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Abstract: Twenty-four analogues of benzimidazole-based thiazoles (1–24) were synthesized and as-
sessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory po-
tential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes,
having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM
to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12
and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the
most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or
-withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the
primary determinants of the structure-activity relationship (SAR). In order to understand how the
most active derivatives interact with the amino acids in the active site of the enzyme, molecular
docking studies were conducted. The results obtained supported the experimental data. Additionally,
the structures of all newly synthesized compounds were elucidated by using several spectroscopic
methods like 13C-NMR, 1H-NMR and HR EIMS.

Keywords: Synthesis; acetylcholinesterase; butyrylcholinesterase; benzimidazole; thiazole; structure-
activity relationship; molecular docking

1. Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative and irretrievable abnormal-
ity. Its pathology involves the interactions of genetic risk and environmental factors [1].
This disease is considered age-related because it is the main cause of dementia, and is
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frequently found in old people. AD was counted as the fourth major death-causing disease
in developed counties, after cancer, cerebral disease and cardiovascular disease [2]. Thus, it
affects cholinergic neurons as well as cholinergic transmission. Moreover, AD is a multi-
pathogenic illness; therefore, the recent strategy in drug discovery is to synthesize novel and
potent anti-Alzheimer agents with significant inhibition potential for acetylcholinesterase
(AChE) and butyrylcholinesterase (BuChE) enzymes [3]. Acetylcholine is crucial for cogni-
tive processes, including memory. It lessens cholinergic neurotransmission in the brain, a
factor that is significant in the cognitive decline brought on by Alzheimer’s disease [4,5].
BuChE is an enzyme related to AChE, and BuChE has been attracting growing attention
due to its positive role in AD [6,7]. Butyrylcholinesterase prevents an enzyme from interfer-
ing with neurotransmitter transmission, which results in side effects for patients include
nausea, vomiting, fever, and even death [8,9]. Thus, it might be considered as a significant
tool for novel drug synthesis and used as the best target to treat AD. Therefore, the future
development of potent BuChE inhibitors, as well as the regular practice of cholinesterase
inhibitors, may lead to facilitating clinical results [10].

Benzimidazole possesses a diverse range of biological activities, such as anti-histaminic,
anti-convulsant, anti-analgesic, proton pump inhibitors, anti-hypertensive, anti-cancer, anti-
viral, anti-fungal and anti-coagulant actions [11–17]. There are some drug molecules such
as benoxaprofen, albendazole, enviradine, bendamastin, omeprazole and astemizole that
contain a benzimidazole moiety in their skeleton (Figure 1) [18].

Figure 1. Drugs containing abenzimidazole skeleton.

Thiazoles scaffolds were recognized to play an essential role in the field of medicines.
Thiazoles and their analogues were reported to have anti-Alzheimer’s, anti-diuretic and
anti-bacterial activities [19].Moreover, thiazole-based hybrids have promising medicinal ap-
plications, including analgesic, anti-inflammatory [20], anti-microbial [21], anti-cancer [22],
anti-hypoxic [23], anti-asthmatic [24] and anti-hypertensive activities [25]. In addition,
thiazole derivatives and their chromene-based hybrids have demonstrated potent AChE-
inhibitory activity [26–29].Furthermore, it was reported that due to the broad range of
pharmacological significance of thiazole, a large number of commercially available drugs
contain a thiazole nucleus in their structure, including abafungin, niridazole, tiazofurin,
tiabendazole, ruvaconazole, vorelaxin and azereonam (Figure 2) [30,31].

Figure 2. Bioactive drugs with a thiazole skeleton.
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Our research group had identified different classes of heterocyclic compounds as
potent inhibitors [32–41]. Moreover, we had already reported on the anti-AChE and anti-
BuChE activities of benzimidazole [42] and thiazole [43] derivatives (Figure 3). Keeping
in view the biological significance of thiazole and benzimidazole skeleton containing
analogues [44,45], here in this study, hybrid analogues of benzimidazole-based thiazole
were designed and synthesized (1–24) as potent inhibitors of acetylcholinesterase and
butyrylcholinesterase.

Figure 3. Rationale of the current study.

2. Results and Discussion
2.1. Chemistry

In this study, well-known methodology was adopted for the synthesis of benzimidazole-
based thiazole derivatives (1–24) from readily accessible precursors such thiosemicarbazide,
various phenacyl bromides and 2-marcaptobenzimidazole.

Initially, 2-bromoacetophenone (II) was reacted with 2-marcapto benzimidazole (I) in
EtOH and Et3N (catalyst), and the reaction mixture was refluxed for 2–3 h to yield the first
intermediate (III) [44]. An equivalent amount of intermediate (III) and thiosemicarbazide
were further treated in EtOH and CH3COOH (glacial) and the solution was refluxed for
about 4 h to yield a second intermediate product (IV). The reaction mixture was cooled
to room temperature when it was finished, and the precipitate solid that resulted was
then filtered and washed with n-hexane. The reaction’s progress had been monitored by
using TLC plate. Finally, intermediate (IV) underwent cyclization with stirring overnight
with a different substituted 2-bromoacetophenone in EtOH and Et3N (catalyst) to yield
benzimidazole-based thiazole analogues (1–24) in moderate to good yield (Scheme 1). The
solvent was removed after being cooled to 25 ◦C and the resultant solid residue was then
cleaned by washing with n-hexane and re-crystallized from ethyl acetate. The precise
structures of all newly synthesized analogues were determined using several spectroscopic
methods, including 13C-NMR, 1H-NMR and HR EIMS.
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Scheme 1. Synthesis of benzimidazole-based thiazole derivatives (1–24).

The 1H NMR spectrum of analogue 1 was recorded in DMSO-d6 on a Bruker 600 MHz
instrument. The peak for the hydroxyl proton (OH) was observed at δH 10.11 (s, 1H, -OH).
The most downfield singlets of two -NH protons, one for benzimidazole (NH) and another
amino (NH) proton between the thiazole and benzimidazole rings, were resonated at δH 13.25
and 11.81, respectively. The molecule comprises three aromatic rings labeled as A, B C. Among
the ring B protons, doublets appeared at δH 7.79 for two protons H-2′and H-6′ (Ar-H), while
another two protons of this ring H-3′ H-5′ (Ar-H) were resonated at δH7.88 (d, J = 8.88 Hz,
2H, Ar-H) as doublets, respectively. On the other hand, two aromatic protons labeled as
H-3” and H-6“(Ar-H) of ring C resonated at δH 8.28 (s, 1H, H-3”) and 8.10 (s, 1H, H-6”) as
singlets. Besides this, a triplet was observed for two aromatic protons of benzimidazole at
δH 7.43 (t, J = 7.92 Hz, 2H, H-5/H-6). However, thiazole-H was resonated at δH 7.33 as a
singlet. Moreover, two more aromatic protons of benzimidazole, namely H-4 and H-7, were
also resonated as doublets at δH7.27 (d, J = 7.68Hz, 1H, H-4) and 7.04 (d, J = 7.56Hz, 1H,
H-7), respectively. Furthermore, a singlet was also observed for two active methylene protons
(–CH2-) attached between sulfur and aromatic ring B at δH2.34 (s, 2H, -S-CH2).

As for compound 1, the 13C NMR signal δC-13at 175.81 was attributed to a thiazole carbon
(C) present between sulfur and nitrogen atoms, while two peaks at δC-13139.85 (C-thiazole)
and 110.66 (C-thiazole) were observed for the remaining two carbons of the thiazole ring.
The peak at δC-13138.96 (C) was observed for the benzimidazole carbon-bearing substitution,
while two bridged carbons of benzimidazole were recorded at δC-13137.27 (C). The carbon
involved in the doublet with nitrogen (C=N) was resonated at δC-13143.52 (C).The carbons
of the aromatic phenyl rings B and C involving substitutions were resonated at δC-13133.67
(C-OH), 132.00 (C-NO2), 127.83 (C), 126.25 (C-Cl) and 125.92 (C-Br). The peak corresponding
to carbons of aromatic rings B and C without substitutions were resonated at δC-13122.93
(CH-3′and CH-5′), 123.69 (CH), 120.66 (CH-2′and CH-6′) and 119.01 (CH), respectively. The
peaks corresponding to the remaining four carbons of benzimidazole were observed at δC-13
123.7 (CH), 123.5 (CH), 115.8 (CH) and 115.3 (CH), respectively. The peak at δC-13 38.5 (-CH2-)
corresponded to active methylene groups attached to a sulfur atom.

2.2. In Vitro Evaluation of AChE and BChE Inhibition by Novel Benzimidazole-Based Thiazoles

All the newly synthesized derivatives of benzimidazole-based thiazole (1–24) were
evaluated as potential inhibitors of AChE and BChE, and IC50 was determined. All analogues
showed moderate to good inhibitory potential against both AChE and BChE. The IC50 values
ranged from 0.10 ± 0.05–11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM–14.20 ± 0.10 µM
(for BChE). Some of these compounds were shown to be more potent inhibitors than the
standard drug Donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM respectively) (Table 1).
The synthesized analogue was divided into four parts: benzimidazole ring A, thiazole portion,
phenyl rings B & C, in order to better understand the structure-activity relationship (SAR). The
nature, electron-withdrawing or -donating effects, number(s) and position of the substituent(s)
on both phenyl rings B and C respectively were measured to be the key determinants of the
structure-activity relationship (Figure 4).
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Table 1. IC50 values and selectivity index values of tested benzimidazole-based thiazole derivatives
determined for AChE and BuChE.

S.NO Ring B Ring C IC50AChE IC50BuChE Selectivity Index

1
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Standard drug Donepezil 2.16 ± 0.12 µM 4.5 ± 0.11 µM 2.08 

Structure–Activity Relationship of acetylcholinesterase and butyrylcholinesterase 
activities 

The derivative 21 (IC50 = 0.10 ± 0.05µM and 0.20 ± 0.05 µM), bearing di-Cl groups at 
meta- and para-positions of both phenyl rings B and C correspondingly, was emerged as 
most effective inhibitors of both targeted enzymes (AChE & BuChE). Additionally, the 
analogue 16 (IC50 = 0.20 ± 0.050 µM for AChE) and 0.50 ± 0.050 µM for BuChE), which had 
a hydroxy group at the para-position of phenyl ring C and a nitro group at the ortho-
position of phenyl ring B was found to be the 2nd most potent inhibitor of both AChE & 
BuChE enzymes,. The different types, number (s), electron-donating or -withdrawing 
effect, positions of substituent(s) on the both phenyl rings B and C may account for the 
effective inhibitory potentials of analogues 16 and 21 (Figure 5).  
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BuChE enzymes,. The different types, number (s), electron-donating or -withdrawing 
effect, positions of substituent(s) on the both phenyl rings B and C may account for the 
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effective inhibitory potentials of analogues 16 and 21 (Figure 5).  
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effect, positions of substituent(s) on the both phenyl rings B and C may account for the 
effective inhibitory potentials of analogues 16 and 21 (Figure 5).  
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Figure 4. General structure of benzimidazole-bearing 1,3-thiazole scaffolds (1–24).

Structure–Activity Relationship of acetylcholinesterase and butyrylcholinesterase activities

The derivative 21 (IC50 = 0.10 ± 0.05µM and 0.20 ± 0.05 µM), bearing di-Cl groups
at meta- and para-positions of both phenyl rings B and C correspondingly, was emerged
as most effective inhibitors of both targeted enzymes (AChE & BuChE). Additionally, the
analogue 16 (IC50 = 0.20 ± 0.050 µM for AChE) and 0.50 ± 0.050 µM for BuChE), which
had a hydroxy group at the para-position of phenyl ring C and a nitro group at the ortho-
position of phenyl ring B was found to be the 2nd most potent inhibitor of both AChE &
BuChE enzymes. The different types, number (s), electron-donating or -withdrawing effect,
positions of substituent(s) on the both phenyl rings B and C may account for the effective
inhibitory potentials of analogues 16 and 21 (Figure 5).

Figure 5. SAR study of the most active scaffolds.
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By comparing compounds 3–6 (Figure 6), we noticed that there is a difference in the
inhibitory potential of these compounds in regard to the position of the substituent(s). This
may be caused by the type, position, and number(s) of the substituent(s) on ring C.

Figure 6. SAR study of scaffolds 3–6.

Analogue 11 (dichloro group at meta- and para-positions on ring C, IC50 = 0.40± 0.050 µM
and 1.10 ± 0.10 µM) was found to be superior to analogues 7 (nitro group at ortho on ring
C, IC50 = 2.90 ± 0.10µM and 3.50 ± 0.10 µM) and 8 (nitro group at meta position on ring C,
IC50 = 6.30± 0.10 µM and 7.90± 0.10 µM) (Figure 7).

Figure 7. SAR study of scaffolds 7, 8 and 11.

By comparing compounds 13–16 (Figure 8), we noticed that there is a difference in
the inhibitory potentials of these compounds in regard to the position of the substituent(s).
This could be due to the nature of the substituent(s) on ring C.

Figure 8. SAR study of scaffolds 13–16.
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By comparing compounds 17–19 and 21–22 (Figure 9), we noticed that there is a
difference in the inhibitory potentials of these compounds in regard to the position of the
substituent(s). This may be caused by the type, position, and number(s) of the substituent(s)
on ring C.

Figure 9. SAR study of scaffolds 17, 18, 19, 21 and 22.

Overall, it was found that the nature, electron-donating or -withdrawing effect, number
and position of the substituent(s) on both rings B and C may considerably affect the
inhibitory potentials of the synthesized analogues.

Galantamine is a phenanthrene that induces reversible inhibition of AChE-BuChE;
Donepezil is a piperidine that causes reversible AChE inhibition, highly specific; and
huperzine A is a pyridine that causes reversible AChE and specific inhibition. Under
ideal test circumstances, each AChEI is ranked in the following order by its inhibitory
efficacy (IC50) against the AChE activity: physostigmine (0.67 nM) > rivastigmine (4.4 nM)
> Donepezil (6.7 nM) > TAK-147 (12 nM) > tacrine (77 nM) > ipidacrine (270 nM). Based on
study conducted by Eisai scientists, derivatives with 4-aminopyridine such as ipidacrine
and tacrine did not exhibit any selectivity, benzylpiperidine derivatives including TAK-
147 and Donepezil exhibited high selectivity for AChE over BuChE, while the carbamate
derivatives exhibited moderate selectivity. AChE inhibition by Donepezil is 40–500 times
more effective than by galantamine, according to more recent studies. Galantamine leaves
the brain more quickly than Donepezil does. Galantamine and Donepezil both inhibit
brain AChE to a similar degree, according to their respective Ki values, which are 7.1–19.1
and 0.65–2.3 g/g in different species, respectively, the doses of needed for galantamine is
3–15 times greater than those of Donepezil [46].

2.3. Docking Study

The main objective of molecular docking study was to learn more about how newly
afforded compounds bind to enzymes (i.e., both AChE and BuChE). Based on the residing
co-crystal of each crystallographic structure, all of the compounds were docked. Each com-
pound received a total of thirty conformations before the docking process. For additional
protein-ligand interaction (PLI) profiling, the top-ranked conformations were chosen.

The docking results showed that all of the compounds were located in the active sites
of both enzymes in the proper orientation. In general, we found that all the compounds
had different substitution groups at their two ends, while the third end remained the same
for all compounds, i.e., the electron-donating groups (also known as activated groups) and
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electron-withdrawing (also known as deactivated groups) at different positions. Addi-
tionally, we noticed that most active compounds held both the activated and deactivated
groups at their two ends, which had a strong magnitude of activation. Surprisingly, the
PLI profiles along with the in-vitro data revealed that compounds 16 and 21, which con-
tain activated and deactivated substituting groups over the benzene ring, had the highest
inhibitory potential levels of the entire series. For example, compounds 16 and 21 have
nearly identical activity levels against AChE but are ranked 1st 21 and 2nd 16 against
BuChE, respectively.

Numerous significant interactions with catalytic residues were found in the compre-
hensive PLI profiles of both compounds against both targets. These interactions may have
a significant impact on the improvement of the enzymatic activity of both enzymes. It was
shown by PLI profile that analogue 21 adopted numerous key interactions with catalytic
residues of AChE including the residues Phe330, Phe331, Tyr334, Asp72, Trp84, Tyr121
and Trp279 (Figure 10A), while this analogue against BuChE exhibited several important
interactions such as Tyr332, Phe329, Ala328, Trp82, Asp70, Gly116, Gly117, Trp231, Ser287
and Leu286 (Figure 10B). The attached di-Cl on both ends of the compound may be the
cause of its high potential, where the Cl that withdraw most of the electronic density
from benzene ring, resulting in a partial positive charge over the benzene ring, causing
this benzene ring to try to re-gain the stability via adopting several key interactions with
active side residues, thereby enhancing the enzymatic activity. Overall, we observed that
the compounds holding the substituted group, which had a strong magnitude of either
withdrawal or donation, showed best potential against both targeted enzymes.

Figure 10. The PLI profile of the most potent analogue (21): (A) analogue 21 against acetyl-
cholinesterase (AChE); (B) analogue 21 against butyrylcholinesterase (BuChE) enzymes.
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Similarly, the PLI profile shown by analogue 16 against AChE revealed several key
interactions with the active site residues, including the residues Trp84, Glu199, Tyr121,
Trp279, Asp285, Tyr334 and Asp72 (Figure 11C), while against the BuChE, this compound
adopted several key interactions with Trp231, Leu286, Pro285, Phe329, Asp70, Ile69, Ala328
and Trp82 (Figure 11D). The elevated potential of this compound may be a result of the
strong electron-donating and electron-withdrawing groups that are connected to it, i.e.,
hydroxyl and nitro group, where the -OH-substituting group donates some its electronic
density with high potential to the 6c-ring and then further this electronic density cascades
to other important moieties of the compounds; hence, In this manner, the overall potency of
compound as an inhibitor against both targeted enzymes is high. In addition, the PLI profile
revealed several key interactions, particularly with the side of the attached substituted
groups or nearby moieties.

Figure 11. The PLI profile of second most potent analogue (16): (A) analogue 16 against acetyl-
cholinesterase (AChE); (B) analogue 16 against butyrylcholinesterase (BuChE) enzymes.

Additionally, the PLI profile shown by analogue 15 against AChE adopted several
key interactions with the active site residues, including the residues Trp70, Trp84, Glu199,
Phe331, Tyr334, Trp279 and Tyr70 (Figure 12E), while against the BuChE, this compound
adopted several key interactions with Thr120, Asp70, Trp82, His438, Phe329, Trp231, Leu286
and Gly117 (Figure 12F). The elevated potential of this analogue 17 might have been due to
the attached electron-withdrawing groups, such as di-Cl and nitro groups on both ends
of analogue, where both di-Cl and –NO2 groups withdraw most of the electronic density
from the benzene rings, resulting in a partial positive charge over the benzene ring, and



Molecules 2022, 27, 6087 13 of 23

further this benzene ring tries to re-gain the stability via adopting several key interactions
with active side residues, thereby enhancing the enzymatic activity.
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Table 2. The binding energies, numbers of hydrogen bonds, numbers of closest residues, and the
interacting residues of the selected docked analogues into the active sites of both AChE and BuChE.

Active
Derivatives

Name of
Enzyme

Free Binding Energy
(kcal/mol) Number of HBs Number of Closest

Residues Interacting Residues

21
AChE −11.23 1 23 Phe330, Phe331, Tyr334, Asp72,

Trp84, Tyr121 and Trp279

BuChE −10.88 1 22
Tyr332, Phe329, Ala328, Trp82,
Asp70, Gly116, Gly117, Trp231,

Ser287 and Leu286

16
AChE −10.77 1 21 Trp84, Glu199, Tyr121, Trp279,

Asp285, Tyr334 and Asp72

BuChE −9.89 1 24 Trp231, Leu286, Pro285, Phe329,
Asp70, Ile69, Ala328 and Trp82

15
AChE −9.33 0 20 Trp70, Trp84, Glu199, Phe331,

Tyr334, Trp279 and Tyr70

BuChE −8.72 1 24
Thr120, Asp70, Trp82, His438,
Phe329, Trp231, Leu286 and

Gly117
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3. Experimental
3.1. General Information

All of the solvents and chemicals, with a purity range of 97 to 99%, were acquired from
Sigma Aldrich. Using DMSO as the solvent, the NMR spectra were recorded using a Bruker
Ultra Shield Plus NMR spectrometer. By using TMS as reference standard, the chemical
sifts values were measured. The high-resolution mass spectra (electron impact, 60 eV) were
run on a MAT-311A instrument (Germany). For visualization of the chromatograms, a UV
lamp (Schimazdu, Germany) with a wavelength of 254/365 nm was used.

3.2. General Procedure for the Synthesis of Benzimidazole-Bearing 1,3-Thiazole Scaffolds (1–24)

The intermediate (III) was obtained by reacting phenacyl bromide (II, 1 mmol) with
2-marcapto benzimidazole (I, 1 mmol) in EtOH (10 mL) and Et3N (few drops) and stirred
for 2-3h under reflux condition [44]. An amount of equivalent intermediate (III) and
thiosemicarbazide were further treated in ethanol (10mL) and CH3COOH (glacial) and the
solution was refluxed for about 4 h to yield the second intermediate product (IV). Finally,
intermediate (IV) underwent cyclization with stirring overnight with different substituted
2-bromoacetophenone in ethanol (10mL) Et3N (few drops) to yield benzimidazole-based
thiazole analogues (1–24) in moderate to good yield. The solvent was removed after being
cooled to room temperature and the resultant solid residue was then cleaned by being
washed with n-hexane and re-crystallized from ethyl acetate.

3.3. Spectral Analysis
3.3.1. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-
bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (1)

White crystals. Yield: 68% (0.33 g); 1H NMR (500 MHz, DMSO-d6): δ13.25 (s,
1H, -NH), 11.81 (s, -NH, 1H,), 10.11 (s, 1H, -OH),8.28 (s, 1H, H-3”), 8.10 (s, 1H, H-6”),
7.88 (d, J(3′ ,2′/5′ ,6′) = 8.88 Hz, 2H, H-3′/H-5′), 7.79 (d, J(2′ ,3′/6′ ,5′) = 8.46 Hz, 2H, H-2′/H-6′),
7.43 (t, J(5(4,6)/6(5,7) = 7.92 Hz, 2H, H-5/H-6), 7.27 (d, J(4,5) = 7.68 Hz, 1H, H-4), 7.11 (s, 1H,
thiazole-H), 7.04 (d, J(7,6) = 7.56 Hz, 1H, H-7), 2.34 (s, 2H, S-CH2); 13C-NMR (150 MHz,
DMSO-d6): δ 175.8, 143.5, 139.8, 138.9, 137.2, 136.8, 133.6, 132.0, 127.8, 126.2, 125.9, 123.7,
123.5, 123.2, 122.9, 122.9, 122.0, 120.6, 120.6, 119.0, 115.8, 115.3, 110.6, 38.5.;HREI-MS: m/z
[M+H]+calcd for C24H17BrClN6O3S2614.9664,found 614.9659. More information, please
refer to the Supplementary Materials File.

3.3.2. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-
hydroxyphenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (2)

White crystals. Yield: 64% (0.31 g); 1H NMR (500 MHz, DMSO-d6): δ13.39 (s, 1H,
-NH), 13.27 (s, 1H, -NH), 12.01 (s, 1H, -OH), 10.15 (s, 1H, -OH), 8.91 (s, 1H, H-3”), 8.30
(s, 1H, H-6”),8.16–7.87 (m, 4H, H-4/H-5/H-6/H-7), 7.83–7.72 (m, 2H, H-3′/H-6′), 7.45 (t,
J(4′/3′,5′) = 7.74 Hz, 1H, H-4′), 7.25 (t, J(5′/4′,3′) = 7.74 Hz, 1H, H-5′), 7.08 (s, 1H, thiazole-H), 2.28
(s, 2H, S-CH2); 13C-NMR (150 MHz, DMSO-d6): δ 183.9, 162.5, 158.4, 157.2, 155.3, 147.4, 146.4,
138.3, 137.2, 135.3, 132.4, 132.1, 131.5, 129.2, 127.5, 127.1, 126.4, 125.5, 124.6, 124.1, 121.0, 118.3,
117.0, 32.0.; HREI-MS: m/z [M+H]+calcd for C24H18ClN6O4S2553.0508,found 553.0502.

3.3.3. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)
hydrazinyl)thiazol-4-yl)phenol(3)

White crystals. Yield: 69% (0.35 g); 1H NMR (500 MHz, DMSO-d6): δ12.35 (s, 1H,
-NH), 11.78 (s, 1H, -NH), 9.70 (s, 1H, -OH), 7.96 (dd, J(2′ ,3′/6′ ,5′) =8.1 Hz, J(2′ ,4′/6′ ,4′) =2.0
Hz, 2H, H-2′/H-6′), 7.57–7.49 (m, 3H, H-3′/H-4′/H-5′), 7.43 (d, J(2′ ,3′ ′/6′ ′ ,5′ ′) = 7.6 Hz, 2H,
H-2′ ′/H-6′ ′), 6.94 (s, 1H, thiazole-H), 6.91 (d, J(3′ ′ ,2′ ′/5′ ′ ,6′ ′) = 7.8 Hz, 2H, H-3′ ′/H-5′ ′), 3.56
(s, 2H, -S-CH2); 13C-NMR (125 MHz, DMSO-d6): δ 170.8, 157.6, 154.7, 149.3, 146.2, 138.7,
138.0, 133.7, 130.1, 128.0, 128.0, 127.9, 127.9, 127.3, 127.3, 124.7, 122.5, 122.3, 115.5, 115.5,
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114.5, 114.3, 104.1, 36.6.; HREI-MS: m/z [M+H]+calcd for C24H20N5O1S2 458.1106, found
458.1114.

3.3.4. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)hydrazinyl)-4-(3-
methoxyphenyl)thiazole (4)

Reddish crystals. Yield: 63% (0.30 g); 1H NMR (500 MHz, DMSO-d6): δ13.25 (s, 1H,
-NH), 11.49 (s, 1H, -NH), 7.98 (dd, J(2′ ,3′/6′ ,5′) =8.4 Hz, J(2′ ,4′/6′ ,4′) =2.6 Hz, 2H, H-2′/H-6′),
7.60–7.55 (m, 3H, H-3′/H-4′/H-5′), 7.53–7.48 (m, 1H, H-6′ ′), 7.41 (t, J(5′ ′/4′ ′ ,6′ ′) = 9.6 Hz,
1H, H-5′ ′), 7.32 (dd, J (2′ ′ ,6′ ′) = 2.7 Hz, J (2′ ′ ,4′ ′) = 1.8 Hz, 1H, H-2′ ′), 7.09(d, J(4′ ′ ,5′ ′) = 8.3 Hz,
1H, H-4′ ′), 6.95 (s, 1H, thiazole-H), 3.58 (s, 2H, -S-CH2), 3.84 (s, 3H, -OCH3); 13C-NMR
(125 MHz, DMSO-d6): δ 170.9, 160.3, 154.8, 149.4, 146.3, 138.3, 138.1, 133.2, 133.0, 130.2,
129.4, 128.0, 128.0, 127.4, 127.4, 122.4, 122.2, 119.0, 114.6, 114.4, 113.6, 112.8, 104.2, 55.0, 36.7.;
HREI-MS: m/z [M+H]+calcd for C25H22N5O1S2 472.1263, found 472.1271.

3.3.5. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)hydrazinyl)-4-(p-
tolyl)thiazole (5)

White crystals. Yield: 60% (0.28 g); 1H NMR (500 MHz, DMSO-d6): δ13.40 (s, 1H, -
NH), 12.87 (s, 1H, -NH), 7.95 (dd, J(2′,3′/6′,5′) = 7.0 Hz, J(2′,4′/6′,4′) =2.4 Hz, 2H, H-2′/H-6′),
7.87 (d, J(2′ ′,3′ ′/6′ ′,5′ ′) = 7.0 Hz, 2H, H-2′′/H-6′′), 7.59–7.52 (m, 3H, H-3′/H-4′/H-5′), 7.39 (d,
J(3′ ′,2′ ′/5′ ′,6′ ′) = 6.6 Hz, 2H, H-3′′/H-5′′), 6.73 (s, 1H, thiazole-H), 3.49 (s, 2H, -S-CH2), 2.37 (s,
3H, -CH3); 13C-NMR (125 MHz, DMSO-d6): δ 171.0, 154.9, 149.5, 146.4, 138.4, 138.2, 133.3,
131.0, 130.3, 129.3, 128.8, 128.8, 128.1, 128.1, 127.5, 127.5, 125.0, 125.0, 122.5, 122.3, 114.7, 114.5,
104.3, 36.8, 20.6.; HREI-MS: m/z [M+H]+calcd for C25H22N5S2 456.1315, found 456.1322.

3.3.6. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)hydrazinyl)-4-(3,4-
dichlorophenyl)thiazole (6)

White crystals. Yield: 62% (0.28 g); 1H NMR (500 MHz, DMSO-d6): δ13.39 (s, 1H, -NH),
10.14 (s, 1H, -NH), 7.99 (dd, J(2′,3′/6′,5′) = 8.7 Hz, J(2′,4′/6′,4′) =2.5 Hz, 2H, H-2′/H-6′), 7.97 (d,
J(2′ ′,6′ ′) = 2.6 Hz, 1H, H-2′′), 7.82 (dd, J(6′ ′,5′ ′) = 9.2 Hz, J(6′ ′,2′ ′) = 1.9 Hz, 1H, H-6′′), 7.61 (d,
J(5′ ′,6′ ′) = 7.7 Hz, 1H, H-5′′), 7.58–7.53 (m, 3H, H-3′/H-4′/H-5′), 6.86 (s, 1H, thiazole-H), 3.69 (s,
2H, -S-CH2); 13C-NMR (125 MHz, DMSO-d6): δ 171.2, 155.1, 149.7, 146.6, 138.6, 138.4, 133.5,
132.9, 132.2, 132.0, 130.5, 130.2, 128.5, 128.3, 128.3, 127.7, 127.7, 126.5, 114.9, 122.7, 122.5, 114.7,
104.5, 37.0.; HREI-MS: m/z [M+H]+calcd for C24H18Cl2N5S2 510.0376, found 510.0386.

3.3.7. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-(2-
nitrophenyl)thiazole (7)

Yellow crystals. Yield: 71% (0.35 g); 1H NMR (500 MHz, DMSO-d6): δ13.66 (s, 1H, -NH),
10.12 (s, 1H, -NH), 8.10 (dd, J(3′ ′,4′ ′) = 8.0 Hz, J(3′ ′,5′ ′) = 2.8 Hz, 1H, H-3′′),8.07 (dd, J(6′ ′,5′ ′) = 7.8 Hz,
J(6′ ′,4′ ′) = 1.6 Hz, 1H, H-6′′), 7.98–7.93 (m, 1H, H-5′′), 7.79 (t, J(4′ ′/5′ ′,3′ ′) = 9.0 Hz, 1H, H-4′′), 7.73
(d, J(2′,3′/6′,5′) = 7.8 Hz, 2H, H-2′/H-6′), 7.30 (d, J(3′,2′/5′,6′) = 8.1 Hz, 2H, H-3′/H-5′), 6.89 (s,
1H, thiazole-H), 3.70 (s, 2H, -S-CH2), 2.44 (s, 3H, -CH3); 13C-NMR (125 MHz, DMSO-d6): δ
171.3, 155.2, 149.8, 148.4, 146.7, 140.3, 138.7, 138.5, 134.9, 132.2, 130.6, 129.2, 128.7, 128.7, 126.6,
126.6, 124.8, 124.0, 122.8, 122.6, 115.0, 114.8, 104.6, 37.1, 20.9.; HREI-MS: m/z [M+H]+calcd for
C25H21N6O2S2 501.1163, found 501.1172.

3.3.8. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-(3-
nitrophenyl)thiazole (8)

White crystals. Yield: 65% (0.32 g); 1H NMR (500 MHz, DMSO-d6): δ12.42 (s, 1H,
-NH), 11.90 (s, 1H, -NH), 8.63 (dd, J (2′ ′ ,6′ ′) = 2.5 Hz, J (2′ ′ ,4′ ′) = 1.6 Hz, 1H, H-2′ ′), 8.35–8.29
(m, 1H, H-6′ ′), 8.26–8.21 (m, 1H, H-4′ ′), 7.87 (t, J(5′ ′/4′ ′ ,6′ ′) = 8.8 Hz, 1H, H-5′ ′), 7.75 (d,
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J(2′ ,3′/6′ ,5′) = 7.7 Hz, 2H, H-2′/H-6′), 7.31 (d, J(3′ ,2′/5′ ,6′) = 8.3 Hz, 2H, H-3′/H-5′), 6.87 (s, 1H,
thiazole-H), 3.69 (s, 2H, -S-CH2), 2.42 (s, 3H, -CH3); 13C-NMR (125 MHz, DMSO-d6): δ 171.4,
155.3, 149.9, 148.1, 146.8, 140.4, 138.8, 138.6, 133.6, 133.3, 130.7, 130.3, 128.8, 128.8, 126.7,
126.7, 123.6, 122.9, 122.7, 122.4, 115.1, 114.9, 104.7, 37.2, 21.0.; HREI-MS: m/z [M+H]+calcd
for C25H21N6O2S2 501.1163, found 501.1172.

3.3.9. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3-hydroxy-2-
nitrophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (9)

Yellow crystals. Yield: 73% (0.37 g); 1H NMR (500 MHz, DMSO-d6): δ13.39 (s, 1H,
-NH), 13.30 (s, 1H, -NH), 12.21 (s, 1H, -OH),10.51 (s, 1H, -OH), 8.91 (s, 1H, H-3”), 8.35 (s,
1H, H-6”), 8.30 (d, J(6′/5′) = 9.62 Hz, 1H, H-6′), 8.27–8.03 (m, 1H, H-4′), 7.91–7.85 (m, 1H,
H-5′), 7.83 (d, J(4,5/7,6) = 9.0 Hz, 2H, H-4/H-7), 7.76 (t, J(5(4,6)/6(5,7)) = 8.52 Hz, 2H, H-5/H-6),
7.10 (s, 1H, thiazole-H), 2.34 (s, 2H, S-CH2); 13C-NMR (150 MHz, DMSO-d6): δ 175.2,
162.1, 155.6, 143.1, 135.5, 135.6, 133.7, 131.7, 127.6, 127.3, 126.4, 126.3, 124.4, 123.8, 123.7,
121.0, 120.9, 120.7, 119.0, 118.8, 117.9, 112.4, 112.3, 30.4.; HREI-MS: m/z [M+H]+calcd for
C24H17ClN7O6S2598.0365, found 598.0358.

3.3.10. (E)-5-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-([1,1’-biphenyl]-4-
yl)ethylidene)hydrazinyl)thiazol-4-yl)-2-(dimethylamino)-4-nitrophenol (10)

White crystals. Yield: 60% (0.29 g);1H NMR (500 MHz, DMSO-d6): δ 13.64 (s, 1H,
-NH), 11.54 (s, 1H, -NH), 10.12 (s, 1H, -OH),8.23 (s, 1H, H-3”), 8.18 (s, 1H, H-6”), 8.04
(d, J(3,2/5,6) = 7.26 Hz, 4H, H-4/H-5/H-6/H-7), 7.99–7.92 (m, 4H, H-2′/H-3′/H-5′/H-6′),
7.64–7.59 (m, 5H, Ph-H), 7.03 (s, 1H, thiazole-H), 4.03 (s, 6H, -CH3), 2.51 (s, 2H, S-CH2);
13C-NMR (150 MHz, DMSO-d6): δ 188.5, 158.5, 157.3, 155.2, 148.3, 147.7, 143.0, 140.6, 139.4,
134.1, 133.8, 133.8, 130.0, 129.0, 128.9, 128.9, 127.9, 125.9, 125.9, 123.4, 121.3, 121.3, 120.6,
119.1, 119.1, 118.4, 118.4, 115.9, 115.2, 40.5, 40.5, 31.4.; HREI-MS: m/z [M+H]+calcd for
C32H28N7O3S2622.1683, found 622.1678.

3.3.11. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-
(3,4-dichlorophenyl)thiazole (11)

White crystals. Yield: 70% (0.34 g);1H NMR (500 MHz, DMSO-d6): δ12.53 (s, 1H, -NH),
11.69 (s, 1H, -NH), 7.97 (d, J(2′ ′,6′ ′) = 2.5 Hz, 1H, H-2′′), 7.83 (dd, J(6′ ′,5′ ′) = 9.5 Hz, J(6′ ′,2′ ′) = 1.9 Hz,
1H, H-6′′), 7.79 (d, J(2′,3′/6′,5′) = 8.5 Hz, 2H, H-2′/H-6′), 7.62 (d, J(5′ ′,6′ ′) = 7.8 Hz, 1H, H-5′′), 7.38
(d, J(3′,2′/5′,6′) = 8.6 Hz, 2H, H-3′/H-5′), 6.89 (s, 1H, thiazole-H), 3.58 (s, 2H, -S-CH2), 2.43 (s,
3H, -CH3),; 13C-NMR (125 MHz, DMSO-d6): δ 171.8, 155.7, 150.3, 147.2, 140.8, 139.0, 138.8,
133.5, 132.8, 132.6, 131.1, 130.8, 129.2, 129.2, 128.9, 127.3, 127.1, 127.1, 123.1, 122.9, 115.3, 115.1,
105.1, 37.6, 21.4.; HREI-MS: m/z [M+H]+calcd for C25H20Cl2N5S2 524.0533, found 524.0542.

3.3.12. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(4-methyl-2-
nitrophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (12)

White crystals. Yield: 62% (0.30 g);1H NMR (500 MHz, DMSO-d6): δ 13.62 (s, 1H,
NH), 13.38 (s, 1H, NH), 10.12 (s, 1H, -OH), 8.90 (s, 1H, H-3”), 8.23 (s, 1H, H-6”), 8.16 (s,
1H, H-3′), 8.02 (d, J(5′ ,6′) = 5.58 Hz, 1H, H-5′), 7.87 (d, J(6′ ,5′) = 8.46 Hz, 1H, H-6′), 7.75 (d,
J(3,2/5,6) = 8.4 Hz, 2H, H-4/H-7), 7.61 (t, J(5(4,6)/6(5,7)) = 8.34 Hz, 2H, H-5/H-6), 6.98 (s, 1H,
thiazole-H), 2.50 (s, 2H, S-CH2), 1.91 (s, 3H, -CH3); 13C-NMR (150 MHz, DMSO-d6): δ 183.5,
162.1, 157.4, 155.3, 147.5, 147.2, 146.5, 141.4, 139.8, 137.0, 135.1, 133.8, 131.8, 129.9, 129.0,
126.8, 126.5, 125.4, 125.2, 124.4, 121.0, 118.8, 112.3, 30.5, 20.0.; HREI-MS: m/z [M+H]+ calcd
for C25H19ClN7O5S2 596.0567, found 596.0561.
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3.3.13. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene)
hydrazinyl)-4-(p-tolyl)thiazole (13)

White microcrystals. Yield: 59% (0.27 g);1H NMR (500 MHz, DMSO-d6): δ13.40 (s,
1H, -NH), 10.95 (s, 1H, -NH), 8.15 (dd, J(6′ ,5′) = 6.7 Hz, J(6′ ,4′) = 2.5 Hz, 1H, H-6′), 8.04 (dd,
J(3′ ,4′) = 6.9 Hz, J(3′ ,5′) =1.6 Hz, 1H, H-3′),7.93–7.89 (m, 1H, H-5′), 7.84 (d, J(2′ ′ ,3′ ′/6′ ′ ,5′ ′) = 8.0 Hz,
2H, H-2′ ′/H-6′ ′), 7.66 (t, J(4′/5′ ,3′) = 9.2 Hz, 1H, H-4′), 7.40 (d, J(3′ ′ ,2′ ′/5′ ′ ,6′ ′) = 7.2 Hz, 2H,
H-3′ ′/H-5′ ′), 6.97 (s, 1H, thiazole-H), 3.71 (s, 2H, -S-CH2), 2.34 (s, 3H, -CH3); 13C-NMR
(125 MHz, DMSO-d6): δ 172.0, 155.9, 150.5, 147.4, 139.2, 139.0, 135.7, 134.6, 132.5, 132.2,
132.0, 130.3, 129.8, 129.8, 126.7, 126.0, 126.0, 125.7, 123.3, 123.1, 115.5, 115.3, 105.3, 37.8, 21.6.;
HREI-MS: m/z [M+H]+calcd for C25H21N6O2S2 501.1163, found 501.1172.

3.3.14. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene)
hydrazinyl)-4-(3-methoxyphenyl)thiazole (14)

White crystals. Yield: 58% (0.26 g);1H NMR (500 MHz, DMSO-d6): δ12.61 (s, 1H,
-NH), 12.01 (s, 1H, -NH), 8.17 (dd, J(6′ ,5′) = 6.5 Hz, J(6′ ,4′) = 2.5 Hz, 1H, H-6′), 8.08 (dd,
J(3′ ,4′) = 6.8 Hz, J(3′ ,5′) =1.8 Hz, 1H, H-3′),7.84–7.78 (m, 1H, H-5′), 7.68 (t, J(4′/5′ ,3′) = 8.2 Hz,
1H, H-4′), 7.58–7.53 (m, 1H, H-6′ ′), 7.46 (t, J(5′ ′/4′ ′ ,6′ ′) = 9.8 Hz, 1H, H-5′ ′), 7.35 (dd, J
(2′ ′ ,6′ ′) = 2.0 Hz, J (2′ ′ ,4′ ′) = 2.4 Hz, 1H, H-2′ ′), 7.12(d, J(4′ ′ ,5′ ′) = 8.3 Hz, 1H, H-4′ ′), 7.02 (s,
1H, thiazole-H), 3.86 (s, 3H, -OCH3), 3.80 (s, 2H, -S-CH2); 13C-NMR (125 MHz, DMSO-
d6): δ 171.9, 161.3, 155.8, 150.4, 147.3, 139.1, 138.9, 135.6, 134.5, 134.2, 132.2, 132.0, 130.4,
126.6, 125.6, 123.2, 123.0, 120.0, 115.4, 115.2, 114.5, 113.8, 105.2, 56.0, 37.7.; HREI-MS: m/z
[M+H]+calcd for C25H21N6O3S2 517.1113, found 517.1123.

3.3.15. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene)
hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (15)

White microcrystals. Yield: 63% (0.33 g);1H NMR (500 MHz, DMSO-d6): δ12.61 (s,
1H, -NH), 12.01 (s, 1H, -NH), 8.20 (dd, J(6′ ,5′) = 7.0 Hz, J(6′ ,4′) = 2.3 Hz, 1H, H-6′), 8.13 (dd,
J(3′ ,4′) = 7.4 Hz, J(3′ ,5′) = 2.6 Hz, 1H, H-3′),8.01 (d, J(2′ ′ ,6′ ′) = 1.6 Hz, 1H, H-2′ ′), 7.97–7.92 (m,
1H, H-5′), 7.85 (dd, J(6′ ′ ,5′ ′) = 8.6 Hz, J(6′ ′ ,2′ ′) = 1.7 Hz, 1H, H-6′ ′), 7.69 (t, J(4′/5′ ,3′) = 9.5 Hz,
1H, H-4′), 7.64 (d, J(5′ ′ ,6′ ′) = 7.7 Hz, 1H, H-5′ ′), 7.02 (s, 1H, thiazole-H), 3.80 (s, 2H, -S-CH2);
13C-NMR (125 MHz, DMSO-d6): δ 172.6, 156.5, 151.1, 148.0, 139.8, 139.6, 135.3, 135.1, 134.3,
133.6, 133.4, 132.7, 132.5, 131.6, 129.7, 127.9, 127.5, 126.3, 123.9, 123.7, 116.1, 115.9, 105.9,
38.4.; HREI-MS: m/z [M+H]+calcd for C24H17Cl2N6O2S2 555.0227, found 555.0236.

3.3.16. (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene)
hydrazinyl) thiazol-4-yl)phenol (16)

White microcrystals. Yield: 62% (0.32 g);1H NMR (500 MHz, DMSO-d6): δ12.39 (s,
1H, -NH), 11.88 (s, 1H, -NH), 9.72 (s, 1H, -OH), 8.12 (dd, J(6′ ,5′) = 7.6 Hz, J(6′ ,4′) = 2.6 Hz,
1H, H-6′), 8.05 (dd, J(3′ ,4′) = 7.9 Hz, J(3′ ,5′) = 1.9 Hz, 1H, H-3′),7.79–7.74 (m, 1H, H-5′), 7.65
(t, J(4′/5′ ,3′) = 9.2 Hz, 1H, H-4′), 7.42 (d, J(2′ ′ ,3′ ′/6′ ′ ,5′ ′) = 7.2 Hz, 2H, H-2′ ′/H-6′ ′), 6.93 (d,
J(3′ ′ ,2′ ′/5′ ′ ,6′ ′) = 7.7 Hz, 2H, H-3′ ′/H-5′ ′), 6.75 (s, 1H, thiazole-H), 3.58 (s, 2H, -S-CH2); 13C-
NMR (125 MHz, DMSO-d6): δ 172.1, 158.9, 156.0, 150.6, 147.5, 139.3, 139.1, 134.8, 134.6,
132.2, 132.0, 129.3, 129.3, 126.8, 126.0, 125.8, 123.4, 123.2, 116.8, 116.8, 115.6, 115.4, 105.4,
37.9.; HREI-MS: m/z [M+H]+calcd for C24H19N6O3S2 503.0958, found 503.0965.

3.3.17. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)
hydrazinyl)-4-(2-nitrophenyl)thiazole (17)

White microcrystals. Yield: 64% (0.33 g);1H NMR (500 MHz, DMSO-d6): δ12.62 (s, 1H,
-NH), 12.03 (s, 1H, -NH), 8.13 (dd, J(6′ ′ ,5′ ′) = 8.2 Hz, J(6′ ′ ,4′ ′) = 2.5 Hz, 1H, H-6′ ′), 8.06 (dd,
J(3′ ′ ,4′ ′) = 8.8 Hz, J(3′ ′ ,5′ ′) = 2.2 Hz, 1H, H-3′ ′),7.97–7.93 (m, 1H, H-5′ ′), 7.89 (d, J(2′ ,6′) = 2.3 Hz,
1H, H-2′), 7.85 (dd, J(6′ ,5′) = 8.4 Hz, J(6′ ,2′) =1.8 Hz, 1H, H-6′), 7.81 (t, J(4′ ′/5′ ′ ,3′ ′) = 9.5 Hz,
1H, H-4′ ′), 7.73 (d, J(5′ ,6′) =7.6 Hz, 1H, H-5′), 7.06 (s, 1H, thiazole-H), 3.81 (s, 2H, -S-CH2);
13C-NMR (125 MHz, DMSO-d6): δ 172.5, 156.4, 151.0, 149.2, 147.9, 139.7, 139.5, 136.5, 136.3,
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136.1, 134.3, 133.4, 131.4, 131.1, 130.4, 127.1, 126.0, 125.2, 123.8, 123.6, 116.0, 115.8, 105.8,
38.3.; HREI-MS: m/z [M+H]+calcd for C24H17Cl2N6O2S2 555.0227, found 555.0236.

3.3.18. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)
hydrazinyl)-4-(3-nitrophenyl)thiazole (18)

Reddish microcrystals. Yield: 61% (0.30 g);1H NMR (500 MHz, DMSO-d6): δ12.66
(s, 1H, -NH), 12.09 (s, 1H, -NH), 8.61 (dd, J (2′ ′ ,6′ ′) = 2.0 Hz, J (2′ ′ ,4′ ′) = 2.2 Hz, 1H, H-2′ ′),
8.32–8.27 (m, 1H, H-6′ ′), 8.21–8.14 (m, 1H, H-4′ ′), 7.95 (d, J(2′ ,6′) = 2.5 Hz, 1H, H-2′), 7.89 (t,
J(5′ ′/4′ ′ ,6′ ′) = 9.0 Hz, 1H, H-5′ ′), 7.85 (dd, J(6′ ,5′) = 8.7 Hz, J(6′ ,2′) = 1.4 Hz, 1H, H-6′), 7.76 (d,
J(5′ ,6′) = 7.8 Hz, 1H, H-5′), 7.10 (s, 1H, thiazole-H), 3.83 (s, 2H, -S-CH2); 13C-NMR (125 MHz,
DMSO-d6): δ 172.3, 156.2, 150.8, 149.0, 147.7, 139.5, 139.3, 136.3, 136.1, 134.5, 134.3, 134.1,
132.2, 131.2, 130.9, 126.9, 124.4, 123.6, 123.4, 123.2, 115.8, 115.6, 105.6, 38.1.; HREI-MS: m/z
[M+H]+calcd for C24H17Cl2N6O2S2 555.0227, found 555.0236.

3.3.19. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)
hydrazinyl)-4-(p-tolyl)thiazole (19)

Yellow crystals. Yield: 65% (0.36 g);1H NMR (500 MHz, DMSO-d6): δ12.59 (s, 1H, -NH),
11.97 (s, 1H, -NH), 7.97 (d, J(2′ ,6′) = 2.0 Hz, 1H, H-2′), 7.87 (dd, J(6′ ,5′) = 8.5 Hz, J(6′ ,2′) = 1.5 Hz,
1H, H-6′), 7.83 (d, J(2′ ′ ,3′ ′/6′ ′ ,5′ ′) = 7.8 Hz, 2H, H-2′ ′/H-6′ ′), 7.70 (d, J(5′ ,6′) = 0.9 Hz, 1H, H-5′),
7.42 (d, J(3′ ′ ,2′ ′/5′ ′ ,6′ ′) = 8.4 Hz, 2H, H-3′ ′/H-5′ ′), 6.99 (s, 1H, thiazole-H), 3.67 (s, 2H, -S-CH2),
2.41 (s, 3H, -CH3); 13C-NMR (125 MHz, DMSO-d6): δ 171.8, 155.7, 150.3, 147.2, 139.0, 138.8,
135.8, 135.6, 133.6, 131.9, 130.7, 130.4, 130.2, 129.7, 129.7, 126.4, 125.9, 125.9, 123.1, 122.9,
115.3, 115.1, 105.1, 37.6, 21.6.; HREI-MS: m/z [M+H]+calcd for C25H20Cl2N5S2 524.0533,
found 524.0542.

3.3.20. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)
hydrazinyl)-4-(3-methoxyphenyl)thiazole (20)

Reddish microcrystals. Yield: 61% (0.31 g);1H NMR (500 MHz, DMSO-d6): δ12.62 (s,
1H, -NH), 11.99 (s, 1H, -NH), 7.98 (d, J(2′ ,6′) = 1.7 Hz, 1H, H-2′), 7.84 (dd, J(6′ ,5′) = 8.6 Hz,
J(6′ ,2′) = 2.3 Hz, 1H, H-6′), 7.69 (d, J(5′ ,6′) = 7.5 Hz, 1H, H-5′), 7.54–7.47 (m, 1H, H-6′ ′), 7.40 (t,
J(5′ ′/4′ ′ ,6′ ′) = 9.0 Hz, 1H, H-5′ ′), 7.29 (dd, J (2′ ′ ,6′ ′) = 2.9 Hz, J (2′ ′ ,4′ ′) = 1.4 Hz, 1H, H-2′ ′), 7.06(d,
J(4′ ′ ,5′ ′) = 8.5 Hz, 1H, H-4′ ′), 7.02 (s, 1H, thiazole-H), 3.83 (s, 3H, -OCH3), 3.78 (s, 2H, -S-CH2);
13C-NMR (125 MHz, DMSO-d6): δ 172.4, 161.8, 156.3, 150.9, 147.8, 139.6, 139.4, 136.4, 135.2,
134.7, 134.2, 131.3, 131.0, 130.9, 127.0, 123.7, 123.5, 120.5, 115.9, 115.7, 115.0, 114.3, 105.7, 56.5,
38.2.; HREI-MS: m/z [M+H]+calcd for C25H20Cl2N5OS2 540.0483, found 540.0491.

3.3.21. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)
hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (21)

Reddish microcrystals. Yield: 63% (0.34 g);1H NMR (500 MHz, DMSO-d6): δ12.65 (s,
1H, -NH), 12.11 (s, 1H, -NH), 8.03 (d, J(2′ ′ ,6′ ′) = 2.8 Hz, 1H, H-2′ ′), 7.94 (d, J(2′ ,6′) = 2.4 Hz,
1H, H-2′), 7.88 (dd, J(6′ ′ ,5′ ′) = 9.0 Hz, J(6′ ′ ,2′ ′) =1.5 Hz, 1H, H-6′ ′), 7.84 (dd, J(6′ ,5′) = 8.8 Hz,
J(6′ ,2′) =2.6 Hz, 1H, H-6′), 7.74 (d, J(5′ ,6′) =7.0 Hz, 1H, H-5′), 7.59 (d, J(5′ ′ ,6′ ′) =7.3 Hz, 1H,
H-5′ ′), 7.08 (s, 1H, thiazole-H), 3.86 (s, 2H, -S-CH2); 13C-NMR (125 MHz, DMSO-d6): δ
172.2, 156.1, 150.7, 147.6, 139.4, 139.2, 136.2, 136.0, 134.0, 133.9, 133.2, 133.0, 131.3, 131.1,
130.8, 129.3, 127.5, 126.8, 123.5, 123.3, 115.7, 115.5, 105.5, 38.0.; HREI-MS: m/z [M+H]+calcd
for C24H16Cl4N5S2 579.9568, found 579.9577.

3.3.22. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)
hydrazinyl)-4-(2-methoxyphenyl)thiazole (22)

White microcrystals. Yield: 68% (0.37 g);1H NMR (500 MHz, DMSO-d6): δ12.49 (s,
1H, -NH), 11.69 (s, 1H, -NH), 8.43 (dd, J(6′ ′ ,5′ ′) = 7.6 Hz, J(6′ ′ ,4′ ′) = 1.9 Hz, 1H, H-6′ ′), 7.91
(d, J(2′ ,6′) = 2.9 Hz, 1H, H-2′), 7.82 (dd, J(6′ ,5′) = 7.5 Hz, J(6′ ,2′) =2.1 Hz, 1H, H-6′), 7.78 (d,
J(5′ ,6′) = 7.8 Hz, 1H, H-5′), 7.52 (t, J(4′ ′/5′ ′ ,3′ ′) = 9.4 Hz, 1H, H-4′ ′), 7.43–7.37 (m, 1H, H-5′ ′), 7.18
(dd, J(3′ ′ ,4′ ′) = 8.5 Hz, J(3′ ′ ,5′ ′) = 1.5 Hz, 1H, H-3′ ′),7.03 (s, 1H, thiazole-H), 3.82 (s, 3H, -CH3),
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3.59 (s, 2H, -S-CH2); 13C-NMR (125 MHz, DMSO-d6): δ 171.9, 157.5, 155.8, 150.4, 147.3,
139.1, 138.9, 135.9, 135.7, 133.7, 131.3, 130.8, 130.5, 129.9, 126.5, 123.2, 123.0, 121.7, 119.1,
115.4, 115.2, 111.3, 105.2, 56.3, 37.7.; HREI-MS: m/z [M+H]+calcd for C25H20Cl2N5OS2
540.0483, found 540.0491.

3.3.23. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)
hydrazinyl)-4-(4-bromophenyl)thiazole (23)

Reddish microcrystals. Yield: 60% (0.29 g);1H NMR (500 MHz, DMSO-d6): δ12.44
(s, 1H, -NH), 11.73 (s, 1H, -NH), 7.93 (d, J(2′,6′) = 2.8 Hz, 1H, H-2′), 7.87 (dd, J(6′,5′) = 8.5 Hz,
J(6′,2′) = 1.7 Hz, 1H, H-6′), 7.79 (d, J(2′ ′,3′ ′/6′ ′,5′ ′) = 7.4 Hz, 2H, H-2′′/H-6′′), 7.72 (d, J(5′,6′) = 7.7 Hz,
1H, H-5′), 7.58 (d, J(3′ ′,2′ ′/5′ ′,6′ ′) = 6.9 Hz, 2H, H-3′′/H-5′′), 6.88 (s, 1H, thiazole-H), 3.48 (s, 2H,
-S-CH2); 13C-NMR (125 MHz, DMSO-d6): δ 171.5, 155.4, 150.0, 146.9, 138.7, 138.5, 135.5, 135.3,
133.3, 131.9, 131.9, 131.7, 130.4, 130.1, 128.1, 128.1, 126.1, 122.9, 122.7, 122.6, 115.0, 114.8, 104.2,
37.3.; HREI-MS: m/z [M+H]+calcd for C24H17BrCl2N5S2 587.9484, found 587.9491.

3.3.24. (E)-2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)hydrazinyl)-4-
(p-tolyl)thiazole (24)

Yellow crystals. Yield: 73% (0.37 g); 1H NMR (500 MHz, DMSO-d6): δ12.45 (s, 1H, -NH),
11.78 (s, 1H, -NH), 7.86 (d, J(2′ ′,3′ ′/6′ ′,5′ ′) = 7.5 Hz, 2H, H-2′′/H-6′′), 7.72 (d, J(2′,3′/6′,5′) = 6.8 Hz,
2H, H-2′/H-6′), 7.37 (d, J(3′ ′,2′ ′/5′ ′,6′ ′) = 6.8 Hz, 2H, H-3′′/H-5′′), 7.34 (d, J(3′,2′/5′,6′) = 6.9 Hz, 2H,
H-3′/H-5′), 6.77 (s, 1H, thiazole-H), 3.56 (s, 2H, -S-CH2), 2.46 (s, 3H, -CH3), 2.38 (s, 3H, -CH3);
13C-NMR (125 MHz, DMSO-d6): δ 171.1, 155.9, 149.5, 146.5, 140.2, 138.5, 138.3, 131.1, 130.4,
129.3, 128.8, 128.8, 128.5, 128.5, 126.4, 126.4, 125.1, 125.1, 122.6, 122.4, 114.8, 114.6, 104.4, 36.9,
20.5, 20.6.; HREI-MS: m/z [M+H]+calcd for C26H24N5S2 470.1469, found 470.1478.

3.4. Molecular Docking Protocol

The MOE software programme was used in molecular docking to determine how
synthesized analogues interact with both targeted enzyme (AChE & BuChE) to triangulate
the outcomes from in vitro and in silico analysis. Using the PDB codes 1ACL for AChE
and 1P0P for BuChE, the RCSB protein databank’s crystal structures for both targets were
retrieved. The crystallographic structures and all synthesized analogues were protonated
using the default MOE-Dock module parameters, resulting in analogue structures and
optimized enzyme. After this, a docking study was conducted using the optimized enzyme
and analogues structures. Our earlier investigations contain all of the detailed information
about the docking process [47–49].

3.5. Acetylcholinesterase Activity Assay Protocol

The inhibition of AChE and BChE was determined using a method described ear-
lier [50,51]. Briefly, the stock solutions (1 mg/mL) of test analogues were prepared using
DMSO. The working solutions (1–100 µg/mL) were prepared using serial dilutions (a serial
dilution means a series of diluted solutions, e.g., 0.1 mg/mL, 0.2 mg/mL and so on; the
solutions contained 5% DMSO and 95% water). The various concentrations of test com-
pounds (10 µL) were pre-incubated with sodium phosphate buffer (0.1 M; pH 8.0; 150 µL)
and AChE (0.1 U/mL; 20 µL) for 15 min at 25 ◦C. The reaction was initiated via the addition
of DTNB (1 mM; 10 µL) and AChEI (1 mM; 10 µL). The mixture of reaction was mixed
using a cyclomixer and incubated for 10 min at 25 ◦C. The absorbance was measured using
a microplate reader at a 410 nm wavelength against the blank reading containing 10 µL
DMSO instead of the test compound (the solution contained 5% DMSO and 95% water).
Utilizing the formula given in Equation (1), the percentage of inhibition was computed,
and the IC50 was determined under the positive control of Donepezil (0.01–100 g/mL).

% Inhibition = (Absorbance of control—Absorbance of compound)/Absorbance of
control × 100

IC50 is the concentration of a drug or inhibitor required to inhibit 50% of an enzyme’s
activity which was calculated by constructing a non-linear regression graph between
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the percentages of inhibition vs. concentration, using Graph Pad prism software (ver-
sion 5.3)(accessed on 5 August 2022).

4. Conclusions

All of the newly synthesized derivatives of benzimidazole-based thiazole (1–24) were
evaluated for inhibitory potentials (in vitro) against AChE and BuChE enzymes, respec-
tively. Moreover, all derivatives (except derivative 10 due to its inactivity) displayed
moderate to good inhibitory potentials in the range of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for
AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) under the positive control of
Donepezil (IC50 = 2.16 ± 0.12 µM (for AChE) and 4.5 ± 0.11 µM (for BuChE)). Among the
synthesized series, the analogue 21 (IC50 = 0.10 0.05 µM (for AChE) and 0.20 0.05 µM (for
BuChE)) was identified as the most effective inhibitor of AChE and BuChE, even more
potent than the standard, Donepezil.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27186087/s1, Figure-S1:Protein Ligand interaction (PLI)
profile of compounds 24 against acetylcholinesterase (AChE); Figure-S2:Protein Ligand interaction
(PLI) profile of compounds 24 against butyrylcholinesterase (BuChE); Figure-S3:Protein Ligand inter-
action (PLI) profile of compounds 7 against acetylcholinesterase (AChE); Figure-S4:Protein Ligand
interaction (PLI) profile of compounds 7 against butyrylcholinesterase (BuChE); Figure-S5: 1H-NMR
of (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2bromophenyl)ethylidene)hydrazinyl)thiazol-4-
yl)-2-chloro-5-nitrophenol (1); Figure-S6: 13C-NMR of (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-
1-(2bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (1); Figure-S7: 1H-NMR
of (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2hydroxyphenyl)ethylidene)hydrazinyl)thiazol-
4-yl)-2-chloro-5-nitrophenol (2); Figur-S8: 1H-NMR of (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-
1-(3-hydroxy-2nitrophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (9);
Figur-S9: 13C-NMR of (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3-hydroxy-2nitrophenyl)
ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (9); Figur-S10: 1H-NMR (E)-5-(2-(2-(2-
((1H-benzo[d]imidazol-2-yl)thio)-1-([1,1’-biphenyl]-4yl)ethylidene)hydrazinyl)thiazol-4-yl)-2-(dime
thylamino)-4-nitrophenol (10); Figure-S11: 13C-NMR (E)-5-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-
1-([1,1’-biphenyl]-4yl)ethylidene)hydrazinyl)thiazol-4-yl)-2-(dimethylamino)-4-nitrophenol (10);
Figur-S12: 1H-NMR of (E)-4-(2-(2-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(4-methyl-2nitrophenyl)
ethylidene)hydrazinyl)thiazol-4-yl)-2-chloro-5-nitrophenol (12); Figure-S13: 13C-NMR of (E)-4-(2-(2-
(2-((1H-benzo[d]imidazol-2-yl)thio)-1-(4-methyl-2nitrophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2-
chloro-5-nitrophenol (12).
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