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The search for tumor-specific antigens (TSAs) has considerably accelerated during the
past decade due to the improvement of proteogenomic detection methods. This provides
new opportunities for the development of novel antitumoral immunotherapies to mount an
efficient T cell response against one or multiple types of tumors. While the identification of
mutated antigens originating from coding exons has provided relatively few TSA
candidates, the possibility of enlarging the repertoire of targetable TSAs by looking at
antigens arising from non-canonical open reading frames opens up interesting avenues
for cancer immunotherapy. In this review, we outline the potential sources of TSAs and the
mechanisms responsible for their expression strictly in cancer cells. In line with the
heterogeneity of cancer, we propose that discrete families of TSAs may be enriched in
specific cancer types.
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INTRODUCTION

The selection of “Cancer immunotherapy” by the journal Science as the breakthrough of the year in
2013 (1) properly illustrates how promoting the patients’ immune response against cancer cells has
revolutionized the field of anticancer therapies. More recently, the Nobel prize award to Allison and
Honjo, highlights the significance of immunotherapies, and how it changed the way we treat several
types of cancers over the past decades. In contrast to classical treatment (i.e., surgery, chemotherapy,
and radiation therapy) which target directly and aspecifically the tumoral cells, immunotherapies
target the host’s immune system to initiate, augment and/or reestablish an efficient antitumoral
immune response (2). Several types of immunotherapies including vaccines (3), antibodies (4),
oncolytic viruses (5), immune checkpoint inhibitor (ICI) therapies (6, 7), and T cell-based
immunotherapies are currently used in the clinic.

Independently from their mechanisms of action, all of these therapies rely on the ability of the
patient’s adaptive immune system to discriminate between healthy (i.e., normal or stressed) cells and
cancerous ones. At the molecular level, this distinction is possible because tumoral cells undergo a
series of genetic and epigenetic changes leading to the generation of new self-derived antigens which
are generally termed tumor-specific antigens (TSAs) or neoantigens. While neoantigens are defined as
the subset of TSAs generated by genetic variations only found in the genome of a tumor, TSAs refers to
all the antigen types which are specific to cancer cells (8). Because they are not expressed by the
medullary thymic epithelial cells (mTECs), which are responsible for the establishment of the central
org December 2020 | Volume 11 | Article 5832871
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tolerance (9), TSAs represent a source of potentially immunogenic
neoepitopes able to be recognized and targeted by the host’s T cells
(10). However, before being recognized by T cells through their T
cell receptor (TCR), these antigens need to be sequentially
processed and presented at the surface of the tumoral cell via
major histocompatibility complex class I (MHC I) molecules. For
MHC I, the antigen processing starts in the cytosol where intrinsic
proteins—originating from the self in normal cells or altered-self
in tumoral cells—are cleaved into peptides by the proteasome and
some aminopeptidases (11). Then, the generated peptides are
translocated in the endoplasmic reticulum (ER) via transporter
associated with antigen processing (TAP) and further processed by
the ER aminopeptidase 1 and 2 to reach a size ranging between 8
and 10 residues (11). Peptides are then loaded into the peptide
cleft of a MHC I molecule and if the MHC I–peptide complex is
stable enough, it is exported at the cell surface and referred to as
MHC I–associated peptide (MAP) (11).

MAPs have a central role in T cell activation andmore generally
in anti-tumoral immunity. However, the question of how we can
efficiently identify cancer-specific MAPs and, more generally TSAs,
is now rising. As mentioned above, tremendous progress has been
made in the way we treat many tumors. Unfortunately, the
development of new antitumoral immunotherapies is now
partially limited by the difficulty to identify targetable TSA and
more precisely cancer-specific MAPs that could be used to
initiate an efficient antitumoral immune response. Indeed,
immunotherapeutic strategies which are used in the clinic either
(i) bypass MHC I presentation (e.g., chimeric antigen receptor,
CAR-T cell therapy) or (ii) skip the step of cancer-specific MAPs
identification because they rely on a pre-existing antitumoral T cell
response (e.g., ICI therapies).

In this review, we highlight the different sources of TSAs and
the mechanisms responsible for their production in cancer cells
with the objective to facilitate the identification of multiple
targetable cancer-specific MAPs within tumors (Figure 1).
Although tumor-associated antigens such as cancer-testis
antigens can represent valuable source of antigens, we do not
discuss them here and focus our topic to antigens absent from
healthy tissue. In line with the heterogeneity of cancer, we also
propose that discrete families of TSAs may be enriched in
specific cancer types.
SINGLE NUCLEOTIDE VARIANT
NEOANTIGENS: A RELATIVELY MEAGER
SOURCE OF TUMOR-SPECIFIC
ANTIGENS FOR IMMUNOTHERAPIES

Single nucleotide variants (SNVs)—and by extension double
nucleotide variants—are commonly referred to as non-
synonymous point mutations and can result, like most DNA
damages, from (i) DNA replication errors, (ii) DNA enzymatic
modification, (iii) exogenous or endogenous mutagen exposures,
or (iv) defective DNA repair.

SNVs are the most common genetic variation (12) and they
have been considered for a long time as the most promising
Frontiers in Immunology | www.frontiersin.org 2
source of TSAs driving antitumoral responses. This mostly
explains why the vast majority of the studies aiming to identify
“tumoral neoantigens” have concentrated their efforts in
detecting these non-synonymous point mutations located in
known exons. Based on the original hypothesis that the TSA
number of a given tumor is proportional to its SNV burden
(commonly referred to as mutation burden), SNV-derived MAPs
appeared as particularly good immunotherapeutic candidates for
the most mutated tumor types—i.e., metastatic melanoma and
lung cancers (13). However, all studies based on whole-exome
or ribonucleic acid sequencing (WES and RNAseq respectively),
combined or not with mass spectrometry (MS) analysis, could
only identify a very limited number of SNV-derived MAPs.
For example, in native human melanoma, which represents
the cancer type having the highest mutation burden (13),
Bassani-Sternberg et al. could only identify 11 cancer-specific
immunopeptides (14). While this might be a limitation of MS
sensitivity, it is puzzling that in these ICI-responding tumors,
further investigations have shown that most of the identified
cancer-specific SNVs were not immunogenic (14). The fact that
most predicted TSAs are not validated byMS can be explained by
two factors. Some of these TSAs are probably false negatives
caused by the sensitivity of shotgun MS analyses (15). However,
in-depth genomic analyses suggest that most false negatives are
true negatives. Indeed, no evidence was found supporting the
negative selection (via immunoediting) of SNV-containing
predicted TSAs (16, 17). Furthermore, response to ICI in
patients with lung cancer did not correlate more with SNV-
containing predicted TSAs than with the global mutation burden
(18). These data suggest that the number of genuine SNV-
containing TSAs has been overestimated in many studies. Tran
et al. estimated that the in vivo immunogenicity—i.e., the
capacity for antigens to be recognized by a tumor infiltrating
lymphocyte (TIL)—of the whole exonic non-synonymous
mutations of human gastrointestinal cancers was ranging
between 0.009% to 1.25% (19). Although in some cases few
neoantigens are sufficient to control the tumor or reach a
therapeutic effect (20, 21), these results suggest that most
cancer-specific MAPs able to trigger an antitumoral T cell
response are likely not originating from exonic point
mutations, and that other sources of neoantigens should be
explored to drive future antitumoral immunotherapies (22).
MUTATIONAL-FRAMESHIFT
NEOANTIGENS: A PROMISING SOURCE
OF TUMOR-SPECIFIC ANTIGENS FOR
RENAL CELL CARCINOMA,
HOMOLOGOUS RECOMBINATION-
DEFICIENT TUMORS, AND HIGH
MICROSATELLITE INSTABILITY (MSI-H)
TUMORS

After SNVs, nucleotide insertions or deletions (indels)
represent the second most abundant type of mutation in
December 2020 | Volume 11 | Article 583287
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cancer (23). With a size that ranges between one and more
than 60 base pairs (bp), single and trinucleotides indels are the
most common events and represent 68% and 13% of all indel
events, respectively (23). Biologically and by extension
immunologically, all indels are not equals and we can
Frontiers in Immunology | www.frontiersin.org 3
distinguish two types: (i) a minority of in-frame indels that
lead to the production of lowly immunogenic shorter or longer
variants and (ii) a majority of frameshift indels that give rise to
truncated protein variant containing new (potentially highly
immunogenic) fragments derived from the out-of-frame
FIGURE 1 | Overview of the tumor-specific antigen production in tumor cells. At the genomic level, cancer cells accumulate tumor-specific genetic and epigenetic
changes. Within genomic alteration, single-nucleotide variants (SNVs) represent an historic source of immunogenic neoantigens. Insertions/deletions (indels) or gene
fusion events increase the tumor immunogenicity by generating peptide deriving from the out-of-frame translation of coding exons. Epigenetic alterations induce the
aberrant expression of endogenous retroelements (EREs) which generated non-mutated cancer-specific peptides with a high immunogenic potential. In addition to
genomic alterations, Post-translational modifications (PTMs) cancer-specific events such aberrant splicing events, ribosomal translation and PTMs also contribute to
the generation of cancer-specific major histocompatibility complex class I (MHC I)-associated peptides (MAPs). ER: endoplasmic reticulum.
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translation of a coding exon (23). Since frameshift indels (i)
have the potential to generate more neoantigens than SNVs
(24) and (ii) differ greatly from the germline sequences used for
the establishment of the central tolerance, earlier reports
suggested that they might serve as better immunotherapeutic
targets (24, 25). In accordance with this proposal, several
studies have shown a positive correlation between the indel
burden and the presence of TILs inside the tumor or the
response of the patients to ICI therapies (23, 24, 26–29).
More importantly, in a context of non-relevant nonsense-
mediated mRNA decay (NMD), truncated mutant proteins
resulting from frameshift mutations have been reported to
be extensively degraded by the proteasome system (30, 31).
While this mechanism protects tumor cells from the potentially
harmful effects of truncated proteins, it also promotes
the generation of frameshift-derived peptides and their
presentation at the cell surface (30).

Interestingly, indel burden also varies significantly across
malignancies, though differences were noted regarding their
exact proportions in various cancer types. Niavarani et al.
reported that the indel proportion across cancers globally
ranges between 1.3% and 29.1% (23) while this proportion was
estimated between 1% and 12% by Turajlic et al. (24). It is
noteworthy that in both studies, renal cell carcinomas, RCCs
(i.e., chromophobe renal cell carcinoma, renal papillary cell
carcinoma and renal clear cell carcinoma, KIRC) are classified
among the cancers with the highest proportion of indels. At the
therapeutic level, this is particularly promising because RCCs
contain relatively few SNVs and the high proportion of indel
opens new perspectives for neoantigen discovery. The presence
of frameshift indel-derived antigens could explain the infiltration
of RCCs by TILs and their good response to ICI therapies (32). In
support of this, Hansen et al. recently reported that TILs from six
patients with RCC could recognized both SNV- and frameshift-
derived neoantigens (33). While frameshift-derived neoantigens
represented only about 16% of the predicted TSAs, they
corresponded to 21% of the immunogenic MAPs identified in
the study.

In addition to being particularly abundant in RCC, indels
have also been reported to accumulate importantly in both
homologous-recombination (HR)– and DNA mismatch repair
(MMR)–impaired tumors (13). Impaired HR repair pathway
has been observed in subpopulations of breast, ovarian and
pancreatic cancer where it is associated with an accumulation
of numerous large deletions (up to 50 bp) along the genome
(13). HR is normally used by dividing cells to guide the error-
free repair of double-strand breaks (34) but when it is not
available, other error-prone mechanisms ensure the breakpoint
junction (13, 35, 36). In ovarian cancer, HR-deficiency is
associated with a favorable clinical prognostic (36, 37). This
is most likely due to an increase of both the tumoral neoantigen
load and immunogenicity resulting from frameshifting indels
accumulation. In support of this hypothesis, Strickland et al.
showed that for high grade serous ovarian cancer, HR-deficient
tumors presented more TILs, higher expression levels of
programmed death 1 (PD-1) and programmed cell death
Frontiers in Immunology | www.frontiersin.org 4
ligand 1 (PD-L1) and more putative neoantigen than HR-
proficient ones (36). Similar results were reported for triple-
negative breast cancer (38) but, to our knowledge, such studies
were not yet conducted in pancreatic cancer. Although the
exact contribution of the indel frameshift-derived neoantigens
to the immunopeptidome of HR-deficient tumor cells still
needs to be determined, this class of antigen seems to play an
important role in the antitumoral T cell response and represent
a promising immunotherapeutic target for subsets of ovarian,
breast and pancreatic cancer.

Normally involved in the correction of indel loops and bp
mismatches occurring during DNA replication, the MMR
pathway is crucial to maintaining the microsatellite stability
across the genome (39). As a result, its impairment in tumors
leads to what is referred to as a microsatellite instability (MSI).
Both MMR-deficiency and high MSI (MSI-H) have been
primarily documented in both familial (Lynch syndrome) and
sporadic subsets of colorectal cancers with a quite high
prevalence (40–42). They are now reported in a wide range of
malignancies including ovarian (43), endometrial (44), gastric
(45), and prostate (46) cancers. On a pan-cancer scale, the
endometrial, colon and gastric cancers are the cancer types
displaying the three highest proportions of MSI-H cases (47).
On an immunologic level, the high accumulation of somatic
mutations by MSI-H tumors suggests that they should display
several neoantigens (48). In support to this hypothesis, Le et al.
demonstrated that pembrolizumab—an anti-PD-1 antibody—
was effective in a wide range of MMR-deficient solid tumors
(49, 50), opening the way for the first FDA tissue-agnostic
approval of an ICI therapy. At the same time, they also showed
that the response to pembrolizumab was associated with the in
vivo expansion of T cell clones specific for tumoral indel-
derived neoantigens providing a proof-of-concept of the
relevance of targeting frameshift-derived neoantigens in
MSI-H malignancies.
GENE FUSION NEOANTIGENS ARE
RATHER RARE BUT RECURRENT
ACROSS MALIGNANCIES

Gene fusion events are less frequent than SNVs and indel
mutations, and consist in the juxtaposition of two previously
independent coding sequences by (i) structural rearrangements
at the genomic level (i.e., chromosomal translocation, inversion
or deletion), (ii) transcription read-through of adjacent genes
(51, 52), or (iii) trans- and cis-splicing of pre-mRNAs (53–55). In
these three cases, the result is the production of a fusion
transcript that can be translated into what we refer to as a
fusion or chimeric protein. Although fusion events also occur in
non-tumoral cells (56, 57), many cancer-specific fusion proteins
have already been associated with a different malignancies
including leukemia (58), sarcoma (59), breast (60), bladder
(61), colon (62), and lung (63) cancers where they can be used
as diagnosis and prognostic markers.
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So far, most of the studies conducted on oncogenic fusion
proteins have been focusing on either leukemia—i.e., acute
myeloid leukemia, acute lymphocytic leukemia, or chronic
myeloid leukemia—or sarcoma (64) where SNV burdens is
relatively low (13, 65). In these malignancies, the hope of
developing a vaccine was stimulated by the observation that some
gene fusion events, such as the translocations t(11;22)(p13;q12) and t
(12;22)(q13;q12), are particularly recurrent in given specific cancer
subtypes (66). In a pan-cancer analysis of fusion events,
Vellichirammal et al. have recently shown that the 40 most
recurrent fusion events cover a wide spectrum of malignancies (67),
and as such represent a promising source of multivalent neoantigens
that could be used to drive cross-cancer immunotherapies.

Moreover, several gene fusions have been reported to act as
driver mutations favoring tumorigenesis (68). Mechanistically,
this oncogenic influence can be exerted either by altering the
expression or activity of tumor suppressor or proto-oncogenes
or by forming a fusion product with oncogenic properties (e.g.,
a constitutively activated tyrosine kinase domain). Because, in
this case, fusion products are a source of oncogenesis and they
are functionally linked with tumor fitness, targeting them may
be more beneficial clinically than targeting other types of
passenger mutations. Several pharmaceutical inhibition-based
therapies targeting oncogenic fusion products have already
shown promising results in the clinics (69–71). Regarding
immunotherapies, several attempts were made to design
fusion neoantigen-based vaccines but could only demonstrate
moderate clinical efficacy (72–75). In these studies, even though
the fusion peptides used for vaccination were able to activate
the patients’ T cells, all immunizations were performed with a
single gene fusion epitope that may have favored the emergence
of vaccine-resistant sub-clones. Although driver mutations
have been shown to be highly clonal during the early stages
of cancer, they tend to become highly heterogeneous and sub-
clonal at later stages of the disease (76). Therefore, a driving
fusion protein that may be essential for the survival of a
transformed cell during cancer initiation can be completely
absent from part of its progeny once the tumor is well
established. In addition to this loss of clonality, cancer cells
also develop different mechanisms enabling them to escape the
immune surveillance. These mechanisms include the
expression of immune checkpoints (7), a complete (77), or
partial (78) loss of MHC I expression and the epigenetic
silencing of neoantigens recognized by the immune system
(79). These observations suggest that immunotherapies against
fusion products-derived neoantigens would be more effective
against early-stage cancers rather than later ones. On a pan-
cancer level, patients with malignancies characterized by
relatively low SNV and indel burden and a minimal immune-
infiltration, such as leukemia (8), sarcoma (8), adenoid cystic
carcinomas (80), or head and neck tumors (80), will most likely
benefit the most from fusion product targeting. In the context
of vaccine development, fusion proteins are a meaningful
source of neoantigens, and their therapeutic value could be
enhanced by combining several “driver” and “passenger”
neoepitopes originating from different fusion proteins, and by
Frontiers in Immunology | www.frontiersin.org 5
including ICI in the vaccination protocol to minimize the risk
of immune evasion (80).
ENDOGENOUS RETROELEMENTS-
DERIVED TUMOR-SPECIFIC ANTIGENS: A
PREDOMINANT SOURCE OF NON-
MUTATED ANTIGENS FOR A VACCINE
AGAINST CANCER

Endogenous retroelements (EREs) represent about 42% of the
human genome (81) and result from the integration of
transposable elements into our genome millions of years ago.
They comprise both long terminal repeat (LTR) elements (i.e.,
human endogenous retroviruses, HERVs, and mammalian
apparent LTR-retrotransposons)—and non-LTR elements—
which include long and short interspersed nuclear elements
(LINEs and SINEs, respectively). Following their long co-
evolution with human, the vast majority of EREs are now
truncated and/or mutated and have lost their capacity to
transpose in the genome (82–84). For those still able to
“replicate” a strict epigenetic repression is maintained on their
open reading frames (ORFs) to prevent the insertional
mutagenesis and chromosomal rearrangements associated with
their expression (85). Considered for a long time as “junk” DNA,
the remnants of retroelements still contains functional promoters,
enhancers, ORFs, splice donor/acceptor sites and polyadenylation
sites able to impact cell physiology (85) and can contribute to
several key processes of our development and adulthood (86–88).
In line with this, Larouche et al. recently reported that various
levels of ERE transcripts can be found in all human somatic tissues
and that their expression is particularly predominant in mTECs
which are responsible for T cell negative selection (89). These
findings suggest that some antigens derived from these
“domesticated” EREs are tolerated by the immune system.

In the context of cancer, the alteration of the epigenetic
landscape or the use of demethylating therapies can result in
the loss of repression marks along the genome and dysregulate
ERE expression leading to the transcription and translation of
aberrantly expressed EREs (aeEREs) (90–94). These aeERE have
been reported to affect cancer progression through both pro- and
antitumoral mechanisms (95). Previous reports indicated that
aeERE could generate viral-like neoantigens able to increase both
the antigenicity and immunogenicity of tumor cells (89, 94).
Unlike the ERE-derived antigens expressed in normal tissues,
those restricted to cancer cells (i.e., aeEREs) can be recognized by
the immune system although they originate from non-mutated
sequences. Indeed, several aeERE-derived MAPs were shown to
activate CD8+ T cells in both B-lymphoblastoid cell line and
KIRC (89, 96). Because aeEREs can produce non-mutated
immunogenic neoantigens, they are now considered as a
particularly attractive source of TSAs for the development of
cancer vaccines. Unlike mutated neoantigens which are
“private”, non-mutated TSA, such as aeEREs, are very likely to
be shared across tumors and malignancies.
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On a pan-cancer level, Attig et al. compared the expression
levels of “cancer-specific LTR element-overlapping transcripts”
(CLTs) across 31 cancer types and showed that the three
malignancies with the highest number of CLTs were respectively
the testicular germ cell tumors (TGCTs), the esophageal
carcinoma and the ovarian serous cystadenocarcinoma (82).
Although most of the overlap in CLT expression was observed
in related tissues such as KIRC and renal papillary cell carcinoma,
the study highlighted that 44 CLTs were shared by ten or more
cancer types (82). Although a pan-cancer study including LINEs
and SINEs is still needed, this LTR analysis supports the notion
that aeEREs represent meaningful targets for the generation of
shared TSAs.
THE POST-TRANSCRIPTIONAL ANTIGENS
AND THEIR RISING INTEREST FOR
IMMUNOTHERAPIES

Although most studies have focused on TSA classes arising from
genomic alterations (e.g., SNV-, indels-, gene fusion-, and ERE-
derived antigens), other classes of TSA exist and can still contribute
to the development of antitumoral immunotherapies. Broadly
referred to as post-transcriptional TSAs, this wide class of antigen
regroups antigens derived from aberrant (i) alternative splicing, (ii)
ribosomal events, and (iii) post-translational modifications (PTMs).

Aberrant Splicing-Derived
Tumor-Specific Antigens
Alternative splicing of premature messenger RNAs (pre-mRNAs)
is responsible for the diversification of both the transcriptome and
the proteome of eukaryotic cells. This cellular process explains
how one protein-coding gene can generate multiple alternative
transcripts, also called variants, and give rise to different protein
isoforms which are structurally and sometimes functionally
different (97). Tightly regulated in time and space in normal
cells, alternative splicing is carried out by the spliceosome
machinery, and plays a key role in both cellular differentiation
and identity (98). On a mechanistic level, alternative splicing
events traditionally include intron retention, exon skipping, the
use of alternative 5’- or 3’-splice site which lead to the retention of
exon fragments, and exon mutual exclusion. However, since
alternative promoters and alternative polyadenylation sites can
generate transcripts with alternative 5’- and 3’-ends, they are
sometimes considered as alternative splicing events although
they are not directly carried out by the spliceosome
machinery (99).

In cancer, it is now well established that both aberrant
alternative splicing events (i.e., novel transcripts absent in
normal cell) and alterations in the ratio of alternatively spliced
transcripts occurs in a wide range of malignancies including
breast (100, 101), brain (102), colon (103), prostate (103, 104),
lung (105), and ovarian (101) cancers. Although both are cancer
landmarks, only aberrant splicing events can generate cancer-
specific transcript that can be translated into new protein
Frontiers in Immunology | www.frontiersin.org 6
isoforms and produce immunogenic TSAs. Arising either from
cis-acting splice junction mutations (106) or trans-acting
spliceosome dysregulation (107, 108), aberrantly spliced
transcripts lead to the formation and translation of cancer-
specific junctions termed neojunctions. Based on the position
and the nature of the neojunction—i.e., (i) in-frame exon-exon
junctions (ii) out-of-frame exon-exon junctions, (iii) exon-intron
junctions, or (iv) exon-untranslated region (UTR) junctions, the
impact on protein’s function and immunogenicity can be
significant. At the functional level, all aspects of tumor
development, progression, and response to treatments can be
affected by aberrant alternative splicing and several known
aberrantly splice variants have been shown to affect key
processes such as metabolism, apoptosis, cell cycle control,
angiogenesis, invasiveness, metastatic potential, and resistance
to treatments of tumors (99). Similar to gene fusions, cancer-
specific variants deriving from aberrant alternative splicing
events can be functionally linked to the fitness of the tumor.
However, unlike gene fusion products that can only be turned on
or off, these splicing variants offer additional levels of plasticity
which seem to be used by tumors to evade both immune
surveillance (109) and therapies. In line with that, several
aberrant spliced variants appear to be implicated with the
resistance to several antitumoral treatments such as imatinib
(110, 111), poly adenosine triphosphate (ADP)-ribose
polymerase (PARP) inhibitor (112), cisplatin (112, 113), and
tamoxifen (114). Although this link between aberrant protein
isoform and drug resistance still needs to be confirmed, recent
reports suggest that targeting aberrant splicing could resensitize
cancer cells to existing therapies (99).

While mutations responsible for the occurrence of an
aberrant splicing event were initially presumed to occur only
in the consensus intronic dinucleotide splice donor (GT) or
acceptor (AG) sites, it is now clear that other mutations can also
affect RNA maturation (115–118). As a result, many mutations
originally misannotated as silent, missense, insertion/deletion or
nonsense mutations are now being considered as cis- and trans-
acting splicing mutations (106). Unlike cis-acting splicing
mutations which only affect the local splicing of the genes
carrying them, trans-acting splicing mutations affect directly or
indirectly the regulation of the spliceosome machinery and
therefore the splicing process of many genes. By looking for
splicing quantitative trait loci (sQTLs), Kahles et al. recently
identify seven trans-sQTLs, two of which were associated with
mutations in genes encoding the core spliceosome factors
splicing factor 3b subunit 1 (SF3B1) and U2 small nuclear
RNA auxiliary factor 1 (U2AF1) (107). Unexpectedly, other
identified mutated genes (i.e., transcriptional adaptor 1, TADA1,
protein phosphatase 2 scaffold subunit A alpha, PPP2R1A,
epidermal growth factor receptor, EGFR, and isocitrate
dehydrogenase 1, IDH1) were not previously known to impact
the splicing of other genes.While the mechanistic basis behind this
association still needs to be clarified, the landscape of trans-acting
splicing variant continues to evolve. In another TCGA study, Seiler
et al. identified far more genetic alterations able to impact other
genes’ alternative splicing in various ways by focusing onmutation
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affecting 119 known splicing factor genes (108). While it may still
be too early to determine how much trans-acting splicing
mutations contribute to the immunopeptidome of a tumor, this
class of mutation has the potential to generate much more
neojunctions than its cis-acting homologue.

At the scale of different cancer types, like for SNVs or indels,
the “neojunction/aberrant splicing burden” of the different
malignancies varies considerably (107). On average, ovarian
serous cystadenocarcinoma, liver hepatocellular carcinoma,
esophageal carcinoma, and stomach adenocarcinoma are the
four cancer types displaying the highest numbers of
neojunctions. However, when looking at the median values, the
global ranking changes drastically suggesting that important
internal variations do exist within cancer types. In that context,
in addition to this cancer-based analysis, it seems that a cancer-
subtype approach could be used to identify more patient
subgroups likely to benefit from the development of aberrant
splicing targeting therapies.

Despite the fact that it is still unknown if the increase of
aberrant splicing events in tumors is positively selected or not,
splicing-derived cancer-specific proteins can potentially be used
to inform cancer immunotherapies. In their studies, both Khales
et al. and Jayasinghe et al. predicted that aberrantly splicing
events were much more likely to generate TSAs able to bind
MHC I then SNV mutations (106, 107). Although the translation
of several of the alternative splicing-derived putative neoepitopes
could be validated using publicly available MS data from other
studies, most of their prediction relied on both RNAseq data and
prediction algorithms. Since aberrant splicing is predominantly
associated with low-abundance isoforms (119), the presentation
of the corresponding peptides and their immunogenic potentials
require experimental validation before they can be of
immunotherapeutic value.

Tumor-Specific Antigen Derived From
Aberrant Translation
Aberrant ribosomal translation events (ARTEs), sometimes
called non-canonical translation events, correspond to the
translation of either allegedly non-coding sequences or coding
sequences in a non-canonical reading frame. Such events
generally include non-canonical initiation, elongation and
termination events. Briefly, a non-canonical initiation event
occurs when the ribosome does not start the translation at the
primary AUG codon—but at a non-primary AUG codon (120)
or at a near-cognate start codon (CUG, UUG, or GUG) (121)—
as a result of a start codon scan-through (122), a translation
reinitiation (123) or the presence of an internal ribosome entry
site (IRES) on the messenger RNA (124). Non-canonical
elongation events happen when a frameshift occurs
spontaneously during elongation and lead to the translation of
a part of the protein in a non-canonical reading frame. Some
slippage-prone sequences present within transcripts have already
been reported to promote what is called a programmed
ribosomal frameshift (125). Non-canonical termination events,
although rare, are possible and consist of either a stop-codon
read-through (126)—some stop codons such as UGA and UAG
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appears to be leakier than UAA—or a ribosomal frameshift at the
stop codon. When such ARTEs occur, they lead to the
production of non-canonical proteins and cryptic MAPs.

While cryptic MAPs were initially observed as marginal and
irrelevant, this view is now changing as we get a better
understanding of their immunotherapeutic potentials. Recent
studies indicated that at least 10% of the MAP repertoire is
represented by cryptic peptides that are common among
individuals carrying the same MHC I alleles (123).
Interestingly, cryptic MAPs are involved in the establishment
of the central tolerance and the priming of CD8+ T cells in mice
(127). They are also recognized and targeted by both TILs (128–
131) and auto-reactive T cells (120) in human. As their relevance
to adaptative immunity becomes clearer, TSA research is
virtually expanded from the ~2% of protein-coding genes to
the ~75% of the transcribed genome (132). As such, ARTEs are
redefining translation events at the whole transcriptome level
while aberrant splicing events discussed in the previous section
are delineating the boundaries of exons and introns.

ARTEs are found in both normal cells and tumoral cells,
though their products differ depending on the genetic and
epigenetic instability associated with cancer cells. This
difference leads to the generation of cancer-specific cryptic
MAPs that are relevant targets for vaccine development (93,
133, 134). Indeed, MAPs deriving from aberrant expression of
non-mutated non-coding regions of the genome are much more
likely to be shared by multiple tumors than randomly mutated
sequences. Moreover, contrary to canonical MAPs, the
generation of cryptic MAPs can be enhanced by inflammatory
stimuli (135) such as type I interferon or tumor necrosis factor
alpha (TNFa) and by drugs (136) such as aminoglycoside that
might be used to increase the global immunogenicity of
cold tumors.

Since cryptic MAPs cannot be identified using canonical
protein databases, Laumont et al. have recently developed a
proteogenomic-based approach to identify both of canonical
and cryptic MAPs specific to tumor cells (e.g., mutated and
aberrantly expressed TSA) (93). In parallel of this, two proof-of-
principle studies established that MAPs can also be identified
using reference databases built from ribosome profiling (Ribo-
seq) (137, 138). Ribo-Seq is based on the sequencing of mRNA
fragments protected for ribonuclease digestion by their location
within the ribosome decoding site. It provides quantitative
information on the nature of translated mRNAs including
their reading frame and start and termination codons. While
both of these approaches open new avenues for identification of
cryptic MAPs which are potentially shared between patients, one
unanswered question is the identification of TSAs among cryptic
MAPs identified using databases built on Ribo-Seq. Indeed, this
would require Ribo-Seq data for all types of normal cells.

Tumor-Specific Antigen Derived From
Post-Translation Modifications
There are approximately 300 PTMs that have been described to
modify proteins in normal condition (139). Among them, we
find very diverse modifications—such as acetylation,
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ubiquitination, glycosylation, SUMOylation, etc.—which are
important to control the stability, localization, and
conformation of proteins within the cell. Particularly
important for the cell signaling, many PTMs have been shown
to be dysregulated in the context of cancer (140–143).

Among the most studied PTMs, phosphorylation is the one
associated with the largest number of diseases (144). In cancer,
Reimand et al. showed, that SNV mutations affecting the
phosphorylation sites could be found in nearly 90% of the
tumors where they are were associated with gains or losses of
signaling contributing to what they called the “oncogenic
rewriting of the kinase network” (145). On an antigenic level,
phosphorylated proteins were shown to be processed normally
by the antigen presentation pathway of both normal and tumoral
cells (146–152). In line with the idea that they could be used for
immunotherapies, several studies reported that phosphorylated
peptides, but not their dephosphorylated counterparts, could
activate T cells in the mice model (150, 153). Although their
immunogenic potential has not been demonstrated in human,
attempts are currently being made to integrate peptide
phosphorylation into MHC I binding prediction tools (154). If
they succeed, prediction tools should facilitate the detection of
phosphorylated peptide and clarify their potential as a source
of TSAs.

In addition to phosphorylation, other PTMs such as
citrullination, ubiquitination and O-glycosylation might also
contribute to both the antigenicity and immunogenicity of
cancer cells in different ways. Citrullination results from the
deimination of arginine residues into citrulline by a peptidyl-
arginine deiminase (PAD). Despite being involved in several
physiological processes, citrullination is predominantly known
for its involvement in several autoimmune disorders including
rheumatoid arthritis, multiple sclerosis, and type I diabetes
where it was shown to be immunogenic (155–159). It is
important to note that this PTM has also been identified in
cancer (160). Citrullination levels seems to be higher in ovary,
uterus, colon, bladder, breast, liver, lung, esophagus, kidney, and
prostate tumors than in their corresponding normal tissues due
to the overexpression of either PAD4 or PAD2 (161–163).
Although the presentation of citrullinated MAPs on MHC I
molecules has never been demonstrated, citrullination was
shown to increase peptides binding affinity for HLA‐DRB1 (a
MHC class II allele) (164, 165) which could then be recognized
by both mice and human repertoires of “cytotoxic” CD4+ T cells
(166–168).

The b O-linked N-acetylglucosamine (O-GlcNAc) is a
ubiquitous PTM modifying both serine and threonine residues
and is involved in cell signaling of in all eukaryotic cells (169).
This modification is reversibly attached and removed from its
substrates in the cytosol or the nucleus of the cell by the O‐
linked N‐acetylglucosaminyltransferase (OGT) and the b‐N‐
acetylglucosaminidase (OGA), respectively (169). In normal
cells, O-GlcNAcylation modulates several important biological
functions such as the enzymatic and transcription activities,
protein turnover, protein-protein interactions, and subcellular
localization of several proteins (170, 171). Dysregulations of the
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O-GlcNAcylation as well as aberrant expression of OGT and/or
OGA have been observed in cancer where they are associated
with increased cancer cell proliferation and survival,
invasiveness, and metastasis (171). Because O-GlcNAcylated
proteins are present at the level of the cytosol, O-GlcNAcylated
MAPs were shown to be displayed at the cell surface and activate
T cells (172, 173). The resolution of two different MHC I–
glycopeptide structures by X-ray crystallography highlighted
that the accessibility of the O-GlcNAc group to the TCR was
key for the T cell reactivity (174). More recently, using MS,
Malaker et al. could identified 36 unique O-GlcNAcylated MAPs
from primary human leukemic and Epstein-Barr virus-
transformed B cell (175). While the MAPs they identified
presented various levels of glycosylation and methylation, five
out of the seven tested could activate T cells from healthy donors.
Although these antigens have not been proven tumor-specific,
the authors reported that 92% of the identified O-GlcNAcs
MAPs could not be detected in their healthy tissue samples (175).

While phosphorylation, citrullination or O-GlcNAcylation
can be explored as potential sources of immunogenic TSAs,
other PTMs such as ubiquitination do not directly provide
tumor-specific epitopes but have been shown to affect peptide
presentation. Ubiquitin is usually used as a degradation signal in
the cell: when a protein reaches a threshold of ubiquitination, it is
addressed to the proteasome where it is hydrolyzed into peptides
(176). These peptides (among others) are a source of endogenous
antigens for the MHC I presentation pathway. As a result,
due to its key role in providing peptides for the MHC I
immunosurveillance, dysregulation of the ubiquitination in
cancer could lead to a modification of the immunopeptidome
landscape. In case of a decrease in ubiquitination (intrinsic or
pharmacologically-induced (177)), more peptides from the
ubiquitin-independent presentation pathway will be presented
at the cell surface. This includes peptides originating from small
defective ribosome products (DRiPs) and aberrant translation
products which seems to generate MAPs in a proteasome-
independent manner (11). While the potential of PTMs for
immunotherapies is still not yet fully accessed, preliminary
results are promising and open additional perspective to
target cancer.
FROM IDENTIFIED TUMOR-SPECIFIC
ANTIGENS TO ACTIONABLE
THERAPEUTICS: VALIDATION
AND SELECTION

By definition the identification of a candidate requires to determine
the correct amino acid sequence as well as the precise nucleic
sequence its originates from. When the TSA candidate sequence
is closed from similar to the reference sequence like it is the case
for SNVs, the identification is relatively easy especially as soon as
WES or RNAseq data are available. However for other TSA classes,
it can be more challenging. In the case of frameshift mutations,
indels are difficult to identify from Sanger and next-generation
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sequencing which is why special tools such as pVACseq (178),
Neopepsee (179), MuPeXI (180), Epidisco (181) and Antigen
garnish (182) have been developed. While pVACtools, Epidisco,
and Antigen.garnish also support the prediction of gene fusion-
derived peptides, other tools such as INTEGRATE-neo have been
specifically designed to predict fusion neoantigens (183). Because
no prediction software is currently able to deal with repetitive
regions, the prediction of ERE-derived TSA can only be made
combining quantifiers such as hervQuant (184)or RepeatMasker
(185) with a classic epitope prediction software such as
NetMHCpan (186).

To face issues associated with the large search space of
unbiased identification, one may want to conduct targeted
searches with databases from human mRNA annotated
sequences with associated variation information derived from
the Single Nucleotide Polymorphism Database (dbSNP) and
remove all non-polymorphic information (187). Searches for
alternative reading frames, transcripts from non-coding regions
(93) or EREs (89) can be achieved separately and results
combined subsequently. As mentioned in this review, TSA
classes have different abundances in different tumor types.
Therefore, knowing which class might be predominant in a
tumor of interest, could be used to guide identification by
reducing search space.

Once identified, the actionability of the TSA is determined
based on five parameters which evaluate/validate different
aspects of its therapeutic potential.

First, TSA candidates have to be validated as “truly” tumor-
specific. Because targeting antigens which are also expressed in
healthy tissues could result in severe side effects or autoimmunity,
Laumont et al. developed a stringent validation strategy based on
the resources gathered by the GTEx consortium (93). In their
study, candidates were only considered as “true” TSA if their
corresponding reads were absent from the transcriptomes of a
wide range healthy tissue. Although well adapted for most TSA
classes, this validation strategy could not be apply to TSAs deriving
from aberrant translations or PTMs. For these particular classes,
their absence from healthy tissues could only be validated at the
proteomic level, but, to our knowledge, it has never been done.

The second key criteria to assess TSA’s actionability is their
immunogenic potential. To be targetable, a presented TSA has to
be recognized by a TCR and able to trigger T cell activation. This is
usually determined ex vivo by interferon gamma ELISpot, but a
wide range of well-established assays have been described and can
quantify other aspects of the T cell-dependent immunogenicity
than interferon gamma production (188). We can also mention
that many efforts are currently being made to develop machine-
learning approaches to predict the immunogenicity of a given
peptide from its sequence (189). Although this could both faster
and ease the selection of therapeutic epitopes, this approach is still
limited by the type of data available to train the programs.

Third, it is also important to estimate the incidence/
prevalence of newly discovered TSA on a pancancer, tumoral
and subtumoral scale. The more an immunogenic antigen is
shared between patients (i.e., frequent within a cancer type/
subtype or across malignancies), the higher its therapeutic
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interest will be. This evaluation is usually performed by
looking for TSA-corresponding transcripts in a large number
of cancer transcriptomes from the TCGA database. By using this
approach, Zhao et al. recently showed that 78% and 18% of the
transcripts encoding for aberrantly expressed TSA in ovarian
cancer were respectively expressed by at least 10% and 80% of the
ovarian cancer samples (190). While this parameter is key to
establishing the wide scale potential of an antigen, here again this
strategy could not be applied for TSAs deriving from aberrant
translations or PTMs.

Forth, the large-scale therapeutic potential of a candidate
peptide is also affected by its MHC restriction (i.e., the number
and frequencies of MHC I alleles it can bind to). If an
immunogenic TSA is shared by an extensive number of
tumors but only presented by a rare MHC I allele, its
therapeutic interest for universal therapies will be decreased
compared with another antigen which can be presented by a
large portion of the population. TSA binding profiles are
generally determined using MHC I–binding prediction tools
such as NetMHC or NetMHCpan (186, 191) but needs to be
experimentally validated either using a proteogenomic approach
but ideally this should be done by T2 or RMA-S peptide binding
assay (192, 193).

Fifth, the potential of TSAs will finally depend on the type of
immunotherapy/strategy which is considered. In the particular
context of vaccine design, all classes of TSA are not necessarily
suitable for all vaccination strategy (i.e., DNA/mRNA-based
vaccination (194), peptide-based vaccination (195), or TSA-
loaded antigen presenting cell infusion (196, 197)). For
example, PTM-derived TSA are not suitable for the
development of DNA/mRNA-based vaccines. Similarly, private
antigens would be less suitable for the development of a broad
universal vaccine than shared non-mutated TSAs.
CONCLUSION

While the vast majority of the studies aiming to identify tumor
antigens have concentrated their efforts in the detection of SNVs
with limited therapeutic results, the possibility of enlarging the
repertoire of targetable TSAs by looking at alternative classes of
antigens opens new perspectives for the development of cancer
immunotherapies. In line with recent improvements in both
MAPs detection and prediction methods, our knowledge of these
“alternative” sources of TSAs has remarkably increased over the
past few years. From the maintenance of the genetic and
epigenetic information at the genomic level to the ribosomal
translation and PTM, every step of protein expression is
susceptible to be dysregulated in cancer. While dysregulation
may lead to the generation of specific types of TSA with their
own features, they do not occur uniformly across malignancies.
Therefore, more than “how”, the true question is now choosing
“what” to identify. What class of neoantigen is the most likely to
be predominant in this given type/subtype of tumor? What class
of antigen is the most suitable for immunotherapy?
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Given the fast-evolving nature of tumors and their genetic
heterogeneity, it is very likely that future immunotherapies will need
to target more than one TSA at once. While some neoantigens are
derived from source proteins essential for tumor fitness, most TSAs
that are now identified using conventional proteogenomic approaches
are not necessarily required for tumor survival. To be efficient,
immunotherapies must target multiple TSAs from different origins
to cover the diversity of tumor subclones and prevent drug resistance.
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Proteogenomics Uncovers a Vast Repertoire of Shared Tumor-Specific
Antigens in Ovarian Cancer. Cancer Immunol Res (2020) 8:544–55. doi:
10.1158/2326-6066.CIR-19-0541

191. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural
networks: application to the MHC class I system. Bioinformatics (2016)
32:511–7. doi: 10.1093/bioinformatics/btv639

192. Andersen MH, Søndergaard I, Zeuthen J, Elliott T, Haurum JS. An assay for
peptide binding to HLA-Cw*0102. Tissue Antigens (1999) 54:185–90. doi:
10.1034/j.1399-0039.1999.540210.x

193. Ross P, Holmes JC, Gojanovich GS, Hess PR. A cell-based MHC stabilization
assay for the detection of peptide binding to the canine classical class I
molecule, DLA-88. Vet Immunol Immunopathol (2012) 150:206–12. doi:
10.1016/j.vetimm.2012.08.012
Frontiers in Immunology | www.frontiersin.org 15
194. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic
RNA delivery to dendritic cells exploits antiviral defence for cancer
immunotherapy. Nature (2016) 534:396–401. doi: 10.1038/nature18300

195. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An
immunogenic personal neoantigen vaccine for patients with melanoma.
Nature (2017) 547:217–21. doi: 10.1038/nature22991

196. Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-based vaccines:
barriers and opportunities. Future Oncol (2012) 8:1273–99. doi: 10.2217/fon.12.125

197. Koski GK, Koldovsky U, Xu S, Mick R, Sharma A, Fitzpatrick E. A novel
dendritic cell-based immunization approach for the induction of durable
Th1-polarized anti-HER-2/neu responses in women with early breast cancer.
J Immunother (2012) 35:54–65. doi: 10.1097/CJI.0b013e318235f512

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer AA declared a past co-authorship with two of the authors CP and PT
to the handling editor.

Copyright © 2020 Minati, Perreault and Thibault. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
December 2020 | Volume 11 | Article 583287

https://doi.org/10.1007/s00251-010-0497-1
https://doi.org/10.1016/j.clim.2013.09.006
https://doi.org/10.1016/j.clim.2013.09.006
https://doi.org/10.1158/2326-6066.CIR-19-0155
https://doi.org/10.1158/2326-6066.CIR-19-0541
https://doi.org/10.1093/bioinformatics/btv639
https://doi.org/10.1034/j.1399-0039.1999.540210.x
https://doi.org/10.1016/j.vetimm.2012.08.012
https://doi.org/10.1038/nature18300
https://doi.org/10.1038/nature22991
https://doi.org/10.2217/fon.12.125
https://doi.org/10.1097/CJI.0b013e318235f512
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens
	Introduction
	Single Nucleotide Variant Neoantigens: A Relatively Meager Source of Tumor-Specific Antigens for Immunotherapies
	Mutational-Frameshift Neoantigens: A Promising Source of Tumor-Specific Antigens for Renal Cell Carcinoma, Homologous Recombination-Deficient Tumors, and High Microsatellite Instability (MSI-H) Tumors
	Gene Fusion Neoantigens Are Rather Rare but Recurrent Across Malignancies
	Endogenous Retroelements-Derived Tumor-Specific Antigens: A Predominant Source of Non-Mutated Antigens for a Vaccine Against Cancer
	The Post-Transcriptional Antigens and Their Rising Interest for Immunotherapies
	Aberrant Splicing-Derived Tumor-Specific Antigens
	Tumor-Specific Antigen Derived From Aberrant Translation
	Tumor-Specific Antigen Derived From Post-Translation Modifications

	From Identified Tumor-Specific Antigens to Actionable Therapeutics: Validation and Selection
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


