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Abstract

We utilized dynamic functional network connectivity (dFNC) analysis to compare

participants with obsessive–compulsive disorder (OCD) with their unaffected first-

degree relative (UFDR) and healthy controls (HC). Resting state fMRI was performed

on 46 OCD, 24 UFDR, and 49 HCs, along with clinical assessments. dFNC analyses

revealed two distinct connectivity states: a less frequent, integrated state character-

ized by the predominance of between-network connections (State I), and a more fre-

quent, segregated state with strong within-network connections (State II). OCD

patients spent more time in State II and less time in State I than HC, as measured by

fractional windows and mean dwell time. Time in each state for the UFDR were inter-

mediate between OCD patients and HC. Within the OCD group, fractional windows

of time spent in State I was positively correlated with OCD symptoms (as measured

by the obsessive compulsive inventory-revised [OCI-R], r = .343, p<.05, FDR correc-

tion) and time in State II was negatively correlated with symptoms (r = �.343, p<.05,

FDR correction). Within each state we also examined connectivity within and

between established intrinsic connectivity networks, and found that UFDR were sim-

ilar to the OCD group in State I, but more similar to the HC groups in State II. The

similarities between OCD and UFDR groups in temporal properties and State I con-

nectivity indicate that these features may reflect the endophenotype for OCD. These

results indicate that the temporal dynamics of functional connectivity could be a use-

ful biomarker to identify those at risk.
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1 | INTRODUCTION

Obsessive–compulsive disorder (OCD) is a group of neuropsychiatric

diseases with obsessive thinking and compulsive behavior as the main

clinical manifestations. OCD is common in the general population

(2.5–3%) (Robbins, Vaghi, & Banca, 2019). Family members of

OCD patients are at a higher risk for OCD compared with the general

population (Nestadt, Grados, & Samuels, 2010), indicating a high

genetic risk.

In recent years, the development of neuroimaging technology has

provided a new way to explore the pathophysiological mechanisms

underlying obsessive–compulsive disorder. Particularly, resting-state

functional magnetic resonance imaging (rs-fMRI) has attracted atten-

tion due to a number of advantages: it is noninvasive, easy to perform,

can be repeated, and avoids individual differences in the execution of

tasks that might complicated the use of task-based fMRI (Barkhof,

Haller, & Rombouts, 2014). Numerous rs-fMRI studies have identified

abnormalities of the cortico-striato-thalamo-cortical circuit (CSTC) as

a common characteristic in OCD patients (Calzà et al., 2019; Jung

et al., 2013; Posner et al., 2014; van den Heuvel et al., 2016; Zhao

et al., 2019). However, previous neuroimaging studies have suggested

that abnormalities are not limited to the CSTC circuit and other

regions (Anticevic et al., 2014; De Wit et al., 2014; Hou et al., 2014;

Milad et al., 2013), but also can be seen in cortical brain network

connectivity (Fan et al., 2017a; Gürsel, Avram, Sorg, Brandl, &

Koch, 2018; Shin et al., 2014).

Most previous rs-fMRI studies on OCD patients have investigated

FC patterns as a static phenomenon. Recent studies have found that

FC varies over time (Calhoun, Miller, Pearlson, & Adali, 2014) and such

temporal fluctuations can be captured by dynamic functional network

connectivity (dFNC) methods, providing greater insight into the funda-

mental properties of brain networks (Hutchison et al., 2013). Studies

of a variety of psychiatric disorders have revealed that abnormal

dFNC characteristics (Espinoza et al., 2019), including in autism spec-

trum disorder (ASD) (de Lacy, Doherty, King, Rachakonda, &

Calhoun, 2017), schizophrenia (Rabany et al., 2019), and major

depression (Han et al., 2020). Previous dFNC studies of OCD patients

have been limited in many ways. Gürsel and colleagues performed

group-based independent component and sliding time window

analyses to investigate dFNC alterations (Gürsel et al., 2020). They

focused on a subset of networks (default mode network,

frontoparietal network, and salience network) and did not examine

whole brain connectivity patterns. Liu and colleagues examined first-

episode and treatment-naive patients with obsessive–compulsive

disorder (OCD) (Liu et al., 2020) and did not examine patients under-

going treatment. Neither study examined nonaffected relatives in

order to examine whether dFNC patterns might serve to identify

endophenotypes for OCD.

Endophenotypes have been defined as “measurable components

unseen by the unaided eye along the pathway between disease and

distal genotype” (Gottesman & Gould, 2003). Endophenotypes can

serve as a more direct indicator of a genetic component of a disease

than overt disease symptoms. Endophenotypes are often present in

unaffected family members at a higher rate than in the general popu-

lation. Therefore, data from unaffected relatives of those with OCD is

critical for identifying common endophenotypes that can be used for

diagnosis and treatment. Relatives of OCD patients are more likely to

suffer from OCD than the general population (Gottesman &

Gould, 2003; Pauls, 2008; Pauls, Abramovitch, Rauch, & Geller, 2014).

The concept of endophenotype (Gottesman & Shields, 1973) has

proven useful in helping to bridge the gap between genetics and

behavioral disease processes and has been widely used in the study of

psychiatric illnesses including OCD, schizophrenia, attention deficit

hyperactivity disorder (ADHD), and depression (Chamberlain

et al., 2008; Chamberlain & Menzies, 2009; De Vries et al., 2014;

Gottesman & Gould, 2003; Gould & Gottesman, 2006; Menzies

et al., 2007; Peng et al., 2014; Peng et al., 2014; Peng et al., 2015;

Shaw et al., 2015; Viswanath, Janardhan Reddy, Kumar, Kandavel, &

Chandrashekar, 2009). The clinical relevance and potential biomarker

utility of dFNC in particular is supported by clinical studies of schizo-

phrenia (Du et al., 2016), autism (Yao et al., 2016) and Parkinson

disease (Kim et al., 2017). A primary goal of our study was to examine

whether dFNC properties might serve as biomarker for OCD by

directly comparing OCD patients with their unaffected first-degree

relatives as well as healthy controls with no family history of OCD.

We performed group ICA on rs-fMRI and a sliding-window analy-

sis to compare dFNC in OCD patients, their unaffected first-degree

relatives (UFDR) and healthy control participants (HC). We hypothe-

sized that (a) OCD patients would show altered dFNC, compared with

healthy controls. (b) Clinical features in OCD would correlate with

altered dFNC temporal properties and (c) UFDR may show dFNC dis-

ruption similar to that found in OCD.

2 | MATERIALS AND METHODS

2.1 | Participants

We enrolled 48 OCD patients, 24 UFDR, and 49 HC. All participants

gave informed consent according to the institutional research and

ethics committee of the Guangzhou Psychiatric Hospital. The groups

were matched on age (range between 18 and 50) and gender. All

participants were right-handed. OCD patients and their UFDR were

recruited from the Guangzhou Psychiatric Hospital. HC were recruited

through local and community advertisements. In order to maintain

diagnostic consistency over time within our lab's OCD database, all

patients were diagnosed according to DSM-IV criteria using the

Structured Clinical Interview (SCID) for DSM-IV-TR Axis I disorders.

All participants were diagnosed by one experienced clinical psychia-

trist and one experienced psychologist. All subjects gave written

informed consent before participation.

Patients were excluded: (a) if they had a history of brain trauma

or neurological disease; (b) if they had a history of alcohol or sub-

stance abuse. Twenty-six OCD patients were receiving treatment

with selective serotonin reuptake inhibitors; all had been stable on

their medication for at least 4 weeks. Details of the medications and
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dosages for OCD patients are provided in the supplementary mate-

rials (Table S1). Twenty-five patients had comorbidity with anxiety

symptoms, and eight had depression symptoms. Comorbid anxious

and depressive symptoms were not considered as an exclusion crite-

rion, provided that OCD was the primary clinical diagnosis.

The exclusion criteria for UFDR and HC were same as those for

the OCD patients. In addition, they were excluded if they reported

any history of mental illness and/or treatment with any psychotropic

medication as screened by using the SCID for DSM-IV-TR AXIS I dis-

orders. If HC had a family history of any psychiatric disorders as

defined by the DSM-IV, they were also excluded.

2.2 | Clinical assessments

The Yale-Brown obsessive–compulsive scale (Y-BOCS) was adminis-

tered to assess illness severity (Goodman et al., 1989). The obsessive–

compulsive inventory-revised (OCI-R) (First, Spitzer, & Gibbon, 2002;

Peng, Yang, Miao, Jing, & Chan, 2011) was used to identify categories

of OCD symptoms including obsession, washing, checking, neutraliz-

ing, ordering, and hoarding. The Beck Depression Inventory (BDI)

(Beck & Steer, 1984) was used to assess depressive symptoms, and

the State–Trait Anxiety Inventory (STAI) Y-1 and Y-2 (Spielberger,

Gorsuch, & Lushene, 1970) to assess anxiety symptoms. Analysis of

variance (ANOVA) and Chi-square tests were used to test for group

differences in these variables using SPSS 22.0 for Windows.

2.3 | Data acquisition and preprocessing

An Achieva 3.0-Tesla MR system (Philips Medical System, Amsterdam,

The Netherlands.) equipped with an eight-channel phased-array head

coil was used for data acquisition. Functional data were collected

using gradient echo Echo-Planar Imaging (EPI) sequences (time repeti-

tion, TR = 2000 ms; echo time, TE = 30 ms; flip angle = 90�, 33 slices,

field of view [FOV] = 220 mm � 220 mm, matrix = 64 � 64; slice

thickness = 4.0 mm; voxel size =3.4 � 3.4 � 4 mm3). For each partic-

ipant, the fMRI scanning lasted for 480 s, and 240 volumes were

obtained. During the scanning, participants were instructed to relax

with eyes closed, and stay awake without moving. For spatial normali-

zation and localization, a high-resolution T1-weighted anatomical

image was also acquired using a magnetization prepared gradient echo

sequence (TR = 8 ms, TE = 3.7 ms, inversion time = 0, flip angle = 7�,

FOV = 240 mm � 240 mm, matrix =256 � 256, slice

thickness = 1.0 mm; voxel size =1.0 � 1.0 � 1.0 mm3).

Data preprocessing was carried out using the Statistical Paramet-

ric Mapping toolbox (SPM12, https://www.fil.ion.ucl.ac.uk/spm), and

Data Processing Assistant for Resting-State fMRI (DPARSFA version

4.4, http://rfmri.org/dpabi). Image preprocessing consisted of: (a) slice

timing correction; (b) motion correction in which the functional images

in the BOLD sequence were realigned to the first volume; (c) spatial

normalization into the stereotactic space of the Montreal Neurological

Institute and resampling at 3 � 3 � 3 mm3; (d) spatial smoothing with

a 8-mm full-width at 2/3–12 maximum isotropic Gaussian kernel.

After preprocessing, two OCD patients were excluded due to head

motion greater than 2 mm or 2�.

2.4 | Group independent component analysis

After data preprocessing, the resting state data was analyzed using

spatial group independent component analysis (sGICA) as

implemented in the GIFT software toolbox (GIFT v4.0a; http://icatb.

sourceforge.net). Specific steps were as follows: (a) We used principal

component analysis (PCA) to reduce the dimensionality of the data in

two steps. We set the number of independent components to 100 in

advance, process the data of single participants individually, and then

connect all the participants' data into groups for processing. (b) The

Infomax algorithm was used to estimate the independent compo-

nents. It was repeated 100 times in ICASSO (Bell & Sejnowski, 1995)

to ensure the stability of the results. (c) The independent components

(including spatial maps and time series) for each subject were

reconstructed in reverse and Fisher Z transformation was performed.

The data after Z transformation approximately obeyed the normal dis-

tribution with the mean value of the SD. (d) The Display GUI module

in the GIFT toolbox was used to identified relevant network compo-

nents. To identify which of the 100 ICs were meaningful, we chose

those for which the peak activation coordinates were located primar-

ily in gray matter and had low levels of spatial overlap with vascular,

ventricular corresponding to artifacts (Allen et al., 2011). We

further used Stanford functional ROIs (http://findlab.stanford.edu/

functional_ROIs.html) as templates to select ICs with high similarity to

the templates. All ICs retained for analysis were located on gray mat-

ter, had low spatial overlap with cerebral ventricles and blood vessels,

and had time courses dominated by low frequency signals (ratio of

powers below 0.1 Hz to 0.15–0.25 Hz in spectrum) (Allen

et al., 2014). A total of 39 meaningful ICs were identified according to

these criteria. These ICs fell within the following functional networks:

auditory (AUD), visual (VIS), sensorimotor (SMN), cognitive executive

(CEN), default mode (DMN), and cerebellar (CB) networks (Figure 1

and Table S2).

Additional postprocessing was applied to the time courses of the

39 meaningful independent components to remove remaining noise

sources (Allen et al., 2014). Subject specific time courses were

detrended and despiked using 3dDespike, then filtered using a fifth-

order Butterworth low-pass filter with a high frequency cutoff of

0.15 Hz.

2.5 | dFNC analysis

The GIFT toolbox was applied to calculate dFNC through a sliding

window analysis followed by k-means clustering. First, we used a

sliding-window approach, in which a sliding time window of the

22-repetition time (TRs) method was applied to each participant, with

a Gaussian window alpha value of 3 and a step between windows of
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1 TR, resulting in 208 consecutive windows. We also analyzed the

effect of different window lengths on the results. The results were

highly consistent across a wide range of window sizes (18–26 TRs),

suggesting that the identified altered dFNC was not caused by ran-

dom artifacts related to window size (Figures S1–S4). To promote

sparsity in the estimations, a penalty was imposed on the L1 norm of

the precision matrix. We then applied a k-means clustering algorithm

to the resulting 208 FC window FNC matrices for all the participants,

which was iterated 150 times. The dFNC matrices of all participants

were then clustered by using the k-means algorithm to assess the fre-

quency and structure of the recurring FNC patterns. There are several

different rules of thumb for determining the appropriate value of clus-

ter number K (Allen et al., 2014; Yang et al., 2021). In this study, we

used the elbow criterion of the cluster validity index, and the optimal

number of clusters was set as 2, which we refer to as State I and

State II.

2.6 | Group differences in dynamic connectivity:
Temporal properties and strength

We used three different indices to examine the temporal properties

of the dFNC states: (a) Fractional windows (FW) defined as the

proportion of time spent in each state; (b) mean dwell time

(DT) defined as the mean length of time the participant remained in

each state before switching to another state (c) number of transitions,

defined as the total number of changes between states the participant

made across the entire resting state scan. Group differences were

assessed using ANOVA, applying a least significant difference post

hoc test. ANOVA was also used to compare the connectivity strength

between individual pairs of ICs pairing within each state (p< .05, false

discovery rate (FDR) correction (Benjamini & Hochberg, 1995)

between the three groups, applying a least significant difference post

hoc test. The total number of connections taken into account by the

multiple comparisons correction was 741.

2.7 | Clinical and neuropsychological data analysis

Statistical analyses were performed using SPSS 22.0 for Windows.

One-way ANOVA was used to test for between-group differences

(OCD, UFDR, and HC). Chi-square tests were used for categorical

variables. Within the OCD group we performed correlation analyses

between altered temporal properties and obsessional symptom scores

[Yale-Brown obsessive–compulsive scale (YBOC-S), and obsessive

compulsive inventory-revised (OCI-R)], controlling for depression

(BDI scores), anxiety (STAI scores), and education level. Statistical sig-

nificance threshold was set at p<.05, FDR correction.

F IGURE 1 Spatial maps of the 39 independent components (ICs) divided into six networks. Auditory network (AUD); visual network (VIS);
sensorimotor network (SMN); cognitive executive network (CEN); default mode network (DMN); cerebellar (CB) network. Different colors
represent specific ICs
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3 | RESULTS

3.1 | Demographic and clinical characteristics

No significant differences were found among OCD, UFDR and HC in age

(F [2,116] = 1.574, p = .212) and gender (χ2 = 4.136, p = .126) (Table 1).

Years of education for the HC group was higher than the other two

groups (F [2,116] = 3.942, p = .022). The OCD group scored significantly

higher on the Y-BOCS, OCI-R, BDI and STAI than the other two groups.

3.2 | Intrinsic connectivity networks

Group ICA revealed 39 meaningful ICs. The spatial maps for each IC

are shown in Figure 1, grouped into six networks based on overlap

with established intrinsic connectivity networks (http://findlab.

stanford.edu/functional_ROIs.html): auditory network (AUD: ICs

15, 71), visual network (VIS: ICs 31, 42, 49, 51, 54, 57, 69, 95), senso-

rimotor network (SMN: ICs 39, 44, 59, 62, 74, 77, 94), cognitive exec-

utive network (CEN: ICs 14, 25, 32, 35, 37, 43,75), default mode

network (DMN: ICs 4, 12, 17, 33, 48, 53, 70, 87, 97, 98, 99), and cere-

bellum network (CB: ICs 10, 16, 84, 96). Detailed information about

each independent component is given in Table S2.

4 | dFNC STATE ANALYSES

4.1 | Identification of states

Using the k-means clustering algorithm, we identified two different

functional connectivity states that were recurrent throughout the

rs-fMRI acquisition and across all participants, as shown in Figure 2.

State I was less frequent (27% of the scan duration) characterized by

substantial between-network FC, particularly between ICs in the

Auditory, Visual, Sensorimotor, and Default Mode networks. State II

was more frequent (73% of scan duration) and was characterized by

primarily within-network functional connectivity and minimal

between-network functional connectivity.

4.2 | Within state connectivity differences
between groups

We compared the strength of connections across three participant groups

at each state by ANOVA (Table S4), and the post hoc results are illus-

trated in Figures 3. For all comparisons we used a FDR correction and

alpha of p < .05. When comparing OCD with HC, there were numerous

differences in State II and relatively fewer in State I. In State II, we identi-

fied a total of 48 weaker connections in OCD compared to HC, including

both within-network (DMN, CB, VIS, SMN) and between-network

(DMN-AUD, DMN-VIS, DMN-SMN, DMN-CEN, AUD-VIS, AUD-SMN,

VIS-SMN, VIS-CEN, SMN-CEN, CB-VIS, CB-SMN) connections. We also

observed 25 stronger connections in OCD than HC during State II, includ-

ing both within-network (DMN, CEN, CB) and between-network (DMN-

SMN, DMN-CB, DMN-AUD, CEN-SMN, SMN-VIS, SMN-CB, VIS-CB,

AUD-CB). For State I we observed 12 weaker connections in OCD com-

pared to HC, including within-network (DMN) and between-networks

(DMN-SMN, DMN-VIS, DMN-AUD, SMN-AUD), and nine stronger

connections, including within-network (SMN) and between-network

(DMN-SMN, SMN-VIS, CB-VIS, CB-AUD) connections.

In contrast with the comparison with the OCD group, in which

differences were predominantly found in State II, when the UFDR

TABLE 1 Demographic and clinical
data of participants

Characteristic OCD (n = 46) UFDR (n = 24) HC (n = 49) F/χ2 p

Demographic characteristic

Age, years 25.72 ± 5.20 29.29 ± 7.77 26.06 ± 5.68 1.574a .212

Gender (M/F) 33/13 12/12 27/22 4.136b .126

Education 12.98 ± 2.84 12.96 ± 2.97 14.45 ± 2.73 3.942a .022*

Clinical characteristic

Y-BOCS total 25.80 ± 5.07 0.88 ± 1.70 1.10 ± 2.14 694.710a <.001***

Y-BOCS obsessions 14.65 ± 3.19 0.38 ± 0.92 0.84 ± 1.68 521.396a <.001***

Y-BOCS compulsion 11.15 ± 4.96 0.50 ± 1.18 0.27 ± 0.73 164.134a <.001***

OCI-R 23.20 ± 12.63 8.50 ± 9.67 14.47 ± 12.63 12.972a <.001***

BDI 17.59 ± 11.06 3.21 ± 5.77 7.51 ± 8.69 23.587a <.001***

STAI state 51.39 ± 16.40 25.54 ± 17.97 35.16 ± 16.90 21.120a <.001***

STAI trait 53.11 ± 14.57 25.58 ± 17.68 36.04 ± 17.21 25.531a <.001***

Note: Scores are indicated as the mean ± SD.

Abbreviations: BDI, beck depression Inventory; HC, healthy control participants; OCD, obsessive–
compulsive disorder patients; OCI-R, obsessive compulsive inventory-revised; STAI, state–trait anxiety
inventory; UFDR, unaffected first-degree relatives; Y-BOCS, Yale-Brown obsessive–compulsive scale.
aOne way ANOVA was used to compare across groups (OCD, UFDR, and HC).
bChi-square test was used to compare categorical variables across groups (OCD, UFDR, and HC).
*p < .05; *** p < .001.
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group was compared with the HC group the differences were pre-

dominantly in State I. In State I, we observed 40 weaker connections

in UFDR compared to HC, including within-network (CEN) and

between-networks (DMN-CEN, DMN-CB, CB-AUD, CB-VIS,

CB-SMN, AUD-CEN, VIS-CEN, SMN-CEN). In addition, we observed

that 22 stronger within-network (VIS, SMN, DMN) and between-

network (DMN-VIS, DMN-SMN, CB-SMN, VIS-AUD, VIS-SMN,

SMN-CEN) connections in UFDR compared to HC. For State II, we

found that 12 weaker between-network connections (AUD-CEN,

AUD-DMN, AUD-CB, VIS-CB, CEN-DMN, CEN-CB, DMN-CEN,

CB-SMN) in UFDR compared with HC while we observed that three

stronger within-network (VIS) connections and between-network

(DMN-CEN, CB-VIS) in UFDR compared with HC.

A direct comparison of the OCD and UFDR groups, revealed no

significant differences in the strength of connections within State

I. For State II, we found five weaker between-network connections

(AUD-SMN, AUD-CB, SMN-CEN, SMN-DMN, DMN-SMN, DMN-

CB), and five stronger between-network connections (DMN-SMN,

DMN-CEN, DMN-VIS) in OCD. Overall, these results indicate similar

State I connectivity for OCD and UFDR that differs from State I con-

nectivity in HC. In contrast, in State II UFDR were more similar to HC

than to OCD: OCD differed from both HC and UFDR, whereas UFDR

and HC showed relatively fewer differences when directly compared.

4.3 | Temporal properties of the dynamic states

We examined the proportion of time spent in each of the two

states and frequency of switching to and from State I and State

II. There was a significant group difference in the fraction of total time

spent in each of the two states (Figure 4a) (F[2,116] = 3.927, p = .022).

A post hoc test found that State I was less frequent in OCD (18.69

± 24.63%) than in HC (35.32 ± 32.78%) (p<.01) while State II was more

frequent in OCD (81.31 ± 24.63%) than in HC (75.12 ± 29.25%)

(p<.01). The UFDR showed numerically intermediate values that did

not differ significantly from either the OCD or HC group. There were

also significant differences in dwell time (mean time spent in a state

before switching to the other state), as illustrated in Figure 4b. There

was a significant across-groups effect for State I mean dwell time

(F[2,116] = 3.077, p = .05); post hoc tests revealed that OCD spent

significantly less time in State I before switching to State II than HC

(p<.05). There was also a significant across-group effect for State II

mean dwell time (F[2,116] = 3.168, p = .046), such that OCD spent lon-

ger in State II before switching to State I than HC. Again, UFDR showed

numerically intermediate values between OCD and HC groups. The

three groups did not differ significantly in the total number of transi-

tions between states, (F[2,116] = 1.177, p = .312) (Figure 4c).

4.4 | Correlation between clinical measures and
dFNC temporal properties

We examined correlations between dFNC properties and clinical char-

acteristics in the OCD group, controlling for both BDI and STAI scores

and education level. The proportion of time spent in State I (fractional

windows) was positively correlated with OCI-R scores (Figure 5a;

r = .343, p<.05) while proportion of time spent in State II was nega-

tively correlated with OCI-R scores (Figure 5b; r = �.343, p<.05, FDR

correction). A full reporting of all clinical measure correlations is pro-

vided in Table S3.

F IGURE 2 dFNC states identified across participants. For each state the dFNC matrix indicates the correlation between each pair of ICs.
Refer to Figure 1 for spatial maps of each IC; the order of ICs within each network follows the order in Figure 1. The numbers at the top of the
matrixes indicate the total number of windows characterized by the state and percentage of the total. Auditory network (AUD); visual network
(VIS); sensorimotor network (SMN); cognitive executive network (CEN); default mode network (DMN); cerebellar (CB) network
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F IGURE 3 Functional connectivity differences in States I and II for the OCD, UFDR and HC groups. (a) Functional connectivity differences in
States I and II between OCD and HC. The OCD group showed both weaker (cyan, top) and stronger (yellow, bottom) functional connectivity
patterns in comparison to the HC group. (b) Functional connectivity differences in States I and II between UFDR and HC. (c) Functional
connectivity differences in States II between OCD and UFDR. The color for each segment indicates which of the six networks the IC fell within.
Blue: auditory network (AUD); Green: visual network (VIS); Red: sensorimotor network (SMN); Orange: cognitive executive network (CEN);
Purple: default mode network (DMN); Yellow: cerebellar network (CB)

F IGURE 4 Differences in the temporal properties of per states for the OCD, UFDR, and HC groups. (a) The mean fractional windows
indicating total percentage of spent in each state. (b) Mean dwell time, defined as number of consecutive windows spent in each state before
switching. (c) Number of transitions, defined as total number of switches between states. Asterisks indicate a significant group difference
(* p < .05, ** p < .01)
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5 | DISCUSSION

This is the first study using dynamic functional network connectivity

that compared obsessive–compulsive disorder patients with both

their first-degree relatives and healthy controls. We identified two

distinct connectivity states that were present across all three groups.

State I was a less frequent (27%), integrated state characterized by

the predominance of between-network connections, and State II was

a more frequent (73%), segregated state characterized by within-

network connections. OCD patients differed from HC in both tempo-

ral features and within-State patterns of network connectivity. For

temporal features, OCD patients spent more time in State II, and less

time in State I, than healthy controls. Clinical features were correlated

with more time in State II and less time in State I. Together these

results indicate that OCD may be associated with more tendency to

get “stuck” in the highly modular State II. The UFDR group showed

intermediate values between OCD patients and HC, indicating that

the temporal dynamics of functional connectivity could be a useful

biomarker. When within-State connectivity was examined, OCD

differed from HC in many ways in both State I and State II. However,

the UFDR showed a more OCD-like pattern in State I, and a more

HC-like pattern in State II, indicating that State I connectivity might

also serve as a biomarker.

5.1 | Network connectivity within states

Our study provides additional insight into cortico-cortico network

differences in OCD. Many previous studies focused on CSTC networks

with the striatum as the core (Alexander, DeLong, & Strick, 1986). How-

ever, there is growing evidence that people with OCD have a wider

range of brain network disorders (Fan et al., 2017b; Hou et al., 2012) We

found within State I, generally characterized by between -network con-

nectivity, that network connectivity between the DMN and other net-

works (SMN, VIS) was lower in OCD. The DMN has been related to the

brain's monitoring of internal and external environment, emotional

processing, creativity, self-reflection, and episodic memory extraction

(Raichle, 2015). Our results are consistent with previous studies that also

found lowered default network in functional activity and connectivity in

OCD (Peng et al., 2014; Shin et al., 2014). The influential “triple network

model” in OCD (Anticevic et al., 2014; Beucke et al., 2013; Harrison

et al., 2009) proposes that DMN is modulated by the salience network.

Our results were also consistent with Kwak and colleagues who indi-

cated that not only within-DMN rs-FC but also functional connectivity

between brain regions involved in the DMN were critical and that rs-FC

features in somatosensory-motor, visual and auditory, and cingulo-

opercular networks were associated with clinical symptom severity

improvement. (Kwak et al., 2020). We also found within State I that con-

nectivity within motor and sensory networks (CB-AUD, CB-VIS, SMN-

VIS) was greater in OCD compared with HC. The cerebellum plays an

important role in cognition and emotion, in addition to motor function

(D'Angelo & Casali, 2012). Previous research has associated OCD with

abnormal cerebellar structure and function. At rest, OCD patients show

lower spontaneous activity of the cerebellum (Hou et al., 2014), and the

functional connection strength between cerebellum and the whole brain

increases (Anticevic et al., 2014).

Within State II, OCD showed reduced between-network connec-

tivity and increased within-network connectivity. This overall higher

modularity is consistent with previous studies. Zhang et al. (2011)

characterized networks using graph theory and found that OCD had

abnormally higher clustering coefficient and shortest path length, both

consistent with high modularity and network segregation. In contrast

networks in HC controls were characterized by the small-world prop-

erty, which has been shown to indicate an effective balance between

modularization and decentralized information processing.

5.2 | Temporal dynamics of state transitions

We found that patients with OCD spent longer in State II, both overall

(fraction window) and for each individual instance (dwell time), and

less time in State I, than the HC group. These results reveal that OCD

F IGURE 5 Correlation
between OCD symptoms
(measured via the OCI-R) and the
temporal properties for the OCD
group. (a) Proportion of time
(measured as fractional windows)
in State I positively correlated
with OCI-R score. (b) Proportion
of time (measured as fractional

windows) in State II negatively
correlated with the OCI-R score
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patients were engaged across time in a brain configuration pattern

characterized by a lack of between-network connections at the

expense of strong within-network connections. Although there was

no significant difference in number of transitions among the three

groups, there was a trend for OCD to have fewer transitions than

HC. These results are consistent with a study of schizophrenia and

ASD, which found that both clinical groups displayed an increased

time spent in a state of weak, intra-network connectivity (Rabany

et al., 2019). In contrast, a study of Parkinson disease found that these

patients showed more time in a State characterized by between-

network connections (Kim et al., 2017). In addition, the temporal

properties were significantly associated with clinical features. The

proportion of time in State I (fractional windows) was positively corre-

lated with OCI-R scores and proportion of time in State II was nega-

tively correlated with OCI-R scores, indicating that those with higher

OCD severity spend more time in the highly segregated state. These

findings emphasized the importance of dFNC studies, as it could

reveal potential characteristic of OCD.

One previous study examined temporal properties of dFNC in

OCD (Liu et al., 2020). It is hard to directly compare the studies

because the data-driven algorithm extracted four different states in

the Liu study between which the OCD group showed more frequent

switching than controls, whereas our study the algorithm indicated

two states with no significant difference in number of transitions. The

two studies also differed in that Liu et al examined treatment naive

unmedicated participants whereas in our study participants were

receiving medication therapy. Future research will be needed to

determine how these varying factors may affect functional connectiv-

ity in OCD.

5.3 | dFNC as an endophenotype for OCD

Our results show a number of similarities between OCD and their

UFDR which may prove useful as a biomarker reflecting a shared end-

ophenotype for OCD and UFDR. Previous studies have shown that

dFNC may reflect various aspects of the neural system functional

capacity (Deco, Jirsa, & McIntosh, 2011; Kucyi et al., 2016) and thus,

may serve as a novel physiological biomarker of disease (Damaraju

et al., 2014; Hutchison et al., 2013). A number of studies have identi-

fied shared features between OCD and their UFDR. For instance, a

meta-analysis of OCD suggested that abnormalities in inhibition,

planning/problem solving, and reward-based decision-making are

shared features of OCD and their UFDR and might be trait markers

related to vulnerability for developing OCD (Bora, 2020). Dong and

colleagues found that the same changes in effective connectivity were

present in both OCD patients and their unaffected first-degree

relatives (Dong et al., 2020).

With regard to the temporal properties, although there were no

significantly differences between UFDR and the HC and OCD groups,

the UFDR group had numerically intermediate values on all the

measures. This pattern suggestion that dynamic functional network

connectivity alterations can be considered, at least partly, an

endophenotype of OCD. This result was similar to the previous study

(Fan et al., 2016). With regard to within-state connectivity patterns

we found evidence that State I connectivity may be an especially

promising candidate to use as a biomarker of OCD. Overall OCD and

UFDR showed greatest similarity in State I: there were no significant

differences in connectivity between the groups in State I, whereas

both OCD and UFDR showed multiple differences in connectivity

when compared with HC. In contrast, in State II UFDR appeared to be

more similar to HC than OCD. State I was the less frequent and highly

integrated state, whereas State II was the more highly modular state.

Overall, then, UFDR show OCD like patterns of between-network

integration in State I, but HC like patterns of modularity in State II.

6 | LIMITATIONS

Several limitations should be taken into account for the current study.

First, OCD patients were being treated with various types of therapy

and medication. Therefore, it is possible that the results were

influenced by these treatment conditions. However, we found that

there were no significantly different in temporal properties of dFNC

between medicated and unmedicated OCD patients (Table S5). Sec-

ond, the sample size of UFDR was limited. Third, the relatively small

sample size in this study and clinical heterogeneity of comorbidity

across OCD patients, may have contributed variance to the study.

Future studies with larger sample size, OCD subgroups and drug-

naive patients are needed to confirm our results. Fourth, the HC

group scored higher on STAI than UFDR. This may be due to the fact

that many of the controls were college students who participated in

the experiment during the final exam period, thus leading to their high

anxiety scores.

7 | CONCLUSION

We identified several dFNC differences in OCD and UFDR that may

be useful for establishing biomarkers of an OCD endophenotype.

First, OCD patients had abnormal temporal properties which corre-

lated with clinical features, which were shared with their UFDR. Sec-

ond, we found similar connectivity patterns for UFDR and OCD

within a dFNC state characterized by between-network integration.

These results provide new insights into the pathophysiology of OCD

patients and indicate dFNC measures that could be used as biomarker

to identify those at risk.
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