A Probabilistic Model for Indel Evolution: Differentiating
Insertions from Deletions

Gil Loewenthal,' Dana Rapoport,’ Oren Avram @®," Asher Moshe,’ Elya Wygoda,' Alon ltzkovitch,’
Omer Israeli,' Dana Azouri,"” Reed A. Cartwright,>* Itay Mayrose,” and Tal Pupko @ "*

"The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
*School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

>The Biodesign Institute, Arizona State University, Tempe, AZ, USA

“School of Life Sciences, Arizona State University, Tempe, AZ, USA

*Corresponding author: E-mail: talp@tauex.tau.ac.il.
Associate editor: Xuhua Xia

Abstract

Insertions and deletions (indels) are common molecular evolutionary events. However, probabilistic models for indel
evolution are under-developed due to their computational complexity. Here, we introduce several improvements to indel
modeling: 1) While previous models for indel evolution assumed that the rates and length distributions of insertions and
deletions are equal, here we propose a richer model that explicitly distinguishes between the two; 2) we introduce
numerous summary statistics that allow approximate Bayesian computation-based parameter estimation; 3) we develop
a method to correct for biases introduced by alignment programs, when inferring indel parameters from empirical data
sets; and 4) using a model-selection scheme, we test whether the richer model better fits biological data compared with
the simpler model. Our analyses suggest that both our inference scheme and the model-selection procedure achieve high
accuracy on simulated data. We further demonstrate that our proposed richer model better fits a large number of
empirical data sets and that, for the majority of these data sets, the deletion rate is higher than the insertion rate.
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Introduction

Insertions and deletions (indels) shape genes and genomes
and are fundamental in molecular evolution research
(Cartwright 2009). Indels are of great importance for ancestral
sequence reconstruction (Ashkenazy et al. 2012; Vialle et al.
2018), and substantially contribute to divergence among spe-
cies (Britten 2002, 2003; Anzai et al. 2003; Wetterbom et al.
2006). Fitch (1973) was the first to observe that deletions may
be more common than insertions, however, this observation
was based on very few protein sequences. De Jong and Rydén
(1981) analyzed a much larger set of proteins and suggested
that deletions are 4-fold more frequent than insertions and
that this phenomenon is an inherent property of the repli-
cation mechanism. In support of this hypothesis, Graur et al.
(1989) found over three times more deletions than insertions
in processed human and rodent pseudogenes, suggesting that
mutations rather than selection drive the excess of deletion
over insertion events. This deletion bias was confirmed by
numerous other studies (Ogata et al. 1996; Petrov et al.
1996; Ophir and Graur 1997; Mira et al. 2001; Zhang and
Gerstein 2003; Fan et al. 2007; Van Passel et al. 2007; Kuo
and Ochman 2009). Regarding the distribution of indel
length, it was repeatedly observed that both in proteins
and DNA sequences, single-site indels are the most frequent

and the occurrence of indels declines monotonically as a
function of their length (Pascarella and Argos 1992; Benner
et al. 1993; Golenberg et al. 1993; Gu and Li 1995; Qian and
Goldstein 2001). Two distributions were proposed for the
indel length: geometric and Zipfian. It was previously shown
that the Zipfian distribution better fits biological data sets,
both for proteins (Benner et al. 1993) and for noncoding
regions (Saitou and Ueda 1994). Gu and Li (1995) found
only small differences in the size distribution of deletions
and insertions. When insertions and deletions were treated
together, the parameter of the Zipfian length distribution
varied from 1.70 in primate globin noncoding regions to
1.93 in noncoding mitochondrial DNA. Of note, these early
studies were based on small data sets, such that only a few
indel events were considered. In another study that analyzed
coding and noncoding indels in 18 mammalian genomes,
differences were found both among species and between
insertions and deletions: The Zipfian parameter ranged
from 1.059 to 1.883, when modeling the length distribution
of deletions in chimpanzee to insertions in rabbit, respectively
(Fan et al. 2007).

In all these studies, the indel parameters were inferred
based on gap counts. However, gaps can reflect more than
one event, for example, an alignment gap of length 12 can
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reflect a single insertion event of 12 residues, or many possible
combinations involving multiple events, for example, an in-
sertion event of 11 residues followed by another insertion of a
single residue, an insertion event of 13 residues followed by a
deletion event of a single residue, etc. Counting methods
ignore these latter possibilities, similar to parsimony methods
that ignore potential multiple substitutions at a single site.
Moreover, in previous approaches only gaps which could be
reliably inferred among the analyzed sequences were in-
cluded. Often, overlapping gaps were excluded. Selecting
only a subset of gaps which conforms to an ad hoc criterion
potentially introduces a bias in the collection of indels ana-
lyzed. In addition, the accuracy of indel parameter estimates is
expected to be positively correlated with the number of an-
alyzed indel events. Retaining only reliable indels, usually
those occurring between closely related sequences, substan-
tially reduces the amount of information available for indel
inference. Ignoring a large fraction of indel events is especially
problematic when the goal is to compare indel dynamics
among specific genes. In this case, the number of gene-specific
indel events is limited, and discarding all unreliable indels
from the analysis is expected to lead to poor performance
of indel inference approaches. These concerns call for prob-
abilistic-based methods for indel parameter inference.

Probabilistic-based models for indels are far less developed
compared with substitution models. This might be the case
because indel models violate the assumption of site indepen-
dence, thus complicating the computation of the likelihood
function (Cartwright 2005; Fletcher and Yang 2009). More
elaborate methodologies to estimate indel parameters in-
clude Cartwright's lambda.pl Perl script released with the
DAWG simulation package (Cartwright 2005). It assumes a
Poisson distribution for indel rates and estimates the distri-
bution using the maximume-likelihood paradigm. The method
uses linear regression to find the best-fitted Zipfian distribu-
tion for the indel length and takes the average length of the
input sequences as the root length. Two additional methods
are based on hidden Markov model (HMM) between pairs of
divergent sequences (Lunter 2007; Cartwright 2009). In
Lunter (2007), biases introduced by alignment programs
were explicitly accounted for, for example, the tendency of
alignment algorithms to merge two independent gaps (“gap
attraction”). In addition, gap lengths were assumed to follow
a mixture of geometric distributions. Cartwright (2009) used
expectation maximization algorithm based on a pairwise
HMM for the inference of model parameters. This method
assumes independence between indel events and ignores
overlapping indels. These methods were restricted to pairwise
sequences, and thus could not distinguish between insertion
and deletion rates. Miklos et al. (2004) developed a full prob-
abilistic evolutionary Markov model that includes substitu-
tions, insertions, and deletions. This “long-indel model” is
both context-independent and time-reversible, and indel
lengths are assumed to follow a geometric distribution.
Despite the introduction of efficient means to accelerate
computations with the long-indel model (Levy Karin et al.
2019), it is still computationally intensive, and inference using
this model is currently limited to pairwise sequences.
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Keeping the benefit of probabilistic-based approaches
without falling to the computational hurdles of likelihood-
based methods for inferring indel parameters, previously mo-
tivated us to develop SPARTA (Levy Karin et al. 2015), an
algorithm to learn indel parameters from input MSAs based
on probabilistic simulation of alignments. SPARTA is an ad
hoc methodology that is not rooted in statistical inference
theory. We later developed Sparta ABC (Levy Karin et al.
2017), which is based on the approximate Bayesian comput-
ing (ABC) methodology, a statistically rigorous methodology
for the inference of model parameters. The ABC framework,
first introduced in molecular evolutionary studies for popu-
lation genetics (Beaumont et al. 2002), has been utilized suc-
cessfully to estimate parameters in complex models in which
the likelihood function is challenging to compute. ABC was
successfully employed, for example, for estimation of the ef-
fective population size from a sample of microsatellite geno-
types (Tallmon et al. 2008), for estimation of divergence times
and admixture by analyzing whole genomes of chimpanzee
and bonobo populations (Kuhlwilm et al. 2019), and for in-
ference of relevant parameters relating to selective sweeps;
that is, selection coefficient, time of selection onset, recom-
bination rate, and mutation rate at neutral loci (Przeworski
2003). ABC methodologies thus retain the benefits of analyz-
ing data with explicit probabilistic models, yet overcome
computational limitations of inference schemes that rely on
explicit inference of the likelihood function.

The underlying indel probabilistic model in SpartaABC
assumes that the insertion rate (number of insertion events
per substitution event) equals the deletion rate. It further
assumes that the length of an insertion (number of newly
introduced nucleotides or amino acids) has the exact same
distribution as the length of a deletion. As stated above, these
assumptions are known to be an oversimplification of indel
dynamics. In this study, we develop a more realistic alterna-
tive by assigning different parameters for insertions and dele-
tions. We also apply a model-selection scheme to determine
whether the richer model better describes indel evolutionary
dynamics compared with the simpler one. Our results dem-
onstrate that the richer model fits a large number of empirical
biological data sets, lending further statistical support for the
hypothesis that deletions are more common than insertions.

New Approaches

Indel Models

We describe two indel models, a simple indel model (SIM)
and a rich indel model (RIM), which alleviates some of the
assumptions made in SIM. The parameters of both models
are summarized in table 1. In SIM, insertions and deletions are
assumed to have the same rates and length distributions.
Thus, SIM has three parameters: 1) indel-to-substitution-
rate ratio (R_ID). Note that this parameter quantifies the
sum of the insertion and the deletion rates, assumed to be
equal in this model. 2) The insertion length distribution pa-
rameter (A_ID), which dictates the lengths distribution of
newly inserted or deleted segments. Qian and Goldstein
(2001) showed that the frequencies of indels that are several
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Table 1. The Simple Indel Model (SIM) and Rich Indel Model (RIM)
Parameters and Their Description.

Model Parameter Description
Name
SIM, RIMRL The sequence length at the root of the tree
SIM R_ID Indel-to-substitution-rate ratio
A_ID Indel length distribution parameter
RIM R_I Insertion-to-substitution-rate ratio
R_D Deletion-to-substitution-rate ratio
Al Insertion length distribution parameter
AD Deletion length distribution parameter

dozens of amino acid long are lower than their expected
frequencies, when the expectation is computed based on
the length distribution of shorter indels. Thus, in our models,
it is assumed that indels length is distributed as truncated
Zipfian (power law) with maximum indel size of 50 amino
acids and a rate parameter A_ID (A_ID stands for the “a”
parameter of the Zipfian distribution for insertion/deletion
length). 3) The sequence length at the root of the tree (RL). In
RIM, different indel parameters are assigned to insertions and
deletions, resulting in five free parameters. In addition to the
root length, two parameters dictate the indel rates, one for
insertions (R_I) and one for deletions (R_D). Similarly, two “a”
parameters are assumed, one dictating size distribution for
insertions (A_l) and one for deletions (A_D).

Prior Distributions of Model Parameters

Model parameters are inferred using ABC. In this Bayesian
inference scheme, prior distributions over model parameters
have to be chosen. We assume the following prior distribu-
tions: 1) The indel to substitution rates are assumed to be
uniformly distributed in the range [0, 0.1] for R_ID (SIM) and
[0, 0.05] for R_I and R_D (RIM). 2) The parameters that dic-
tate the indel length distribution (A_ID for SIM, and A_I and
A_D for RIM) are assumed to be uniformly distributed in the
range [1.001, 2]. 3) The RL parameter range is determined
according to the input sequences, as follows: Let /s andl; be
the length of the shortest and longest sequences, respectively,
of the unaligned sequences, then the range of RL is assumed
to be uniformly distributed in the range [0.8/5,1.1/;]. We note
that increasing the range of the prior distributions had little
effect on the results (not shown).

Inference Outline (without Accounting for Alignment
Uncertainty)

The ABC inference scheme relies on several components/
steps: 1) generating simulations; 2) computing summary sta-
tistics; 3) assigning summary statistics weights; 4) accepting a
subset of the simulations; and 5) inferring the posterior dis-
tributions and point estimates. These components are de-
scribed in detail below. Here, we first present a general outline
of the algorithm. The input required to infer the model
parameters for a data set in question is a multiple sequence
alignment (MSA) and its associated (rooted) phylogenetic
tree, including the topology and its associated branch lengths.
Next, a large set of MSAs is generated, by repeatedly simulat-
ing the evolutionary process along the input phylogenetic

tree, with model parameters sampled from the prior. Next,
summary statistics are computed for both the input MSA and
each of the simulated MSAs. Summary statistics weights are
next computed from a subset of these simulations and are
then used to compute distances between the summary sta-
tistics of the input MSA and each of the simulated MSAs. A
small subset of simulations, for which the distance is very
small, is kept. Intuitively, the kept simulations resemble the
input data in terms of indel dynamics and can be used to get
a point estimate of the model parameters of the data set in
question. The distribution of model parameters used to gen-
erate this subset is a good approximation for their posterior
distribution (Sisson 2018). Thus, the last step of the algorithm
is to infer posterior distribution and point estimate for all
model parameters by averaging the parameters of the ac-
cepted simulations (Tavaré et al. 1997).

Inference: Accounting for Alignment Uncertainty

In the above inference scheme, the analyzed empirical align-
ment is computed using alignment inference tools such as
MAFFT (Katoh and Standley 2013). However, the simulated
alignments that are generated as part of the ABC procedures
are “true” alignments and are not inferred. It is possible that
this discrepancy introduces a bias in the inference. We vali-
dated that such a bias indeed exists: We simulated an empir-
ical alignment for which we know the “true” indel parameters
and inferred the parameters using the above described ABC
inference method. We then unaligned the “true” alignment,
re-aligned it with MAFFT, and repeated the above ABC infer-
ence procedure. The results clearly show that the perfor-
mance of the inference scheme is substantially reduced
when MAFFT-based alignments, rather than “true” align-
ments, are provided as input (fig. 1a and b).

One possible solution for correcting this bias would be to
realign each simulated data set (i.e, remove all gaps and apply
MAFFT on the unaligned sequences) within the ABC infer-
ence scheme. This, however, would make the inference pro-
cedure enormously CPU intensive. Hence, we tested an
alternative approach: We use a machine-learning-regression
algorithm to learn how MAFFT distorts each of the summary
statistics. We then corrected each summary statistics of each
simulated alignment within the ABC inference scheme. More
specifically, given an empirical MSA, its corresponding phylo-
genetic tree, and a model (SIM or RIM), we first generated 200
simulated MSAs, in which model parameters were sampled
from the prior distribution (see explanations about how
sequences are simulated below). In the learning phase, which
is done separately for each empirical data set analyzed, we
computed the summary statistics for each simulated MSA.
Next, we realigned (using MAFFT) the 200 alignments and
recomputed the summary statistics. Our goal is now to com-
pute a regression model for each summary statistic. This is
done by computing a multivariate regression using as predic-
tors the set of 27 summary statistics before the alignment
procedure, as well as the model parameters (three for SIM
and five for RIM). The response variable of each of these
regressions is the value of the summary statistics after the
alignment procedure. Thus, 27 regressions are computed, one
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simulations. The dashed line is the identity y = x line. (a) The performance when the input alignment is the true alignment, that is, the
performance in ideal settings in which the input alignment is error free. The obtained R? values are 0.93, 0.93, 0.86, 0.69, and 0.94 for R;, Rp, A,
Ap, and RL, respectively. (b) The performance without correcting for biases introduced to the empirical alignment (i.e, although the summary
statistics of the analyzed alignment were derived from MAFFT alignments, the summary statistics of the simulated alignments within the ABC
inference were inferred based on alignments not inferred using MAFFT). In each case, the true alignment was unaligned and realigned using
MAFFT. The obtained R? values are 0.55, 0.64, 0.67, 0.49, and 0.75 for R, Rp, A;, Ap, and RL, respectively. (c) The summary statistics of the simulated
alignments within the ABC inference scheme were corrected for biases introduced by MAFFT. The obtained R? values are 0.87, 0.92, 0.81, 0.71,and
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for each summary statistics. For RIM, each regression is thus
from %% to A, where # denotes real numbers. An example
of summary statistics derived from a simulated data before
and after this correction are provided in supplementary table
S1, Supplementary Material online. To avoid potential over-
fitting, the regression curves are computed using Lasso
(Tibshirani 1996) with 3-fold cross-validation to determine
the regularization parameter. Depending on the data ana-
lyzed, the inclusion of some summary statistics may introduce
more noise than signal. To this end, for each summary sta-
tistics, we computed the Pearson correlation coefficient be-
tween its values following MAFFT alignments and the
inferred value based on the regression model. We excluded
summary statistics for which the correlation coefficient was
less than 0.9.

Simulator
Existing tools for simulating sequences such as DAWG 2.0
(Cartwright 2005) and INDELible (Fletcher and Yang 2009)
account for both substitution and indel events. For the pur-
pose of inferring the relevant summary statistics, the infor-
mation regarding substitutions can be ignored. Thus,
simulations can be performed without substitutions, thereby
reducing simulation running times, which are a major com-
ponent of the ABC inference scheme. To this end, we devel-
oped an indel simulator for SIM and RIM that ignores
substitution events. We implemented such a simulator in
C++ following the Gillespie algorithm (Gillespie 1977). In
essence, we first draw model parameters from the prior,
which also provide the length of the root sequence. Then,
along each branch, the R_I and R_D parameters dictate the
waiting time for either an insertion or a deletion event as
described in INDELible (Fletcher and Yang 2009). Once an
event has occurred, the indel length is drawn from a Zipfian
distribution with rate parameter A_I and A_D for insertions
and deletions, respectively. The location of indels is next
drawn uniformly based on the sequence length at the time
the event has occurred. We introduce a correction for indels
at the boundaries of the sequence. Specifically, assume we
draw a deletion of length five. Now we draw the location
uniformly, from position —5 to L, where L is the length of
the current sequence. If for example, the position is —1, we
delete the first four characters of the sequence. By doing so, it
is guaranteed that the boundaries do not distort the uniform
rate of indel events within the sequence (otherwise, deletion
in the 5’ site for nucleotide sequences or the N terminus for
proteins would have been underrepresented). If the next
event occurs at a time which is longer than the branch length,
we ignore this event, and set the sequence in the next node to
be identical to that of the current sequence. Once the
sequences of all leaves are generated, based on the record
of all indel events along the tree, the simulated MSA is con-
structed. A detailed explanation of how simulations are gen-
erated is provided in supplementary figure S1, Supplementary
Material online.

For studying the distortion of summary statistics intro-
duced by alignment algorithms such as MAFFT, sequences
including substitutions must be generated. Only for these

alignments, we use the following procedure for simulating
the alignments: 1) an alignment without substitutions is gen-
erated as described above; 2) an alignment without indels,
and with the length of the alignment in (1), based on the
same treeg, is generated using INDELible. For this, we use either
a nucleotide or amino acid substation model (GTR+I+ G
[Abadi et al. 2019] or WAG [Whelan and Goldman 2001],
respectively); 3) we superimpose the two alignments (supple-
mentary fig. S1, Supplementary Material online).

Summary Statistics

The 27 summary statistics calculated in the inference scheme
are described in table 2. This list extends the 11 summary
statistics previously used by Levy Karin et al. (2017), which
included for example the 10th and the 11th summary statis-
tics, that is, the minimum and maximum length of sequences
in the alignment, respectively. Such summary statistics are
influenced by all model parameters, they strongly vary
depending on the indel rates, the distribution of indel lengths,
and the root length. New summary statistics were introduced
to help differentiate insertion from deletion events. For ex-
ample, the 13th summary statistic, that is, number of MSA
columns that contain a single gap, provides information on
deletion rates, as a column with a single gap typically reflects a
single deletion event. Another example is the 18th summary
statistic, which counts the number of MSA columns in which
a single-residue gap is found in all but one sequence. Such a
column likely reflects an insertion of a single residue in a
branch leading to a leaf of the tree. Notably, such a column
may result from a deletion event as well. The ABC approach
does not assume that this is certainly an insertion event, but
rather, all summary statistics are considered together and
their values provide information regarding the posterior
probability of the model parameters. We provide an example
of a simulated alignment and its associated summary statis-
tics in supplementary figure S1 and table S1, Supplementary
Material online.

Computing Weights for the Summary Statistics

Let D; and D denote an input MSA and a simulated MSA,
respectively. Let $(D;) and S(Ds) be summary statistics vec-
tors associated with D; and D, respectively. In order to decide
whether or not to keep a simulation, a weighted Euclidean
distance is computed between $(D;) and S(D;) as follows:

27

S oy(s(0); ~s(0.))’

d(s(0y),5(D.)) =

=1

where the subscript j is the summary statistics index and
denotes the weight of the jth summary statistic. The various
summary statistics differ in their magnitude, so different
weights are required to ensure that all the summary statistics
contribute approximately equally to the distance. Hence, the

weight of each summary statistics is set as w; = =, where g;
2
g

J
is the estimated standard deviation of the jth summary sta-
tistics across B simulations with indel parameter values drawn
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Table 2. The 27 Summary Statistics Used in the ABC Scheme.

No. Summary Statistics

1 Total number of gap blocks in the alignment

2 Total number of unique gap blocks in the alignment

3 Average gap block length

4 Average unique gap block length

5 Number of gap blocks of length one

6 Number of gap blocks of length two

7 Number of gap blocks of length three

8 Number of gap blocks of length four or more

9 Alignment length

10 Minimum length of sequence in the alignment

1 Maximum length of sequence in the alignhment

12 Number of MSA columns with zero gap

13 Number of MSA columns with one gap

14 Number of MSA columns with two gaps

15 Number of MSA columns with n — 1 gaps

16 Number of gaps of length one that appear only in one
sequence

17 Number of gaps of length one that are shared between
exactly two sequences

18 Number of gaps of length one that are shared between
exactly n — 1 sequences

19 Number of gaps of length two that appear only in one
sequence

20 Number of gaps of length two that are shared between
exactly two sequences

21 Number of gaps of length two that are shared between
exactly n — 1 sequences

22 Number of gaps of length three that appear only in one
sequence

23 Number of gaps of length three that are shared between
exactly two sequences

24 Number of gaps of length three that are shared between
exactly n — 1 sequences

25 Number of gaps of length at least four that appear only in
one sequence

26 Number of gaps of length at least four that are shared be-
tween exactly two sequences

27 Number of gaps of length at least four that are shared be-

tween exactly n — 1 sequences

at random from the prior. We set B = 10, 000, because for
this value, the vector of weights practically converged in all
cases (not shown).

Acceptance/Rejection Criterion

The weighted Euclidian distance is calculated for N, simula-
tions. By default, N, = 100,000 (using 1,000,000 simulations
did not significantly improve the performance; not shown).
The set of accepted simulations are chosen such that the rate
of accepted simulations is p of the total simulations
(Beaumont et al. 2002). In this study, the p parameter was
set to 0.1% (100/100,000) of the simulations (0.1% yielded the
best performance in a small-scale simulation study, not
shown).

Results

Inference Accuracy on Simulated Data

We tested the accuracy of SpartaABC in inferring model
parameters by simulating data sets with model parameters
sampled from the prior based on a specific tree topology and
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an MSA sampled from the EggNOG database (Huerta-Cepas
et al. 2019). The MSA contains 129 sequences, with a mean
sequence length of 817 amino acids (data set
ENOG504B73R). To quantify inference accuracy, we com-
puted the R? values between the true parameters and the
inferred ones, over 200 random different parameter combi-
nations sampled from the prior distribution. The obtained R?
values were 0.87, 0.92, 0.81, 0.71, and 0.93, for R_I|, R_D, A_|,
A_D, and RL, respectively (fig. 1c). We extended this simula-
tion analysis by repeating the simulation scheme for 12 ad-
ditional data sets that differ from the one presented in figure
1c with respect to tree topologies, total branch lengths, num-
ber of species, and sequence length (supplementary table S2,
Supplementary Material online). These simulations demon-
strate that the estimates of the parameters controlling the
indel rates and root length (R_I, R_D, and RL) are more ac-
curate than those dictating the length distribution of indels
(A_l and A_D). The inference accuracy strongly increases as a
function of the total branch lengths (supplementary fig. S2,
Supplementary Material online). Our results further suggest
that SpartaABC provides relatively unbiased estimates for R_|,
R_D and RL, whereas it tends to underestimate A_l and A_D,
for which the slope of the regression fit is smaller than 1.0
(supplementary table S2, Supplementary Material online). We
conclude that SpartaABC provides accurate estimates of
model parameters, most notably for the indel rates and the
root length, as long as sufficient indels have accumulated to
allow reliable inference.

Feature Importance

We use the terms “features” and “summary statistics” inter-
changeably. The impact of each summary statistics on the
inference accuracy of SpartaABC was examined using simu-
lations. SpartaABC computes 27 summary statistics for the
input MSA and for each simulated MSA (table 2). The im-
portance of each summary statistics for the inference accu-
racy of each of the five inferred parameters can be obtained
by comparing the performance with all features versus the
performance when a specific feature is excluded from the
analyses. Notably, a certain feature may be important for
the inference of one parameter, but unimportant for another.
Moreover, some variability of feature importance is expected,
to a certain degree, among data sets.

We computed a feature-importance score for each sum-
mary statistics for each of the five RIM parameters (supple-
mentary fig. S3, Supplementary Material online). The most
important features for root length estimate were the shortest
and the longest sequences, respectively. Regarding the rate
parameters, although there are no substantial differences in
feature importance regarding the R_I parameter, for R_D, the
most important feature was the number of alignment col-
umns with only a single gap, which is expected as this feature
is highly associated with deletion events. For the A_I param-
eter, which dictates the size distribution of newly inserted
sequences, the most important summary statistics was the
number of gap blocks of length one, and the second most
important summary statistics was the number of alignment
columns that are all gaps but a single sequence. This last
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Table 3. Model Selection Accuracy.

Simulated Model Accuracy
SIM 0.98
RIM 0.77

Note.—Accuracy is computed based on 100 simulations for each indel model. For
example, out of 100 MSAs simulated under RIM, the model selection approach
correctly identified 77 as RIM.

feature is highly associated with novel insertion events. For
the A_D parameter, which dictates the size distribution of
new deletion events, the most important summary statistics
was the number of gaps of length one that appear only in one
sequence column and the average size of unique gaps. The
feature importance analysis demonstrates the benefit of using
multiple features for the accurate inference of parameters
used in indel models.

Model Selection
To compare the fit of different models, such as the SIM and
RIM described above, with an empirical data set, model se-
lection is needed. We follow the standard ABC model selec-
tion approach, in which we sample uniformly from the
models (which is equivalent to assuming uniform prior over
the models), pool all the simulations and select those that are
closest to the empirical data, as defined by the distance
threshold. The estimated posterior probability of each model
is approximated by the relative frequency of retained simu-
lations generated from each model (Pritchard et al. 1999). It
was previously shown that ABC model selection can be prob-
lematic under some scenarios (Robert et al. 2011), and hence
the performance of model selection procedures must be ex-
tensively tested using simulations.

We evaluated the accuracy of the model selection ap-
proach using simulations. To this end, we simulated 2,600

25

204

154

Counts

104

[R_I-R_D|

0_
000 001 002 0.03 0.04 0.05

data sets (100 MSAs under various SIM parameters, as well
as 100 MSAs under various RIM parameters along 13 different
trees derived from 13 empirical data sets, see Materials and
Methods). The classification accuracy for the ENOG504B73R
data set is shown in table 3. For this data set, when the true
model was SIM, the model-selection tests had high classifica-
tion accuracy (98%). When the true model was RIM, the
model-selection tests had 77% classification accuracy. These
simulation results indicate that the model-selection test
slightly favors SIM over RIM making the inference of RIM
conservative. Of note, when simulating under RIM, the extent
of the differences between the insertion and deletion param-
eters highly influenced the selected model. Indeed, the model-
selection error was strongly dependent on both the difference
between R_I and R_D and the difference between A_I and
A_D (fig. 2). The mean absolute difference between the R_|
and R_D parameters for RIM simulations that were correctly
classified as RIM was 0.018, whereas when the RIM simula-
tions were misclassified as SIM, it was 0.009 (t-test, P < Te-4).
The mean absolute difference between the A_| and A_D
parameters for correctly classified RIM simulations was 0.39,
whereas for RIM simulations misclassified as SIM, it was 0.22
(t-test, P < 2e-2).

We repeated this analysis for 12 additional data sets with
various sequence lengths and total branch lengths (supple-
mentary table S3, Supplementary Material online). Similar to
the parameter inference accuracy, the model-selection test
accuracy also depended on the total branch lengths (supple-
mentary fig. S4, Supplementary Material online).

Running Times

The average running time for an empirical data set was
around 328 min on a single processor, including all simula-
tions, alignments, extraction of features, and model selection

I RIM classified RIM
B RIM classified as SIM

0.0 0.2 0.4 0.6 0.8
|A_I-A_D|

Fic. 2. Misclassification rates depend on the similarity between insertion and deletion parameters. The errors depend on the absolute difference
between R, and Rp and the differences between A, and Ap. All simulations were under the RIM model. In dark, simulations that were correctly
classified as RIM and in light, cases which were misclassified as SIM. Results are based on 200 simulated alignments: 100 simulated with the RIM
model and 100 simulated with the SIM model. Sequences were simulated based on the topology of the ENOG504B73R data set.
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between SIM and RIM. The running times for typical data sets
are correlated to a linear combination of total branch lengths
and number of species of the examined phylogeny
(R? = 0.73, P < 2e-4): The running time in minutes is about
36 times the total branch length plus 3 times the number of
sequences in the phylogeny. The branch lengths are measured
in number of substitutions per site (supplementary fig. S5,
Supplementary Material online).

Empirical Data Analysis

We applied the model selection and inference algorithm on
4,823 biological data sets. These data sets included phyloge-
netic trees and protein MSAs of various phylogenetic groups
including bacteria, plants, insects, fungi, and mammals.
Table 4 details the model-selection classifications for various
groups. Our method classified the model as RIM for 35% of
the examined data sets. The proportions of data sets from
which RIM was selected over SIM were similar between pro-
karyotic and eukaryotic organisms: 34% and 36%, respectively
(table 4). The percentage of data sets for which RIM was
selected was lowest for Primates (8.33%) and Rodentia
(15.19%) and highest for Saccharomycetaceae, Tenericutes,
and Drosophilidae (51.61%, 49.47%, 48.2%, respectively). We
note that it is likely that some of these differences do not
reflect genuine differences among taxonomic groups, but
rather, differences in the data attributes (supplementary table
S4, Supplementary Material online). For example, the average
MSA length in each group varies from 661.7 amino acids in
Escherichia to 2395.4 amino acids in Primates. In addition,
differences in the level of sequence divergence exist among
the groups, for example, the average sum of branch lengths in
Drosophilidae is 3.1 amino acid replacements per site whereas
in Primates, it is 1.9 amino acid replacements per site.

The mean values of the various model parameters, per
taxonomic group, for the RIM and SIM selected data sets
are shown in tables 5a and 5b, respectively. For brevity, the
mean insertion and deletion lengths are given instead of the
power law parameters. Noticeably, the average R_D was
higher than the average R_I for all examined taxonomic

Table 4. Model Selection for Various Taxonomical Groups.

Group No. of No.of Percentage
SIM RIM of RIM
Prokaryotes Bacillus 147 120 44.94
Escherichia 106 41 27.89
P. aeruginosa 185 88 32.23
Rhizobiaceae 189 81 30.00
Staphylococcaceae 309 85 21.57
Tenericutes 144 141 49.47
Vibrionales 263 144 35.38
Eukaryotes Brassicales 219 43 16.41
Chlorophyta 291 122 29.54
Ciliophora 176 156 46.99
Drosophilidae 245 228 48.20
Primates 66 6 8.33
Rhabditida 288 114 28.36
Rodentia 201 36 15.19
Saccharomycetaceae 285 304 51.61
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Table 5. Model Parameters across Various Taxonomical Groups for
Protein Data Sets Classified as (a) RIM and (b) SIM.

Group RL R; Rp Mean Mean
Insertion Deletion
Length Length

(a) RIM

Bacillus 630.7 0.0142 0.0216 6.74 7.65
Escherichia 425.0 0.0116 0.0201 5.64 6.40
P. aeruginosa 7719 0.0101 0.0185 6.47 6.72
Rhizobiaceae 7514 0.0101 0.0152 6.49 6.59
Staphylococcaceae 591.6 0.0113 0.0180 6.34 7.26
Tenericutes 788.3 0.0103 0.0160 6.19 6.17
Vibrionales 661.2 0.0123 0.0180 6.49 7.36
Brassicales 1395.6 0.0177 0.0364 7.14 8.70
Chlorophyta 800.7 0.0206 0.0266 8.29 8.30
Ciliophora 905.6 0.0198 0.0248 7.98 7.95
Drosophilidae 1826.7 0.0141 0.0390  6.34 7.87
Primates 1376.2 0.0193 0.0344 7.01 7.49
Rhabditida 799.2  0.0235 0.0345 7.59 7.93
Rodentia 1113.1  0.0154 0.0374 6.59 8.70

Saccharomycetaceae 869.5 0.0084 0.0103 6.64 5.51

groups (table 5a). However, in specific data sets, R_I was
higher than R_D. Specifically, in Saccharomycetaceae, in
56% of the data sets, R_I was higher than R_D. In
Drosophilidae and Rodentia, the deletion rate was approxi-
mately twice as high as the insertion rate. However, although
in Drosophilidae, about half of the data sets were classified as
RIM, the number of data sets for which RIM is supported
within Rodentia is only 15.19% (table 4).

Figure 3 shows scatter plots of R_D versus R_I and mean
deletion length versus mean insertion length for the data sets
classified as RIM. In most of these data sets (1,259 out of
1,709), the deletion rate was higher than the insertion rate.
The mean deletion length tended to be higher than the in-
sertion length, however, this trend is quite insubstantial.

We next aimed to analyze noncoding empirical data sets.
To this end, we applied SpartaABC on 81 intron MSAs from
the Yeast Intron DataBase (YIDB) (Lopez and Séraphin 2000).
The phylogenetic tree topology for the yeast species
was taken from the UCSC web browser (Cliften et al. 2003).
The branch lengths for each MSA were optimized using
RAXML-NG (Kozlov et al. 2019) with the GTR+1+ G model
(Tavaré 1986; Shoemaker and Fitch 1989; Yang 1994). The
GTR+14 G model with the optimized parameters for each
data set was also used for the simulations conducted to learn
the distortion introduced by MAFFT. Among these data sets,
48 were classified as RIM, whereas 33 were classified as SIM.
Among the RIM data sets, the deletion rate was higher than
the insertion rate in 89.5% of the data sets (fig. 4, left panel).
The average values for the R_D and R_I parameters are 0.034
and 0.017, respectively, that is, a deletion-to-insertion-ratio of
2 (this ratio reduces to 1.5 when the SIM classified data are
included). For these data sets, the mean deletion length was
6.1 bp (5.7 bp when the SIM-classified data are included),
slightly higher than the mean insertion length, which is 4.8
bp (5.0 bp when the SIM classified data are included) (fig. 4,
right panel). These results suggest that differences between
insertion and deletion dynamics are also common among
non-coding sequences.
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Fic. 4. Indel dynamics for empirical DNA sequences. Left panel: a scatter plot of insertion rate (R;) versus deletion rate (Rp). Right panel: a scatter
plot of mean insertion length versus mean deletion length. For the 81 yeast intron data sets analyzed, the number of species ranged from 4 to 7.
Shown are results for the 59% data sets for which the RIM model was selected. The dashed line is the identity line, y = x, in both panels.

Discussion

In this work, we developed an indel model that accounts for
differences between insertion and deletion evolutionary dy-
namics. Furthermore, we developed an ABC inference
scheme to estimate model parameters and to perform a
model-selection test that can determine which model (RIM
or SIM) better fits a given empirical data set. Additionally, we
developed a machine-learning-based step that corrects po-
tential biases introduced by alignment programs. Using sim-
ulations, we showed that both the model selection and the
inference steps are accurate. Applying the developed infer-
ence scheme on a variety of empirical data sets allowed us to
gain further insights on indel dynamics. For 35% of the ex-
amined protein data sets, the dynamics of insertions and
deletions were different. Among these data sets, the deletion

rate was higher than the insertion rate in 74%, and to a much
lesser extent, the deletion length was larger than the insertion
length (55% of these data sets).

Of the analyzed groups, Drosophilidae stands out as the
one with the highest deletion rate. It also has a very high
fraction of RIM-classified data sets. This finding complies
with a previous study that reported exceptionally high dele-
tion rates in Drosophila (Petrov et al. 1996). When analyzing
yeast intron alignments, insertions and deletions dynamics
were different in 59% of the data sets analyzed. Similar to
protein coding genes, and even more so, the deletion rate was
higher than the insertion rate (90% of the data sets). These
results corroborate previous findings regarding the excess of
deletions over insertions in both coding and noncoding
regions.
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Despite this clear overall deletion bias, cases in which the
insertion rate is higher than the deletion rate do exist. For
example, for Saccharomycetaceae protein-coding genes, al-
though the average deletion rate is higher, the insertion
rate was higher than the deletion rate in 56% of the RIM-
supported data sets. This is in contrast to only 10% of such
cases in yeast introns. Assuming that indel mutations are
similar in coding and noncoding regions, the difference be-
tween coding and noncoding preference for deletions in yeast
implies that selection on indel dynamics highly depends on
the genomic context. Recently, Liu and Zhang (2019) pro-
vided empirical data suggesting that in Saccharomyces cere-
visiae, insertion mutations are more common than deletion
mutations. Taken together, this implies a very high selection
against insertions in yeast introns.

When inferring indel parameters, one expects that as more
diverged sequences are analyzed, the alignment will be less
reliable, include more misplaced indels, and thus, the infer-
ence of indel model parameters may become less accurate.
However, the total number of indel events is positively cor-
related with the level of sequence divergence, suggesting that
the accuracy of indel model parameter inference may increase
with sequence divergence. Our results (supplementary fig. S2,
Supplementary Material online) indicate that within the ABC
inference scheme, the inference accuracy of model parame-
ters is higher for diverged sequences compared with closely
related sequences (note that in these cases, the simulated
true alignments were unaligned and realigned so that align-
ment errors are accounted for in this comparison). Thus, the
benefit of additional information from the availability of more
indel events in diverged sequences outweighs the possible
harmful effect of decreased alignment reliability.

The RIM model established in this study is more elaborate
than our previous model (SIM) that assumed equal attributes
of insertions and deletions (Levy Karin et al. 2017). It was
previously shown for both prokaryotes and eukaryotes that
there is a deletion bias on sites which are assumed to evolve
under neutral selection (Petrov et al. 1996; Ophir and Graur
1997; Mira et al. 2001; Zhang and Gerstein 2003; Van Passel et
al. 2007; Kuo and Ochman 2009). Here we show, for a large
variety of phylogenetic clades, that there is a deletion bias also
for protein-coding sequences, which generally evolve under
strong purifying selection, and that this bias is mainly due to
high deletion rates, rather than due to longer deletion events.
Of note, in our models, the estimated deletion rates are nor-
malized by the substitution rate. Often, when comparing two
organisms, one is inferred to have both higher deletion to
substitution rate and higher substitution rate. Together, these
two factors result in markedly different deletion dynamics,
which may have impact on genome sizes (Petrov et al. 2000).

The indel models developed here have several limitations
and there is still much room for more realistic modeling exten-
sions. First, our results suggest that we are able to accurately
infer indel model parameters for simulated data. However,
empirical data are generated by processes that are likely
more complicated than those assumed in the proposed mod-
els. How these model over-simplifications affect inference ac-
curacy needs to be further studied. For example, both SIM and
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RIM assume that the indel parameters are uniform across the
entire phylogeny. When highly diverged empirical data sets are
analyzed, this assumption could be violated (indel hetero-
tachy), and in this case, inferred model parameters may be a
weighted average of few distinct indel dynamics. Similarly,
errors in the topology or branch lengths of the assumed phy-
logenetic tree may bias the resulting inference. In addition, the
inference scheme applied here assumes that the same indel
dynamics equally characterize all positions within the input
sequences. However, it was shown that the composition of
amino acids in and around indels is significantly different from
their composition across the entire sequence length, with en-
richment of amino acids ADQEGPS and depletion of
FMILYVWC (Chang and Benner 2004). Other studies also
demonstrated that indel rates depend on the amino acid con-
text (De La Chaux et al. 2007; Messer and Arndt 2007; Tanay
and Siggia 2008; Kvikstad et al. 2009; Kvikstad and Duret 2014).
Ideally, empirical context-dependent indel models should be
developed and tested. In these models, the rate of insertions
and the rate of deletions should each depend on the amino
acid composition surrounding the indel site. Such models are
expected to have a large number of free parameters, and thus
resemble empirical amino acid replacement matrices such as
JTT (Jones et al. 1992), WAG (Whelan and Goldman 2001),
and LG (Le and Gascuel 2008). Accurate inference of the
model parameters would require simultaneous analysis of a
large amount of data, for example, the entire set of mamma-
lian MSAs. High-quality genomic data are increasingly available
and provide fertile ground for the development of such mod-
els. Of note, the ABC inference scheme described above relies
on efficient simulators. To accelerate parameter inference, we
implemented a simulator that generates indel events only and
does not include substitution events. The above context-de-
pendent models will necessitate simulating indel and substi-
tution events simultaneously.

Another direction for future advance is to develop indel
models that account for structural features of protein-coding
genes. It is expected that different structural attributes do not
share the same indel dynamics. For example, it was recently
shown that for enhanced green fluorescent protein (eGFP),
the packing density of a residue, as measured by the weighted
contact number (Lin et al. 2008), considerably affects the
probability that a single-residue deletion disrupts the pro-
tein’s function (Jackson et al. 2017). Relative surface accessi-
bility and secondary structure attributes were also found to
affect this probability. Future indel models can explicitly ac-
count for such factors and should prove particularly useful,
providing that the secondary or tertiary structures of a pro-
tein are available or can be accurately predicted.

Most commonly used alignment algorithms maximize a
specific score and do not explicitly assume a stochastic
Markov process. Recently, advances have been made in the
development of statistical alignment methods, allowing si-
multaneous model parameter inference and alignment
(Suchard and Redelings 2006; Novak et al. 2008; Bradley et
al. 2009; Nute et al. 2019). Miklés et al. (2004) and Levy Karin
et al. (2019) have developed the long-indel model, in which
both indels and substitutions evolve along a phylogenetic tree
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assuming a joint continuous-time Markov process. The rate
of indels in this model depends on the indel length. Such a
model was shown to better fit empirical data compared with
previous models such as TKF91 (Thorne et al. 1991). However,
it requires extensive computational time and it is currently
limited to pairwise sequences. This model also assumes that
deletion and insertion events have the same dynamics. The
results of this study corroborate previous studies showing
that for a large number of empirical data sets, insertion and
deletion events are characterized by different evolutionary
dynamics. Such considerations should be included in future
statistical alignment methodologies.

An additional potential application of our methodology
would be to characterize how indel dynamics vary among
different proteins and protein domains, for example, it was
previously suggested that ancient protein domains (Wolf et
al. 2007) and highly conserved proteins (Ajawatanawong and
Baldauf 2013) have a bias toward insertions and that essential
proteins in bacteria and yeast experience more indel events
than nonessential proteins (Chan et al. 2007). Finally, our
methodology can be applied to quantify and test hypotheses
regarding variation in indel dynamics in various genomics
contexts, for example, in protein coding regions, long non-
coding RNAs, introns, promotors, enhancers, near the telo-
meres, regions with high or low recombination rates, etc, and
should provide statistically sound means to compare indel
dynamics among genes and genomes across the tree of life.

Materials and Methods

Source Code and Implementation Details

The implementation of the algorithm presented here is called
SpartaABC. It is implemented in C++ and Python. The
source code is freely available at https://github.com/gilloe/
SpartaABC (last accessed September 9, 2021). The scikit-learn
Python package was used for machine learning. The SIM and
RIM models, including the model selection schemes were
added to the SpartaABC webserver: https://spartaabc.tauac.
il/ (last accessed September 9, 2021; Ashkenazy et al. 2017). A
Docker that enables installing and running a standalone ver-
sion of SpartaABC can be downloaded from the webserver.

Simulations

To characterize the performance of SpartaABC, we simulated
sequences based on phylogenetic trees derived from empirical
data sets. Specifically, we relied on 13 EggNOG (Huerta-Cepas
et al. 2019) empirical data sets (supplementary table S2,
Supplementary Material online), which were selected as they
vary with respect to the tree topology, the number of sequen-
ces, the alignment lengths, and their level of divergence. Based
on the phylogenetic tree of each of these 13 empirical data
sets, we simulated 200 MSAs, to a total of 2,600 simulated data
sets. Each of these 2,600 alignments was simulated with a
different set of model parameters, sampled from the prior of
RIM. Of note, the prior of all model parameters is identical
between data sets except for the R_L, which depends on the
length of the empirical alignment length (see New Approaches
section). SpartaABC was then used to infer parameters for

each of the 2,600 simulated data sets, and the Pearson corre-
lation between the parameters used to simulate the data and
those inferred using SpartaABC were reported. Figure 1 shows
the results for all 200 simulated data sets derived from the
empirical data set ENOG504B73R, whereas results for all sim-
ulations derived from the 13 empirical data sets are shown in
supplementary table S2, Supplementary Material online.

Additional simulations were conducted for assessing the
model-selection accuracy. We repeated the same simulations
described above, however, this time, half of the simulations
were generated under SIM and half under RIM. This resulted
in a total of 1,300 SIM and 1,300 RIM data sets. The model-
selection procedure described in the New Approaches section
was used to determine which model best fits each of these 2,600
simulated data sets. Table 3 shows the results for all 200 simu-
lated data sets derived from the empirical data set
ENOG504B73R, whereas results regarding model selection for
all simulations derived from the 13 empirical data sets are shown
in supplementary table S3, Supplementary Material online.

Analysis of Empirical Data Sets

The data used for the feature importance analyses are based
on 13 EggNOG (Huerta-Cepas et al. 2019) data sets (supple-
mentary fig. S3, Supplementary Material online). The data
used to generate table 3 and figure 2 are based on the tree
and MSA of EggNOG entry ENOG504B73R. The biological
data sets, that is, the empirical phylogenetic trees and
MSAs, were also downloaded from EggNOG and YIDB
(Lopez and Séraphin 2000). Due to computational limita-
tions, and in order that each taxonomic group will contain
similar number of data sets, inclusion criteria were applied.
Specifically, for the EggNOG data sets, we determined a min-
imal MSA length and a minimal number of species for each
taxonomic group (supplementary table S4, Supplementary
Material online). For YIDB data sets, we filtered MSAs with
less than four species. In addition, when analyzing the empir-
ical EggNOG and YIDB data sets, we filtered data sets in which
the total branch lengths of the tree was smaller than 1.0, to
avoid cases in which there are not enough indel events which
are required for reliable estimation of model parameters. Such
filtering was not performed in the simulations study.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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YIDB (Lopez and Séraphin 2000) databases. Our source code
is freely available in https://github.com/gilloe/SpartaABC (last
accessed September 9, 2021) and was integrated to the
SpartaABC ~ webserver:  https://spartaabc.tavacil/  (last
accessed September 9, 2021; Ashkenazy et al. 2017).
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