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Beneficial microorganisms have been extensively used to make plants more resistant to
abiotic and biotic stress. We previously identified a consortium of three plant growth-
promoting rhizobacteria (PGPR) strains (Bacillus cereus AR156, Bacillus subtilis SM21,
and Serratia sp. XY21; hereafter “BBS”) as a promising and environmentally friendly
biocontrol agent. In this study, the effect of BBS on a soil-borne disease of sweet pepper
was evaluated. Application of BBS significantly reduced the prevalence of phytophthora
blight and improved fruit quality and soil properties relative to the control. BBS was
able to alter the soil bacterial community: it significantly increased the abundances
of Burkholderia, Comamonas, and Ramlibacter, which were negatively associated
with disease severity, relative to the control. A redundancy analysis suggested that
BBS-treated soil samples were dominated by Burkholderia, Comamonas, Ramlibacter,
Sporichthya, Achromobacter, and Pontibacter; abundance of these genera was related
to total organic carbon (TOC), total nitrogen (TN), ammonium nitrogen (AN), total
potassium (TP), and available phosphorus (AP) contents. This suggests that BBS
treatment shifted the microbe community to one that suppressed soil-borne disease
and improved the soil chemical properties.

Keywords: BBS, rhizosphere soils, sweet pepper, disease prevalence, soil properties

INTRODUCTION

Sweet pepper Capsicum annuum L. var. grossum (Solanaceae) is an annual plant cultivated
throughout the world. It is widely valued because of its unique flavor and high nutritional value,
especially in terms of its vitamin C content. With the expansion of modern facilities and high-
efficiency factory farms, sweet pepper cultivation has increased dramatically where cultivated land
has expanded (Shu et al., 2016). Global production of chilies and peppers was at 34.5 million
tons from 1.9 million ha of crop-growing surface area in 2016; China was the largest contributor,
producing 17.45 million tons from 0.75 million ha of land (FAO, 2018).
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However, soil-borne diseases such as phytophthora blight have
increased through the practice of continuous cropping (Li et al.,
2017). Meanwhile, these diseases cause the loss of soil quality
which have severely restricted the development of the sweet
pepper industry (Zhang et al., 2016) and the income of sweet
pepper growers has also been reduced. Farmers have therefore
increased the frequency of pesticide application to enhance yields.
However, massive application of chemical pesticides has caused
many negative impacts, such as the contamination of food, soil,
and water by pesticide residues, and loss of biodiversity. Besides,
excessive use of chemical pesticides destabilizes the soil micro-
ecosystem, and this is an important cause of soil-borne diseases
(Avis et al., 2008). The majority of soil-borne pathogens survive
in bulk soil; under suitable conditions, they infect host plants
to establish parasitic relationships with the plants (Raaijmakers
et al., 2009; Liu et al., 2018).

Previous studies have reported that beneficial microbes can
be recruited by host plants to counteract pathogen infection
(Dudenhöffer et al., 2016). For instance, beneficial microbiomes
can induce disease resistance in plants to many plant pathogens
such as Ralstonia solanacearum (Aliye et al., 2008; Cao et al.,
2018), Phytophthora capsici (Lim and Kim, 2010; Sang et al.,
2018), and Botrytis cinerea (Nie et al., 2017; Jiang et al., 2018).
Beneficial microbiomes improve soil chemical properties and
fruit quality (Song et al., 2015). Furthermore, soil inoculation by
microbes alters the resident microbial communities (Trabelsi and
Mhamdi, 2013). Zhang et al. (2019) reported that inoculation
with Bacillus velezensis NJAU-Z9 to pepper led to a higher
rhizosphere bacterial richness and diversity compared to the
control without NJAU-Z9 inoculation. In addition, recent work
has shown that managing rhizosphere microbial communities
contributes to plant disease control (Mazzola, 2010). Wang
et al. (2015) revealed that inoculation using bio-organic fertilizer
reduced the prevalence of tomato fusarium wilting by altering
the soil microbial communities. Liu et al. (2018) found that
bio-organic additives (matured chicken manure added with
amino acids and PGPR strain Bacillus amyloliquefaciens SQR9)
suppressed tomato disease by altering bacterial community
composition in the rhizosphere. Xue et al. (2015) reported that
B. amyloliquefaciens NJN-6, combined with compost promoted
alteration of the rhizosphere bacterial community structure
by developing beneficial strains that dominated the microbial
community, which contribute to Panama disease control.

Our objective was to evaluate the suppression of sweet
pepper disease using a microbial additive (“BBS”) that we have
previously developed (Wang et al., 2012; Yang et al., 2014).
However, the mechanisms by which soil inoculation by microbes
alters rhizosphere microflora to control sweet pepper diseases
are still not well understood. Therefore, we conducted a 3-
year field experiment (2014–2016) in sweet pepper producing
areas in China where soil-borne diseases were prevalent year-
round. Specifically, the soil-borne disease pepper blight caused
by Phytophthora capsici has posed a serious threat to sweet
pepper production in these areas. Using sequencing, we then
surveyed the rhizosphere microbiota, to assess the effects of the
microbial additive and to examine the relationships between the
rhizosphere microbiota and the plant disease.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Three PGPR strains (Bacillus subtilis SM21, Bacillus cereus
AR156, and Serratia sp. XY21) were cultured at 28◦C for 24 h on
Luria-Bertani (LB) agar medium. A single colony from a freshly
streaked plate was then selected, inoculated into LB broth, and
incubated at 28◦C for 48 h in a shaker at 200 rpm. The broth
culture was spun at 6000 × g in a centrifuge for 15 min, and the
resulting pellet was resuspended in sterile water and adjusted to a
concentration of 109 colony forming units per ml (CFU/ml) for
further experiments.

Field Experimental Design
The field experimental site was located in Huaian, Jiangsu
Province, China (33◦35′42′′N, 119◦02′11′′E), which has a
subtropical monsoon climate with an average annual temperature
and precipitation 14.2◦C and 940 mm, respectively. The field
was continuously utilized for sweet pepper cultivation for several
years before our study. Soil-borne diseases pepper blight caused
by P. capsici has posed a serious threat to sweet pepper
production. The soil was a sandy loam with pH 7.08, 80.76 g/kg
total organic carbon (TOC), 139.23 g/kg total organic matter
(TOM), 12.51 g/kg total N (TN), 26.24 mg/kg NH4+-N (AN),
435.10 mg/kg NO3−-N (NN), 4.95 g/kg total P (TP), 1.15 g/kg
available P (AP), and 1.69 g/kg available K. The field experiment
was carried out from December 2013 to April 2016. We define
“season” as the entire sweet pepper growing season (from early
December to mid-April of next year). Plants were cultivated with
or without BBS treatment. Each treatment had three randomized
independent replications with a single plot of 6 m × 8 m in
area. We applied 500 ml of BBS suspension (1:100 dilution)
to each seedling at transplanting; the control seedlings were
mock inoculated with an equal volume of water. A five-point
(each point is 1.2 m × 1.2 m) sampling method was used for
random sampling.

Assay of Disease Prevalence and Yield
The prevalence of phytophthora blight was investigated 60 days
after transplanting into the field. Five points sampling method
was used for random sampling. Sixteen pepper samples were
collected at each point 1.2 m × 1.2 m, the diseased plants were
counted, and prevalence was calculated as follows:

Prevalence =
∑

number of disease plants /

total plants investigate × 100%

To measure total sweet pepper yield, all mature sweet peppers
were harvested and weighed.

Assay of Leaf Chlorophyll Content
Leaf chlorophyll content was measured 60 days after
transplanting using a modified version of the method of
Jiang et al. (2014). Chlorophyll extraction was conducted using
80% acetone solution (v/v in water); from each sample, 10.0 g
plant tissue was cut into 0.5 cm segments and homogenized
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with acetone solution at −10◦C. The mixture was centrifuged
at 12,000 × g for 15 min, and the supernatant was transferred
to the flask and covered with aluminum. Absorption of
the supernatant was measured at 645 and 663 nm using a
HITACHI U-2000 spectrophotometer.

Assay of Fruit Quality
To evaluate sweet pepper quality, the contents of soluble sugar,
soluble solids, and vitamin C were assayed at the harvest
time. Soluble sugar was determined according to Horowitz and
Reynolds (1936). Briefly, 1.0 g fresh fruit was kept in 10 ml of
90% ethanol for 1 h at 60◦C in an incubator. The extract was then
transferred into a new flask and the final volume was made up
to 25 ml by adding 90% ethanol. 1 ml aliquot was transferred
to a test tube and 1.0 ml of 5% phenol was added to it and
mixed thoroughly, 5 ml of analytical grade sulphuric acid was
then added to it and mixed thoroughly by vertical agitation with
a glass rod. For exothermic reaction the test tube was cooled
in the air. Absorbance was recorded at 485 nm. Soluble solids
were measured using a handheld refractometer at 20◦C (Barrett
et al., 1998). Vitamin C content was detected according to Santos
et al. (2016), 2% oxalic acid was used for extraction and the 2,6-
dichlorophe-nolindophenol dyestuff was added for reduction.
Xylene was used for extracting of the excess dyestuff. Absorbance
was recorded at 500 nm.

Assay of Soil Properties
Soil total organic carbon (TOC) and total organic matter (TOM)
were measured by potassium dichromate (K2Cr2O7) oxidation-
reduction titration (Schollenberger, 1931). The content of total
nitrogen (TN) was determined using the Kjeldahl method (Page
et al., 1982). Soil nitrate nitrogen (NN), ammonium nitrogen
(AN) and total potassium (TP) content was quantified using
an AutoAnalyzer 3 (Bran and Luebbe GmbH, Germany). To
determine soil available phosphorus (AP), we followed the
molybdenum-blue method using sodium bicarbonate (Olsen,
1954). Soil total potassium (TK) content was detected by
atomic absorption spectrophotometry (ASS), and soil available
potassium (AK) was measured in the extract using a flame atomic
absorption spectrophotometer (Brown, 1998).

Soil Sampling, DNA Extraction
Both diseased and healthy plants with tightly adherent
rhizosphere soil were sampled (Morris et al., 1997). In brief,
for each replicate, a five-point sampling method was applied
(each point is 1.2 m × 1.2 m). For each point, 16 plants were
randomly selected. Eighty plants from five points were collected.
After careful removal of 0–5 cm of the topsoil, rhizospheres were
excavated, with as much of their associated roots as possible, by
digging to a 5–20 cm depth around pepper plants. Soils and Plants
were placed into plastic bags and placed on ice for transport to
the laboratory for preparations using standard procedures within
a few hours. Subsequently, excess bulk soil was removed from
the roots by shaking, brushing down firmly adhering soil with
sterile brushes, which was defined as rhizosphere soil (Mendes
et al., 2017). All of these soils were divided into subsamples:
one was frozen at −80◦C for DNA extraction and subsequent

molecular analysis, the rest was further air-dried at room
temperature and passed through a 0.25 mm sieve for chemical
analysis. DNA extraction was performed using FastDNA R© SPIN
Kit (MP Biomedicals, Solon, OH, United States) following the
manufacturer’s instructions. The concentration and quality
of the DNA samples were evaluated using a NanoDrop 1000,
Spectrophotometer (United States). We ensure that adequate
amounts of high-quality genomic DNA had been extracted
(>90 µg/µl) and no DNA was detected in the negative controls.

MiSeq Illumina Sequencing
The DNA extracted from each soil sample served as the template
for 16S rRNA gene fragment amplification. V3-V4 regions of the
bacterial 16S rRNA gene were amplified using primers (PAGE
purified) 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) (Dennis et al., 2013).
The 16S rRNA V3–V4 amplicon was amplified using KAPA HiFi
Hot Start Ready Mix (2×) (TaKaRa Bio Inc., Japan). Reaction
was set up as follows: microbial DNA (5 ng/µl) 2 µl; amplicon
PCR forward primer (1 µm) 5 µl; amplicon PCR reverse primer
(1 µm) 5 µl; 2 × KAPA HiFi Hot Start Ready Mix 13 µl
(total 25 µl). The plate was sealed and PCR performed in a
thermal instrument (Applied Biosystems 9700, United States)
using the following program: one cycle of denaturing at 95◦C
for 3 min, followed by 25 cycles of denaturing at 95◦C for 30 s,
annealing at 55◦C for 30 s, elongation at 72◦C for 30 s, and
a final extension at 72◦C for 5 min. Each sample had three
replicates. PCR products were examined on a 2% (w/v) agarose
gel, and the band was extracted and purified with the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
United States) according to the manufacturer’s instructions and
quantified using QuantiFluorTM-ST (Promega, United States).
Purified amplicons were pooled in equimolar and paired end
sequenced (2 × 300) on an Illumina MiSeq platform according
to the standard protocols. The programs of amplification and
sequencing were carried on using the Illumina MiSeq platform
(United States) at BGI Co., Ltd. (Shenzhen, China). All read
sequences were deposited in the Sequence Read Archive (SRA)
NCBI database (accession number PRJNA526286).

Bioinformatics Analysis
Raw sequence processing, quality control, and annotation were
carried out according to Huang et al. (2015). The representative
sequences of bacterial 16S rRNA gene were assigned to taxonomic
classifications from genus to phylum at hierarchical levels by
RDP Classifier (v2.2) against the Greengene (v201305) with a
confidence threshold of 80%. The obtained bacterial OTUs were
further modified and only OTUs with >20 counts summed
across all samples were retained. The number of sequences per
sample ranged from 54 235 to 54 784 (Supplementary Table
S1). These were resampled to a depth of 54 235 sequences
using the program MOTHUR (v1.31.2), and the resulting new
operational taxonomic unit (OTU) table was used for further
analyses. Rarefaction analysis was performed by MOTHUR
(v1.31.2), and the Observed species, Chao1 and ACE richness
estimations, Coverage and the Shannon and Simpson diversities
were calculated by MOTHUR (v1.31.2) (Schloss et al., 2009).
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Principal co-ordinate analysis (PCoA) based on the Bray–Curtis
distance metric was carried out using mothur to compare the
bacterial microbial community structure among the soil samples
(Liu et al., 2016). Spearman’s rank correlation coefficient was used
to assess the correlations between selected rhizosphere soil genera
abundance and P. capsici prevalence. Differentially abundant
taxa and OTUs between two microhabitats were calculated
using moderated t-tests. The resulting p-Values were adjusted
for multiple hypotheses testing using the Benjamini-Hochberg
correction. Heatmap figures were implemented by R (v3.4.2)
packages heatmap. The Mantel test was conducted to reveal the
relationships between the selected soil properties and rhizosphere
soil microbial genera. In addition, redundancy analysis (RDA)
was performed to evaluate the relationships among the soil
samples, soil properties and rhizosphere soil microbial genera. In
addition, Principal co-ordinates analysis (PCoA) and redundancy
analysis (RDA) diagrams were generated using R (v3.4.2) package
vegan to demonstrate the clustering of different samples.

Statistical Analysis
Differences between treatment groups were determined
statistically at the factorial level by analysis of variance (ANOVA).
Differences were considered significant at P < 0.05 or P < 0.01,
and differences among treatments were analyzed via Tukey’s
Studentized Range (HSD) test.

RESULTS

Effect of BBS on Disease Control and
Yield
The prevalence of phytophthora blight among BBS-treated plants
was significantly lower than among the control plants in all
three seasons, at 17.36% (2014), 11.11% (2015), and 6.25% (2016)
in BBS-treated plants, versus 44.44% (2014), 27.78% (2015),
and 20.14% (2016) in the control (Figure 1A). In contrast
to the diseased control plants, sweet pepper yields under BBS
treatment were significantly higher in all seasons, at 21.10%
(2014), 22.88% (2015), and 32.87% (2016) in BBS-treated plants,
versus 15.35% (2014), 17.26% (2015), and 21.93% (2016) in
the control (Figure 1B). Therefore, BBS treatment progressively
reduced the prevalence of soil-borne disease and increased sweet
pepper crop yields relative to the control.

Effect of BBS on Chlorophyll and Fruit
Quality
It is generally known that photosynthesis determines the
efficiency with which plants convert incoming sunlight to
biomass; therefore, the chlorophyll content in the leaves was
measured. Leaf total chlorophyll content was higher in BBS-
treated plants than in control plants, at 5.88 mg/g in BBS-treated
plants, versus 4.93 mg/g in the control (Figure 2A). Furthermore,
PGPR agent has been reported to improve crop quality (Song
et al., 2015). Thus, we determined the content of soluble sugar,
soluble solid and vitamin C of mature sweet pepper at the harvest
time. BBS-treated plants had significantly higher soluble sugar

content (5.33%) than control plants (4.22%) (Figure 2B). Soluble
solids content was higher in BBS-treated plants (5.60%) than
in control plants (4.61%) (Figure 2C). BBS treatment increased
the vitamin C content of sweet peppers relative to the control
(Figure 2D). Therefore, BBS treatment improved the quality
of sweet peppers.

Effect of BBS on the Soil Properties
Previous studies demonstrated that application of PGPR
improved the soil nutrient status (Gulnaz et al., 2017). BBS
treatment affected the soil properties (Table 1). In the presence
of BBS, soil TOM and TOC were significantly higher than in
the control soil, at 123.81 g/kg (TOM) and 71.81 g/kg (TOC)
in BBS-treated soil, versus 103.51 g/kg (TOM), and 60.04 g/kg
(TOC) in the control. AN content was higher in BBS-treated soil
(25.84 mg/kg) than in the control (19.02 mg/kg), whereas TN
and NN contents did not differ between BBS-treated and control
soil. TP and TK levels did not differ between the BBS-treated
soil and control soil, whereas AP and AK levels were higher in
BBS-treated soil (1.11 g/kg AP and 1.52 g/kg AK) compare than
in control soil (0.82 g/kg AP and 1.38 g/kg AK). Therefore, BBS
treatment improved soil properties.

Effect of Microbial Community
Assemblages by BBS on Disease Control
A previous study has shown that microbe additives change
microbial communities (Trabelsi and Mhamdi, 2013). Here, we
characterized and identified the complex microbial community
by simultaneous DNA amplicon sequencing targeting the 16S
rRNA gene in bacteria. In total of 326 683 sequences of 16S
rRNA were extracted from treated and control soil samples;
the number of high-quality bacterial sequences varied among
samples from 54,069 to 54,783 (Supplementary Table S1).
Furthermore, 3,615 bacterial OTUs were obtained, with a limited
number at the 97% similarity cut-off level. The Good’s coverage
index revealed 99.00–99.09% of bacteria was obtained in all
samples (Supplementary Table S1). The results showed that
the probability of gene sequence detection in soil samples
was high, and the sequencing results could represent the real
situation of soil bacterial community in our experiment. The
rarefaction and OTU Rank-Abundance curves of all six samples
indicated that there was a smaller variation in the total number
of OTUs, and the database of 16S rRNA gene sequences were
very abundant which reflected the vast majority of microbial
information (Supplementary Figure S1). The dominant
phyla across all samples were Proteobacteria, Acidobacteria,
Bacteroidates, Chloroflexi, Actinobacteria, Gemmatimonadetes,
Planctomycetes, accounting for more than 89% of the
bacterial sequences (Supplementary Figure S2a). Among
these seven phyla, the relative abundance of Proteobacteria
is the largest in the rhizosphere, which is composed of
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria
and Deltaproteobacteria (Supplementary Figure S2b).

Principal-coordinate analysis (PCoA) examination of
between-sample variation (beta-diversity) based on Bray-Curtis
distances revealed that rhizosphere bacterial communities,
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FIGURE 1 | Effects of different fertilization management programs on disease (A) and yield (B) of sweet pepper in 2014–2016. Data are expressed as the
mean ± SD (n = 3). Significant differences between different treatments are indicated as different letters on top of the data bars. The statistical analysis was
determined by a Tukey’s Studentized Range (HSD) test: α = 0.05, n = 3.

FIGURE 2 | Effects of BBS management on content of chlorophyll (A) and fruit quality (B–D) of sweet pepper. Fruit quality of sweet pepper include content of
soluble sugar (B), soluble solids (C), and Vitamin C (D). Significant differences between different treatments are indicated as different letters on top of the data bars.
The statistical analysis was determined by a Tukey’s Studentized Range (HSD) test: α = 0.05, n = 3.

clustered by treatment, along the second component (Figure 3).
Durán et al. (2018) demonstrated that managing microbial
communities contributed to plant health. Spearman’s rank

correlation coefficient revealed a clear positive correlation
between phytophthora blight prevalence and the relative
abundances of Iamia (P < 0.05), Agromyces (P < 0.01), Kaistia
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TABLE 1 | Physicochemical properties of soil samples under the different treatments.

TOM (g/kg) TOC (g/kg) TN (g/kg) NN (mg/kg) AN (mg/kg) TP (g/kg) AP (g/kg) TK (g/kg) AK (g/kg)

CK 103.51 ± 1.66b 60.04 ± 0.96b 9.65 ± 0.83a 431.52 ± 2.01a 19.02 ± 0.12b 4.89 ± 0.18a 0.82 ± 0.01b 14.06 ± 0.16a 1.38 ± 0.01b

BBS 123.81 ± 3.83a 71.81 ± 2.22a 10.54 ± 0.76a 443.13 ± 5.57a 25.84 ± 1.01a 4.94 ± 0.18a 1.11 ± 0.04a 14.13 ± 0.13a 1.52 ± 0.02a

Each treatment was replicated three times, data are presented as means of three replicates ± SD, and error bars represent SD for three replicates. Means with different
letters have significant differences (p < 0.05; HSD test). TOM, total organic matter; TOC, total organic carbon; TN, total nitrogen; NN, nitrate nitrogen; AN, ammonia
nitrogen; TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK, available potassium.

(P < 0.05), Rubellimicrobium (P < 0.05), Sporosarcina (P < 0.05),
Aquicella (P < 0.05), and Phormidium (P < 0.05) (Table 2). In
contrast, there were negative correlations between phytophthora
blight prevalence and the relative abundances of Sporichthya
(P < 0.05), Achromobacter (P < 0.05), Burkholderia (P < 0.01),
Comamonas (P < 0.05), Ramlibacter (P < 0.05), and Pontibacter
(P < 0.05) (Table 2). BBS treatment markedly increased the
abundance of Burkholderia (moderated t-test, FDR, p < 0.01),
Comamonas (moderated t-test, FDR, p < 0.1) and Ramlibacter
(moderated t-test, FDR, p < 0.05), relative to the control
(Figure 4 and Supplementary Figure S3). These results indicate
that BBS modified the microbial community, contributing to the
suppression of sweet pepper disease.

Effect of Microbial Community
Assemblages on Soil Properties
BBS treatment improved the soil chemical properties (Table 1).
The Mantel test revealed striking relationships (r = 0.72, P < 0.05)
between soil chemical properties and the abundances of the
analyzed microbial genera. Examination of the relationship
between the selected soil chemical properties and the abundances
of the analyzed microbial genera (redundancy analysis) revealed

FIGURE 3 | The bacterial microbial community compositions of the different
treatments.

that the two components explained the 91.41% variance, and BBS
treatment was separated from the control treatment (Figure 5).
BBS-treated soil samples were dominated by Sporichthya,
Achromobacter, Burkholderia, Comamonas, Ramlibacter, and
Pontibacter; bacterial abundance was related to TOC, TN, AN,
TP, and AP (Figure 5). Therefore, BBS modified the microbial
community thereby improving the soil properties. In summary,
BBS shifted the microbe community to suppress soil-borne
disease, increase sweet pepper crop yield and improve soil
chemical properties.

DISCUSSION

Application of a consortium of three plant growth-promoting
rhizobacteria (PGPR) strains (Bacillus cereus AR156, B. subtilis
SM21, and Serratia sp. XY21) significantly reduced plant disease
(Figure 1A); this is consistent with previous findings that PGPR
strains can be used as biocontrol agents against plant diseases
caused by soil-borne pathogens (Kloeppe et al., 1999; Haas and
Défago, 2005). More importantly, BBS treatment improved sweet
pepper fruit yield, raised its nutrient contents, and improved
soil fertility (Figures 1B, 2A–D). These results confirm previous
reports, in which PGPR was shown to act as both a biofertilizer
and biocontrol agent (Mohapatra et al., 2015; Prasad et al., 2015).

Our finding that rhizosphere bacterial communities differed
between the different treatments (Figure 3) is consistent with
those of previous studies, which demonstrated that microbial

TABLE 2 | Spearman’s rank correlation coefficient between rhizosphere abundant
genus and disease incidence.

Disease incidence (%)

Iamia 0.845∗

Agromyces 0.897∗∗

Sporichthya −0.847∗

Kaistia 0.784∗

Rubellimicrobium 0.787∗

Sporosarcina 0.645∗

Achromobacter −0.739∗

Burkholderia −0.92∗∗

Comamonas −0.864∗

Ramlibacter −0.854∗

Pontibacter −0.793∗

Aquicella 0.930∗

Phormidium 0.78∗

Statistical significance at ∗P < 0.05 and ∗∗P < 0.01.
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FIGURE 4 | Relative abundance of disease-related genus in rhizosphere. Significant differences between different treatments are indicated as different letters on top
of the data bars. The statistical analysis was determined by one-side T-test with 5% FDR (+p < 0.1, ∗p < 0.05, and ∗∗p < 0.01).

FIGURE 5 | Redundancy analysis of soil properties, soil properties and analyzed rhizosphere soil genera bacterial. Soil property: TOC, total organic carbon; TN, total
nitrogen; AN, ammonia nitrogen; TP, total phosphorus; AP, available phosphorus.
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amendments alter the rhizosphere microbiome (Saravanakumar
et al., 2017). Based on Spearman’s rank correlation coefficient, the
rhizosphere genera Iamia, Agromyces, Kaistia, Rubellimicrobium,
Sporosarcina, Aquicella, and Phormidium were strongly and
positively associated with sweet pepper disease. In contrast,
negative associations between disease prevalence and the relative
abundances of Sporichthya, Achromobacter, Burkholderia,
Comamonas, Ramlibacter, and Pontibacter were observed
(Table 2). Interestingly, BBS treatment significantly increased the
abundance of Burkholderia (moderated t-test, FDR, p < 0.01),
Comamonas (moderated t-test, FDR, p < 0.1), and Ramlibacter
(moderated t-test, FDR, p < 0.05) (Figure 4), which were
negatively associated with sweet pepper disease. Among the
genera that occurred in our soil samples, Burkholderia has been
used as a biological control agent against plant disease (Parke and
Gurian-Sherman, 2001), Comamonas is reported to act against
pathogenic fungi (El-Banna, 2007), and Ramlibacter appears
to be important in adverse environments (Luca et al., 2011).
Hence, we conclude that BBS shaped the rhizosphere microbial
community by developing beneficial strains, thereby contributing
to the suppression of sweet pepper disease.

BBS treatment improved soil chemical properties (Table 1),
consistent with previous findings that PGPR can increase
soil fertility (Sharma et al., 2017). The findings of our
redundancy analysis (to evaluate the relationship between the
selected soil chemical properties and the abundance of the
analyzed microbial genera) suggest that BBS-treated soil samples
were dominated by Sporichthya, Achromobacter, Burkholderia,
Comamonas, Ramlibacter, and Pontibacter. Levels of TOC, TN,
AN, TP, and AP were correlated with community composition
(Figure 5). The abundance of the dominant genera were
negatively associated with sweet pepper disease (Table 2), which
suggest that BBS modified the microbial community to suppress
soil-borne disease and improve soil chemical properties as well.
As a result, BBS improved sweet pepper yield and improved
the quality of fruit; this is consistent previous findings that
high fertility soil promotes fruit yield and plant quality (Xu
et al., 2001; Mahmoud et al., 2009). Liu et al. reported that
cucumber roots could sense microbial signals releasing from
additive PGPR B. amyloliquefaciens SQR9 and subsequently

secrete tryptophan to recruit SQR9 which benefited the cucumber
itself and prevented pathogen infection (Liu et al., 2017). Wang
et al. demonstrated that plant root exudates are involved in
B. cereus AR156 biocontrol ability against tomato bacterial wilt
caused by R. solanacearum. Furthermore, plant root exudates
have been reported to influence the soil bacterial community
structure (Szoboszlay et al., 2016). Therefore, it will be interesting
to understand the mechanism of the bacteria shaping rhizosphere
bacterial communities by regulating plant root exudates.
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