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A B S T R A C T

Most neurodegenerative disorders are characterized by progressive loss of neurons throughout the course of
disease in the form of specific spatio-temporal patterns. To capture and quantify these coherent patterns across
both space and time, traditionally one would either fit a pre-defined model with spatial and temporal parameters
or apply analysis in the spatial and temporal domains separately. In this work, we introduce and validate the use
of dynamic mode decomposition (DMD), a data-driven multivariate approach, to extract coupled spatio-tem-
poral patterns simultaneously.

We apply the method to examine progressive dopaminergic degeneration in 41 patients with Parkinson's
disease (PD) using [11C](± )dihydrotetrabenazine (DTBZ) Positron Emission Tomography (PET). DMD de-
composed the progressive dopaminergic changes in the putamen into two orthogonal temporal progression
curves associated with distinct spatial patterns: 1) an anterior-posterior gradient, the expression of which de-
creased gradually with disease progression with a higher initial expression in the less affected side; 2) a dorsal-
ventral gradient in the less affected side, which was present in early disease stage only. In the caudate, we found
a head-tail gradient analogous to the anterior-posterior gradient seen in the putamen; as in the putamen, the
expression of this gradient decreased gradually with disease progression with higher expression in the less
affected side.

Our results with DTBZ PET data show the applicability and relevance of the proposed method for extracting
spatio-temporal patterns of neurotransmitter changes due to neurodegeneration. The method is able to de-
compose known PD-induced dopaminergic denervation into orthogonal (and thus loosely independent) temporal
curves, which may be able to reflect and separate either different mechanisms underlying disease progression
and disease initiation, or differential involvement of striatal sub-regions at different disease stages, in a com-
pletely data driven way. It is expected that this method can be easily extended to other PET tracers and neu-
rodegenerative disorders and may help to elucidate disease mechanisms in more details compared to traditional
approaches.

1. Introduction

Many neurodegenerative diseases are characterized by progressive
loss of neurons and/or nerve terminals throughout the course of disease
in the form of specific spatio-temporal patterns, in which neurodegen-
eration in different brain regions or network of brain regions may
follow distinctive temporal disease progression. Non-invasive neuroi-
maging techniques such as Positron Emission Tomography (PET) and
Single-Photon Emission Computed Tomography (SPECT) are often used

to track disease progression and to better understand disease mechan-
isms. Many attempts have been made to explore spatio-temporal pat-
terns of disease progression using PET or SPECT. One common ap-
proach is to fit an exponential or another appropriate model with a
fixed number of spatial and temporal parameters to tracer binding va-
lues. Previous studies have explored the spatio-temporal patterns of
dopaminergic denervation at both individual regions of interest (ROI)
level (Colloby et al., 2005; Nandhagopal et al., 2009) and at the voxel
level (Badoud et al., 2016; Klyuzhin et al., 2019) using several
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dopaminergic PET tracers and 123I-ioflupane SPECT. However, with this
approach, the progressive spatial patterns are either limited to a set of
pre-defined ROIs, or to being along a specific spatial axis within a brain
structure. Data-driven multivariate approaches have also been recently
used to extract and visualize spatial patterns of tracer binding values,
mainly using dimension reduction techniques such as principal com-
ponent analysis (PCA) (Klyuzhin et al., 2018) or independent compo-
nent analysis (ICA). One major constraint associated with these
methods is that PCA and ICA are temporally static techniques and do
not model the temporal progression of the spatial patterns. One needs
to assume that the spatial patterns obtained with PCA or ICA remain
static/constant over time and only the expression of these spatial pat-
terns increases or decreases as disease progresses; this assumption may
not necessarily be valid or in keeping with the fundamental nature of
the disease.

We introduce and validate the use of dynamic mode decomposition
(DMD) to extract spatial patterns of tracer binding values associated
with distinctive and orthogonal temporal disease progression curves.
DMD is a relatively new decomposition method first developed in the
field of fluid dynamics (Schmid, 2010) and recently used to model
temporal oscillations of electroencephalography (EEG) (Brunton et al.,
2016a) and functional Magnetic Resonance Imaging (fMRI) data
(Casorso et al., 2018) in the brain. DMD finds coherent spatio-temporal
patterns in high-dimensional non-linear systems (details about DMD
algorithms are included in the Method section). There are several un-
ique advantages of DMD compared to other model fitting and multi-
variate approaches: 1) it is a data-driven method that does not require a
fixed set of governing equations or prior assumptions of the underlying
dynamics; 2) it combines the advantages from two frequently used
analysis methods: PCA for the reduction of high-dimensional data and
spectral time-series analysis for identifying the oscillation frequency of
time-varying signals; 3) it can model non-linear systems effectively,
unlike PCA which assumes that the relationships between variables is
linear; 4) it can isolate/decompose the overall temporal course into
specific dynamics (Proctor and Eckhoff, 2015; Taira et al., 2017). In-
stead of applying DMD to sequential time-series data in the frequency
domain as is the case for EEG and fMRI data, we propose to extend DMD
to model temporal changes of spatial patterns of tracer binding values
as disease progresses.

To test the applicability and robustness of DMD to extract spatio-
temporal patterns of tracer binding values, we first applied DMD to
study dopaminergic denervation in Parkinson's disease (PD) using [11C]
(± )dihydrotetrabenazine (DTBZ—a vesicular monoamine transporter
type 2 (VMAT2) marker) PET. The motor deficit of PD is traditionally
associated with dysfunction of the nigrostriatal pathway, characterized
by progressive loss of dopaminergic neurons in the substantia nigra and
loss of their projection fibres to the striatum (Stoessl, 2012). Neuro-
degeneration of the dopaminergic system tends to follow a fairly well
defined spatio-temporal pattern in which the dorsal posterior putamen
contralateral to the more affected body side is affected first, followed by
degeneration in the ventral and anterior putamen and the caudate, as
shown in Fig. 1 (Stoessl, 2012). PET studies have shown an exponential
decline of dopaminergic terminals as disease progresses, where the rate
of loss is highest in early disease (Lee et al., 2004; Nandhagopal et al.,
2009). This is in broad agreement with post-mortem studies of nigral
cell counts (Kordower et al., 2013) and striatal tyrosine hydroxylase
immunoreactivity (Alerte et al., 2008). Using longitudinal and cross-
sectional PET data, our group previously showed that while initial levels
of dopaminergic loss were different, the rates of dopaminergic loss were
similar in different striatal regions. It was therefore suggested that
mechanisms responsible for disease progression (rate of loss) and dis-
ease initiation (initial severity of loss) may be different (Lee et al., 2004;
Nandhagopal et al., 2009). It is thus expected that these distinct me-
chanisms may be reflected by distinctive spatio-temporal patterns in the
striatum, which could be captured by DMD.

2. Materials and methods

2.1. Study participants

This study included 41 PD subjects with disease duration ranging
from 0 to 16 years. Disease duration was estimated as time from onset
of motor symptoms as reported by the subjects. PD subjects were
clinically evaluated using the Movement Disorder Society Unified
Parkinson's Disease Rating Scale Part III (MDS-UPDRS Part III) and
Hoehn and Yahr scale to assess motor dysfunction. All PD subjects were
cognitively normal as assessed by Montreal Cognitive Assessment
(MoCA) (MoCA scores greater than 26). Detailed clinical characteristics
are listed in Table 1. All assessments were performed off medication.
The study was approved by the Clinical Research Ethics Board of the
University of British Columbia and all subjects provided informed
written consent.

2.2. Scanning protocols

All study subjects underwent DTBZ PET scans and a T1-weighted
MRI scan of the brain. The PET scans were performed on a Siemens
High Resolution Research Tomograph (HRRT, Knoxville, TN) with a
spatial resolution of (2.5 mm)3 (Jong et al., 2007). Subjects were po-
sitioned using external lasers aligning the gantry with the inferior or-
bital-external meatal line, and custom fitted thermoplastic masks were
applied to minimize head movement. Prior to PET scans, subjects were
withdrawn from all anti-parkinsonian medications for at least 12 h.
320 ± 34 MBq of (+)DTBZ were administered by intravenous injec-
tion over 60 s using an infusion pump (Harvard Instruments). Acquired
data were binned into 16 time frames (frame durations: 4 × 60 s,
3 × 120 s, 8 × 300 s, 1 × 600 s; image dimension=256 × 256 × 207;
voxel size = (1.22 mm)3) with a total duration of 60 min. Transmission
scans required for attenuation correction were performed over ten
minutes with a rotating 137Cs source. PET images were reconstructed
using the 3D sinogram Poisson Ordered Subset Expectation Maximiza-
tion (OP-OSEM) algorithm (Comtat et al., 2004) with 16 subsets and six
iterations, with corrections for decay, dead-time, normalization, at-
tenuation, scattered and random coincidences. After reconstruction,
images were smoothed with a 2.0-mm full-width at half maximum
(FWHM) Gaussian filter to reduce noise. The frames were spatially
realigned with rigid-body transformation to minimize the impact of
motion during scans. The structural MRI scans were performed on a
Philips Achieva 3.0T MRI scanner (Phillips Healthcare, Best, NL) using
the T1 turbo field echo (TFE) sequence (TR/TE = 7.7/3.6 ms; TFE
shots = 218; flip angle = 8°; image dimension: 256 × 256 × 170;
voxel size (1 mm)3).

2.3. Image processing

Parametric DTBZ binding images were generated with a previously
published analysis pipeline (Klyuzhin et al., 2018). To optimize the co-
registration and warping quality, we used a two-step registration pi-
peline. In the first step, the MRI images were first resampled to match
the PET voxel size. DTBZ PET images averaged over 30–60 min post-
injection were then rigidly co-registered to the corresponding subject's
MR images using SPM12 software (Wellcome Department of Cognitive
Neurology, University College London, UK). The quality of the co-re-
gistration was visually inspected. The MRI images were segmented to
create masks for the striatal and the reference region (occipital cortex)
using Freesurfer (Fischl et al., 2002). Parametric activity ratio (AR)
images were generated by dividing the voxel values in the respective
activity images by the mean activity in the reference region. Co-regis-
tered MRI and AR images were separated into more and less affected
brain sides, contralateral to the more and less clinically affected body
sides (based on MDS-UPDRS III total scores). In the second step, for
each side separately, MRI-defined segmentation (Freesurfer) of the
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putamen and caudate were combined to generate a single labeled vo-
lume mask that was warped to a common striatal template using 3D
diffeomorphic mapping (Fischl et al., 2002). The resulting transfor-
mation matrix was saved and applied to the respective AR images.

3. Introducing DMD

We first briefly summarize the DMD algorithm in Section 3.1
(Brunton et al., 2016b; Tu et al., 2013) . Application of DMD in the
context of neuroimaging to model disease progression is illustrated in
Section 3.2 with a brief explanation of meaningful outcome measures.
Tests for robustness and reproducibility of DMD results are shown in
Section 3.3. Comparison between the results obtained with DMD, uni-
variate analysis and PCA can be found in the Section 3.4 and Section
3.5.

3.1. DMD algorithm

Consider measurements taken from n features at times kΔt, where k
is the index of the temporal snapshots and Δt is the time difference
between each snapshot (temporal resolution/sampling rate).
Measurements from each temporal snapshot are arranged in a column
vector xk (size n by 1, k = 1…t, t is the index of last time point).
Construct two matrices Xt and −Xt 1 (both are size n by t – 1) as time-
shifted versions of each other (shifted by Δt):

= …
− −X x x[ ]t t1 1 1

= …X x x[ ]t t2

The progression from −Xt 1 to Xt (temporally progressed by Δt) is
governed by an unknown linear operator A:

= +−X AX ϵt t t1

where ϵt is the model residual or noise.
DMD models a high-dimensional linear regression of the non-linear

dynamics relating Xt and −Xt 1 by the eigendecomposition of the op-
erator A. To estimate A (size n by n), singular value decomposition is
first applied to −Xt 1 so that:

≈ =−X AX AU VΣ *t t 1

where U (size n by r, where r is the number of reduced dimension), ∑
(size r by r) and V (size t-1 by r) are the left-singular vectors, singular
values and right-singular vectors of −Xt 1.

Then

≈ =−
−A X X X V UΣ *t t t1

† 1

where −Xt 1
† is the pseudoinverse of −X .t 1

However when n is large, direct eigenvalue analysis of A can be
computationally expensive. A more efficient model is to project A into
the reduced dimensional space with the operator U. Now we define the
reduced order model Ã:

= =
−A U AU U X V˜ * * Σt

1

And the eigendecomposition of Ã (size r by r) is:

=AW W˜ Λ

where W (size r by r) is the eigenvectors and the diagonal of Λ contains
DMD eigenvalues λ. Note that the eigenvalues for A and Ã are identical,
and their eigenvectors are associated by a linear transformation.

DMD modes (eigenvectors of A, size n by r) are defined as:

=
−X V WΦ Σt

1

The temporal dynamic curve is defined as:

=T t e z( ) tΩ

= tΩ log Λ/Δ

=x Φ z1

where z (DMD amplitude, unitless) is used to scale the DMD mode (Φ) to
match the input data at the first time point x1. Since Λ can be real or
complex valued, the temporal dynamic curve shows an exponential
behaviour when Λ is real and shows an oscillatory behaviour when Λ is
complex.

We can then approximate X with a dynamic model:

=X t e z^ ( ) Φ tΩ

The main message is that DMD decomposes the data into coupled
spatio-temporal patterns: spatial modes (Φ) and their corresponding
temporal dynamics (T(t)).

Fig. 1. [11C](± )dihydrotetrabenazine (DTBZ) PET image for
a healthy control (left) and a Parkinson's disease (PD) subject
(right). PD subject showed characteristic asymmetric tracer
uptake in the less and more affected sides and a spatio-
temporal pattern of dopaminergic loss with the posterior pu-
tamen affected before the anterior putamen and caudate.
PET = Positron Emission Tomography.

Table 1
Clinical characteristics of all subjects. All numbers are reported as mean± standard deviation.

Number Sex Age (years) Disease duration (years) H&Y Total MDS-UPDRS III MoCA

PD 41 25M/16F 61.8 ± 8.7 5.32± 4.31 1.9 ± 0.5 19.3 ± 10.5 28.0 ± 1.3

Disease duration estimated as the 1time from onset of motor symptoms as reported by the patients. PD = Parkinson's disease subjects; MDS-UPDRS = Movement
Disorder Society Unified Parkinson's Disease Rating Scale; MoCA = Montreal Cognitive Assessment; H&Y = Hoehn and Yahr scale.
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3.2. DMD applied to DTBZ PET data to track disease progression

Unlike fMRI and EEG data, where each temporal snapshot is a single
scan from the dynamic time-series, here we want to model disease
progression; we used cross-sectional data of subjects with different
disease durations to represent temporal snapshots of the disease course
(Fig. 2A). We first stretched each 3D parametric AR image into a long
vector xk (size n by 1, n is the total number of voxels in the AR image,
k = 1…t) then temporally concatenated all k vectors according to their
disease durations (in years) such that (Fig. 2B):

= …
− −X x x[ ]t t1 1 1

= …X x x[ ]t t2

where x1 represents the AR image vector for a subject with a disease
duration of one year.

For time points with several snapshots (i.e. AR images of subjects
with the same disease duration), we used the averaged AR images as a
single snapshot. Each DMD mode represents a spatial pattern of dopa-
minergic denervation associated with a particular exponential growth/
decay curve or an oscillatory temporal curve around zero (as a result of
complex Λ values). Only DMD modes with real Λ values were con-
sidered, and DMD modes with oscillatory behaviour were considered as
noise. It is also important to note that DMD spatial modes are not or-
thogonal/independent, while the orthogonality of DMD remains in the

temporal domain, i.e. the temporal courses are orthogonal (loosely in-
dependent) to one another.

We applied DMD separately to the putamen and caudate as there
might be different spatio-temporal patterns in the two striatal regions
and we wanted to examine the effect of disease in each striatal sub-
structure separately. We also applied DMD first separately to the less
and more affected sides to investigate progression within a lateralized
structure, then to both sides together to examine if the known de-
nervation asymmetry associated with PD (especially in the early stages)
would influence the spatial patterns and their temporal courses.

The analysis pipeline was written in Matlab and is available upon
direct request to the corresponding author, however PET data used in
this study are not made available publicly for reasons of patient con-
fidentiality.

3.3. Robustness and reproducibility of DMD

For imaging studies, where the number of subjects may be relatively
limited, the patient population may not fully sample the disease pro-
gression spectrum, resulting in missing time points on the disease time
course. In our case, we did not have any subject with nine and 14 years
of disease duration. We performed leave-one-out cross validation on the
temporal snapshots to examine the effect of missing time points on the
DMD outputs. In this study, the sampling rate of one was used which

Fig. 2. Schematic diagram for dynamic mode decomposition (DMD) analysis pipeline. (A) In the data preparation step, the 3D parametric PET tracer binding image
of each subject is stretched into a flattened column vector. Each column vector is then concatenated horizontally according to the disease durations of all subjects.
DMD then decomposes the reshaped PET data into DMD modes (spatial patterns), each associated with an unique temporal dynamic curves. (B) The reshaped PET
data are used to construct Xt-1 and Xt matrices as time shifted version of each other, which are then used as input to DMD. PET = Positron Emission Tomography.
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corresponds to one year disease duration step.

3.4. Univariate analysis

In addition to the multivariate analysis, we also fitted a pre-defined
exponential function to the average DTBZ AR values in the less and
more affected putamen and in the less and more affected caudate to
compare the extracted DMD temporal curves with the models fitted to
the average AR values.

The following exponential equation was fitted to the putamen:

= +
− −Y t a e c e( ) * *b t d t

While the exponential equation fitted to the caudate was of the
form:

=
−Y t a e( ) *b t

Where a, b, c, and d are the fitting parameters, t is disease duration
(in years) and Y is the average AR values.

We used a pre-defined function with two exponential terms for the
putamen and one exponential term for the caudate to match the number
of spatio-temporal patterns extracted by DMD.

We also performed correlation analyses between the temporal ex-
pressions of DMD mode 1, DMD mode 2 and the sum of DMD mode 1
and mode 2 and the averaged DTBZ AR values in the less and more
affected putamen and in the less and more affected caudate.

3.5. Comparison between DMD and PCA

DMD and PCA are conceptually similar in the sense that both in-
volve decomposition of the input data. However, DMD models coupled
temporal-spatial patterns while PCA only models variance in the data
without accounting for any temporal information. In other words, if the
input signal is composed of two sources with different temporal courses,
PCA may fail to un-mix the two sources. Mathematically, the first step
of the DMD algorithm is the same as PCA, while the variable A captures
the temporal dynamic of the PCA mode (U) from one time point to the
next:

= −U AUt t 1

To illustrate the impact of the differences between the two ap-
proaches on the outcomes, we applied both DMD and PCA to DTBZ AR
values in the less affected putamen and compared the spatial patterns of

DMD and PCA and their associated subject/temporal scores as a func-
tion of disease duration.

4. Results

DMD decomposed DTBZ PET data into two coupled sets of dis-
tinctive spatio-temporal patterns in the putamen and a single spatio-
temporal pattern in the caudate. The temporal curves were highly ro-
bust as shown by the small variations obtained in the leave-one-out
cross validation. We kept the first two pairs of coupled DMD modes and
their temporal courses that accounted for 98% of total variance in the
data for the putamen and the first pair of coupled DMD modes and their
temporal courses that accounted for at least 96% of total variance for
the caudate for further analysis. Temporal curves for later DMD modes
showed mostly oscillatory behaviour around zero, so were considered
as non-meaningful. An example of non-meaningful DMD mode with
oscillatory behaviour can be found in the Supplementary Materials (Fig.
S1, Section 1). Detailed fitting parameters for univariate exponential
models fitted to the average DTBZ AR values in the putamen and cau-
date, and more detailed comparison between DMD and traditional
analyses can also be found in the Supplementary Materials (Section 2).
There were significant correlations between the averaged DTBZ AR
values in the more and less affected putamen and caudate and ex-
pression of DMD mode 1, mode 2 and the sum of the two modes in the
putamen and caudate (P < 0.01). The correlations between the aver-
aged DTBZ AR and the expression of the sum of DMD mode 1 and 2 was
the strongest which is expected since the temporal expression of the
sum of the two DMD modes reflect the overall progression change in
DTBZ binding. More detailed results for the correlation analysis be-
tween temporal expression of DMD modes and the averaged DTBZ AR
values can be found in the Supplementary Materials (Section 4).

4.1. Putamen

In both the less and more affected putamen, the first DMD modes
showed characteristic anterior-posterior gradients that were almost
identical between the two sides (Fig. 3A). These anterior-posterior
patterns were associated with temporal curves with almost identical
decay constants for both the less and more affected putamen (Fig. 4A).
The DMD amplitude (intercept of the temporal curves), however, was
much higher in the less affected putamen compared to the more af-
fected putamen.

Fig. 3. DMD modes (spatial patterns) in the less and more
affected putamen (A) and caudate (B). DMD was applied to the
less and more affected sides separately. In the putamen, DMD
mode 1 showed an anterior-posterior gradient and DMD mode
2 showed a dorsal-ventral gradient in both the less and more
affected sides. DMD mode 1 in the caudate showed a head-tail
gradient in both the less and more affected sides. Spatial
patterns are displayed as maximum intensity projection onto
the entire region of interest. DMD = dynamic mode decom-
position. LM = lateral-medial. AP = anterior-posterior.
DV = dorsal-ventral.
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The second DMD mode showed a dorsal-ventral gradient in the less
affected putamen (Fig. 3A) associated with a temporal curve that de-
creased sharply in the early stage of the disease (<5 years) (Fig. 4B).
For the more affected putamen, the second temporal curve neared zero
after approximately one year of disease duration (Fig. 4B). Detailed
DMD output parameters are listed in Table 2.

Combining the temporal curves for the first two DMD modes
(Fig. 4C), we observed that the initial progression rates and intercepts
in the less and more affected putamen were quite different; the differ-
ence was mainly dominated by the second DMD mode (dorsal-ventral
gradient). The progression rates then became similar in the less and
more affected putamen as the first DMD mode (anterior-posterior

Fig. 4. (A) The first DMD temporal curve in the less and more affected putamen, associated with the anterior-posterior gradient. (B) The second DMD temporal curve
in the less and more affected putamen, associated with the dorsal-ventral gradient. (C) Combined DMD temporal curves for the first and second DMD modes in the
less and more affected putamen. (D) Averaged DTBZ activity ratios in the less and more affected putamen versus disease duration and the best exponential fit curve.
Error bars were generated from leave-one-out cross validation. DMD = dynamic mode decomposition. DTBZ = dihydrotetrabenazine.

Table 2
DMD output parameters. All numbers are reported as mean± standard deviation.

Less affected Putamen More affected Putamen Less affected Caudate More affected Caudate

Mode 1 DMD amplitude (z) 26.77 ± 0.69 21.38 ± 0.96 36.64 ± 0.17 33.14 ± 0.46
Decay constant −0.027 ± 0.004 −0.028 ± 0.005 −0.026 ± 0.002 −0.026 ± 0.004

Mode 2 DMD amplitude (z) 19.61 ± 0.42 7.22 ± 2.01 N/A N/A
Decay constant −0.65 ± 0.05 −1.18 ± 0.18 N/A N/A

Total variance explained (%) 97.7 97.7 96.2 97.0

DMD amplitudes (unitless) and decay constants determine the intercept and shape of the exponential temporal curves in each striatal region. Temporal curves with
more negative decay constants drop more quickly with increasing disease duration compared to the temporal curves with decay constants closer to zero. The total
percentage variance explained were calculated with the first two modes for putamen and with the first mode for caudate. Standard deviation of the DMD parameters
were calculated from leave-one-out cross-validation. DMD = dynamic mode decomposition.
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gradient) started to dominate. The combined temporal curve also
highly resembled the exponential function fitted to the averaged AR
values in the less and more affected putamen (Fig. 4D).

4.2. Caudate

The first DMD modes showed a head-tail gradient in both the less
and more affected caudate (Fig. 3B). This gradient was associated with
temporal curves with almost identical decay constants in both the less
and more affected caudate (Fig. 5A). The intercept for the temporal
curves was higher for the less affected caudate than that for the more
affected caudate, however, the differences in gradient expression be-
came smaller as the two curves tended to converge in later disease
stage. Again, this DMD temporal curve highly resembled the ex-
ponential function fitted to the averaged AR values in the less and more
affected caudate (Fig. 5B).

We also applied DMD to both the less and more affected sides to-
gether in the caudate and putamen; spatial patterns and temporal
curves were very comparable with those obtained by applying DMD to
the less and more affected sides separately (Supplementary Materials,
Section 3).

4.3. Comparison between DMD and PCA

As shown in Fig. 6, the first spatial patterns (DMD mode 1 and PCA
pattern 1) obtained from DMD and PCA showed very similar anterior-
posterior gradient in the less affected putamen; the relationship be-
tween the subject scores related to the PCA-defined spatial pattern and
disease duration was however much less robust compared to the DMD
temporal curve. The second spatial patterns showed slight dorsal-ven-
tral gradient in the putamen for both DMD and PCA and very similar
temporal expression of the patterns as a function of disease duration.
The differences in the spatial patterns and scores between DMD and
PCA were due to the additional temporal information embedded in the
DMD algorithm. The similar distributions of DMD and PCA scores of
pattern 2 suggest the second temporal component extracted by DMD
also accounts for approximately the second largest variance (approxi-
mately 3.6% of variance accounted for by the second PCA pattern) in
the data in this particular case.

5. Discussion

In this work, we showed the first application of DMD to visualize

and quantify disease-induced progressive changes in neurotransmitter
activities. We first described the implementation of DMD to extract
spatio-temporal patterns related to disease progression using neuroi-
maging data and then tested the method on a well-established DTBZ
PET dataset to model dopaminergic denervation in PD. The method was
found to be robust with respect to typical uncertainties in the estima-
tion of disease duration and is expected to be easily applicable to a wide
range of imaging data.

This work presents both methodological and clinically relevant
advances. In terms of methodological novelties, we presented the first
multivariate approach that simultaneously models spatial and temporal
patterns related to neurodegeneration using PET data. We compared
the DMD temporal curves with a static multivariate approach (PCA)
that only models spatial information in the data. We demonstrated that
even though PCA and DMD showed similarities in the spatial patterns
and temporal expression of the patterns as a function of disease dura-
tion, DMD was intrinsically able to more accurately extract spatial
patterns with different progressive behaviours and thus provided a
more powerful alternative dimension reduction method for mod-
elingprogressive changes.

An important methodological advantage of the DMD approach is
that the spatio-temporal patterns are derived in a purely data-driven
and equation-free fashion at a voxel-level, which is especially important
when the underlying disease mechanisms are unknown. When mod-
eling temporal changes with traditional approaches, the choice of the
final model is usually based on estimating model residuals or other
objective methods such as the Akaike information criterion
(Supplementary Materials, Section 2). DMD, on the other hand, auto-
matically decomposes the data into an optimal number of exponential
functions with minimal need for parameter tuning.

Another unique and important advantage of the DMD approach is
its ability to decompose temporal changes of tracer binding into or-
thogonal (loosely implying independent) temporal trajectories; while
the traditional approach (i.e. pre-defined model fitted to the averaged
AR values in individual striatal regions) can only model the overall
temporal changes by minimizing the least square error between the
data and best fit curve. The spatial patterns associated with each in-
dependent temporal trajectory represent regions that change similarly
as a function of disease duration: the method is thus able to identify
regions that are differentially sensitive to potentially different disease
mechanisms.

Fig. 5. (A) The first DMD temporal curve in the less and more affected caudate, is associated with the head-tail gradient. (B) Averaged DTBZ activity ratios in the less
and more affected caudate versus disease duration and the best exponential fit curve. Error bars were generated from leave-one-out cross validation. DMD= dynamic
mode decomposition. DTBZ = dihydrotetrabenazine.
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5.1. DMD spatio-temporal patterns in the putamen and caudate

In this work, we were able to decompose the overall disease pro-
gression curve in the putamen into two independent temporal curves
associated with distinct spatial patterns of dopaminergic denervation.
The combined temporal expression of the anterior-posterior and dorsal-
ventral gradients (Fig. 4C) showed striking resemblance to the disease
progression curves previously presented using univariate measures in
the putamen regions obtained with a different patient population on a
different scanner (Nandhagopal et al., 2009) and the univariate ex-
ponential fit curves obtained with averaged DTBZ AR values in the
putamen (Fig. 4D).

While the initial expression of the anterior-posterior gradient was
higher in the less affected putamen, the expression of this gradient
decreased gradually at similar rates in the less and more affected pu-
tamen and still existed in later disease stage (~ 15 years of disease
duration) (Fig. 4A). This indicates that the anterior-posterior gradient is
likely well maintained bilaterally over the disease course (Müller et al.,
2000; Nandhagopal et al., 2009); the fact that the rate of decrease is the
same on both sides provides further support to the interpretation that
this pattern is related to mechanisms responsible for disease progres-
sion.

The dorsal-ventral gradient in the putamen, however, existed only
in very early disease, mainly in the less affected side. Previous studies
showed that the rate of dopaminergic neuron loss is highest in early
disease and the level of asymmetry between the less and more affected
sides is more prominent at this stage (Müller et al., 2000;
Nandhagopal et al., 2009). According to our analysis, this rapid change
of dopaminergic function in early disease may be mainly due to the
changes along the dorsal-ventral gradient. It is interesting to note that
the curves related to the less affected side seem to be shifted in time by
approximately 5–8 years compared to the more affected side (by visual
inspection), likely reflecting the asymmetric nature of disease onset
followed by an asymmetric onset of clinical symptoms.

The expression of the head-tail gradient in the caudate decreased
gradually with disease. The initial expression (intercept), however, was
higher for the less affected caudate than the more affected caudate. This
implies that even though there is an initial difference in the expression
of this gradient in the less and more affected caudate at disease onset,
there is no asymmetric progressive changes in the caudate along this
gradient. However, the caudate (especially the tail) is particularly
prone to partial volume effect, which may suggest that the head-tail
gradient could be a result of ‘spill-out’ effect from the edge of the
caudate to its surroundings; the reduction in temporal expression for

Fig. 6. Comparison between DMD temporal expression of mode 1 (left) and mode 2 (right) and PCA scores of PCA pattern 1 (left) and PCA pattern 2 (right) in the less
affected putamen. Both DMD temporal expressions and PCA scores are Z-transformed. Spatial patterns are displayed as maximum intensity projection onto the entire
region of interest. DMD = dynamic mode decomposition. PCA = principal component analysis.
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this DMD mode may therefore only reflects an overall magnitude
change in tracer binding across the entire caudate rather than a true
head-tail gradient in the caudate. To partially address this issue, we
compared the decay constants from the DMD temporal curve and the
exponential model fitted to the averaged AR values in the entire cau-
date as a function of time. The decay constants from the exponential fits
were −0.018 and −0.017 for the more and less affected caudate re-
spectively (Table S1), which were larger than the decay constants for
the head-tail gradient extract by DMD, which implies the expression of
the head-tail gradient decreases faster than the average tracer binding
across the whole caudate. Even though this comparison does not fully
address the potential confound due to partial volume effect, the dif-
ferences in decay constants support that the decrease of the gradient is
disease-related rather than an imaging artefact.

The decay constants for the anterior-posterior gradient in the pu-
tamen and the head-tail gradient in the caudate were very similar,
providing further support to the interpretation that these two gradients
of dopaminergic denervation may be due to non-specific mechanisms
that affect all striatal sub-regions at a similar rate. The presence of a
dorsal-ventral gradient in the putamen restricted to early disease may
be related to either an independent disease-initiating mechanism or
differential involvement of striatal sub-regions at different disease
stages. Further studies are needed to relate the different spatio-tem-
poral patterns with disease mechanisms.

While practically and conceptually consistent with earlier hy-
potheses on PD initiation/progression, the unique and more general
contribution of this approach to the analysis of PET data is that the
method appears to be able to separate independent temporal patterns of
disease progression and identify the regional contributions to each of
such patterns. It thus provides more direct evidence for the existence of
different disease-related mechanisms and an assessment of their topo-
logical characteristics and relevance at different stages of disease, thus
providing much more detailed information compared to traditional
analysis methods.

5.2. Limitations

There are several limitations of this study. The first major limitation
is the relatively small sample size used in this study. Second, DMD
assumes there is a fixed temporal resolution in the input data; we took
the sampling rate (Δt) to correspond to one year of disease duration in
our data. Since the uncertainty in the determination of disease duration
in PD ranges from 0.5 to 1 year, we randomly shifted disease durations
of all subjects by±1 year; the DMD outputs for the randomly shifted
data did not change appreciably. Third, cross-sectional data were used
to model disease progression, for which individual subject variability
could represent a potential confounding factor. However, obtaining
longitudinal data on the same subject at short disease intervals is often
not practical. While we acknowledge that longitudinal data may pro-
vide a more accurate description of disease progression, previous stu-
dies showed very similar disease progression curves obtained with
cross-sectional data alone (Lee et al., 2004; Lee et al., 2000) and with a
mixture of cross-sectional and longitudinal data (Nandhagopal et al.,
2009; Nandhagopal, 2011). The subject variabilities are partially ac-
counted for by taking the averaged images over subjects with the same
disease duration. More importantly, DMD models the overall progres-
sion across all time points, where each time point is represented by a
different subject, so it is less sensitive to heterogeneity in disease pro-
gression between subjects compared to univariate analyses. Fourth,
parametric AR images were used instead of non-displaceable binding
potential (BPND) images as a measure of dopaminergic denervation; this
choice was made out of convenience as these data were readily avail-
able. We previously applied PCA to both parametric AR and BPND
images in a subset of the same subject cohort involved in this study; the
resulting spatial patterns were virtually identical (Klyuzhin et al.,
2018). In principle, DMD can be applied to different types of parametric

images, since it primarily works with covariance patterns rather than
absolute voxel values. Fifth, even though striatal VMAT2 is pre-
dominantly expressed on dopaminergic nerve terminals, it is also ex-
pressed on other monoaminergic neurons. However, DMD may be less
sensitive to confounds introduced by the lack of tracer selectivity
compared to traditional analyses. In principle, DTBZ sourced from
different nerve terminals (i.e. dopaminergic and non-dopaminergic)
should follow different temporal progression curves, which could po-
tentially be captured by DMD.

6. Conclusion

In this work, we introduced the DMD approach to PET data and
demonstrated that this approach is able to capture spatio-temporal
patterns of dopaminergic denervation in PD. This approach appears
very well suited to model disease- or treatment-induced progressive
changes in imaging data. This proposed method has several advantages
over traditional methods in terms of biologically-relevant information
that can be extracted from the data: first, it considers tracer distribu-
tions in all the selected regions at once, thus providing information not
only on localized alterations, but also on spatial patterns of such al-
terations, emphasizing the network behaviour of the targets under in-
vestigation. Second, this approach incorporates both spatial and tem-
poral information simultaneously in a data-driven and equation-free
fashion. Thirdly, it allows the decomposition of overall disease-induced
progression into orthogonal temporal curves, possibly relating to in-
dependent mechanisms. In this study, we were able to, for the first time,
decompose the dopaminergic denervation in the striatum associated
with PD into two spatio-temporal patterns: (i) the anterior-posterior
gradient in the putamen and head-tail gradient in the caudate, which
may be related to non-specific mechanisms responsible for disease
progression and (ii) the dopaminergic denervation along the dorsal-
ventral gradient in the putamen which may reflect independent me-
chanisms responsible for disease initiation in the very early stage of the
disease. While the data considered in this study allowed us to validate
this approach and provide some novel insights into PD progression, the
method can be easily applied to data obtained with other tracers and
related to other diseases.
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