with UC
pathology; crucial endothelial damage, microvascular per-
meability (mVP), perivascular edema, and epithelial hypoxia
precede epithelial barrier dysfunction progressing to ero-
sions, ulceration, and inflammation [41]. mVP has proven to
be a crucial factor; anatomical observation and functional
vascular changes have been observed during ulcer healing
and progression from UC toward colorectal carcinoma
[42, 43]. VEGF and its receptors have emerged as principal
drivers that mediate mVP and endothelial permeability,
which are considered major factors that predispose patients
to UC [44]. Evidence shows that VEGF increases in the
serum and tissue during the onset of UC, activates mVP, and
has detrimental effects on the colon barrier [45]. VEGF has
a dual role in colon tissue; overexpression mediates the
recruitment of inflammatory cells and enhances the ex-
pression of costimulatory molecules; likewise, it seems to
have immunosuppressive effects on tumor growth in co-
lorectal carcinoma [46]. NO synthase is best known for its
role in endothelium-mediated relaxation of mVP. Definitive
evidence determines the activity of eNOS, which increases

mVP to macromolecules in response to inflammatory
agents. eNOS-derived NO causes hyperpermeability in re-
sponse to VEGF for multiple diseases [47]. Studies have
shown that serum eNOS is markedly induced in UC [48] and
involved in nitrosative stress and UC-associated carcino-
genesis [49], and the loss of eNOS is protective in a dextran
sodium sulfate model of colitis [50]. Our predicted targets
and enriched KEGG signaling pathways all indicated that
FMPs may have protective effects on UC by influencing
mVP, especially by regulating the VEGF, NO synthase, and
VEGF signaling pathways. Our results reinforced the idea
that colonic VEGF and eNOS levels were higher than normal
in AA-induced colitis; 900mg/kg and 450mg/kg of FMPs
could inhibit the increase in VEGFA and eNOS concen-
trations, respectively. *us, our predicted targets, VEGF and
NOS, were targets of FMP treatment, and FMPs could al-
leviate colitis in the model by suppressing VEGF and eNOS.

*e VEGF pathway directly regulates the mVP. VEGFR-
2 is the major mediator of VEGF-driven responses in en-
dothelial cells and is considered a crucial signal transducer
for both physiological and pathological permeability [51].
Binding leads to the activation of Src, whereas activation of
the PI3K-Akt pathway leads to increased eNOS expression,
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stimulating mVP augmentation [52]. Our results provide
evidence that the VEGF signaling pathway was activated in
the AA-induced colitis model; VEGFA, VEGFR2, Src, and
eNOS protein expression levels were increased through
a cascade reaction; and PI3K was overexpressed. *is is the
first study to show that FMPs can inhibit the activation of the
VEGF-PI3k/Akt-eNOS signaling pathway and downregulate
VEGFA, VEGFR2, Src, and eNOS colonic protein con-
centrations. FMPs showed the potential of reducing the
expression of PI3K, and the influence on Akt requires
further study. Changes in PI3K/ AKT respond to various
upstream protein regulations, which have different regula-
tory trends, ultimately leading to an increase in Akt con-
centrations in this study. In addition, 900mg/kg of FMPs
had a better effect on the regulation of the VEGF-PI3K/Akt-
eNOS signaling pathway than 450mg/kg of FMPs.

*is study showed evidence of the effects of FMPs in an
acute UCmodel. Further studies are required to confirm that
FMP administration can reverse chronic colitis fibrosis or
colorectal cancer induced by chronic UC. A chronic UC
disease model may be needed to observe this mechanism.
*e safety of long-term FMP treatment will be the focus of
our future study. *is study may support permeability al-
terations that require further exploration for their roles in
gastrointestinal diseases.

5. Conclusion

*e FMP-UC network pharmacology suggested that FMP
treats UC by regulating inflammation, oxidative stress,
permeability, and endothelial recovery. FMP relieved typical
symptoms of UC, repaired colon tissue damage via anti-
inflammatory responses, and regulated VEGF-PI3K/AKT-
eNOS signaling pathway-mediated microvascular perme-
ability. Based on the efficacy of FMP, this may represent
a useful alternative strategy for treating UC.
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