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Abstract
Growing evidence supports that the tumor microenvironment plays a key role in the development and progression of tumors. But
immune microenvironment of hepatocellular carcinoma (HCC) has not yet been fully explored. In the present investigation, the clinical
value and prognostic significance of immune-related genes in HCC were investigated.
The immune and stromal scores of HCC were calculated through the application of Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression data Algorithm based on the Cancer Genome Atlas database. Differentially expressed
genes were identified using the “edgeR” package of the R software. Functional annotation and pathway enrichment were performed
using “ggplots2” and “clusterProfiler” packages in R software. Protein-protein interaction network was constructed using STRING,
and the hub genes were identified through the Cytoscape. Survival analysis was performed using Kaplan-Meier methods. Tumor
Immune Estimation Resource algorithm was used to view the immune landscape of the microenvironment in HCC.
Firstly, the immune and stromal scores of HCC were calculated and we found that the immune and stromal scores of HCC were

closely related to the patients’ prognosis. Then the differentially expressed genes were identified respectively stratified by the median
value of the immune and stromal scores, and the immune-related genes that related to the prognosis in HCC patients were further
identified. Functional enrichment analysis and protein-protein interaction networks further showed that these genes mainly
participated in immune-related biological process. In addition, dendritic cells were found to be the most abundant in the
microenvironment of HCC through Tumor Immune Estimation Resource algorithm and were significantly associated with the
patients’ prognosis. To robust the results, the immune-related genes were validated in an independent dataset from the Gene
Expression Omnibus database.
We arrived at a more comprehensive understanding of the microenvironment of HCC and extracted 7 immune-related genes that

were significantly associated with the recurrence survival of HCC.

Abbreviations: BP = biological process, CC = cellular component, DCs = dendritic cells, DEGs = differentially expressed genes,
ECM = extracellular matrix, ESTIMATE = Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data,
FCN3 = ficolin-3, GEO = Gene Expression Omnibus, GO = Gene Ontology, HCC = hepatocellular carcinoma, KEGG = Kyoto
Encyclopedia of Genes and Genomes, PPI = protein-protein interaction, RFS = recurrence-free survival, TCGA = the Cancer
Genome Atlas, TIMER = Tumor Immune Estimation Resource.
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1. Introduction
Hepatocellular carcinoma (HCC) is the fourth leading cause of
cancer-related deaths and consistently ranks among the most
aggressive cancers worldwide.[1] Approximately 80% of HCC
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cases were reported in Asian countries per year, while China
alone accounted for 55% of HCC cases in the world.[2] Although
successful partial hepatectomy was applied to improve the
survival of patients with HCC recent years, the 5-year survival
are involved here.
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rate of patients with HCC remains poor due to tumor
invasiveness, frequent intra-hepatic spread, and extra-hepatic
metastasis.[3,4] These observations demonstrate that liver cancer
is a major healthcare problem worldwide, which highlights the
critical need for developing novel treatment options for this
deadly disease.
The tumor microenvironment, largely constituted by inflam-

matory cells, is an indispensable participant in the development
of tumor, facilitating proliferation, survival, and migration of
tumors.[5] Since human HCC is driven by chronic liver
inflammation caused by activation of many types of inflamma-
tory cells due to chronic hepatitis, liver cirrhosis, and fatty liver
disease, HCCs can be considered the best example for the
inflammation-induced cancers.[6] In the last 10years, because of
the pronounced phenotypic and obvious molecular heterogene-
ity, as well as the high toxicity of the active compounds under
clinical evaluation, the development of drugs for patients with
advanced liver cancer was greatly restricted.[7] Although,
sorafenib, lenvatinib, regorafenib, and cabozantinib have been
successfully applied to prolong the survival of HCC patients by a
few months, these drugs are costly and are accompanied with
significant side effects. Most HCCs evolve in the background of a
chronic inflammatory liver damage, so that restoration of the
chronically altered hepatic microenvironment becomes particu-
larly important, new approaches considering the cellular and
molecular changes/composition involved in oncogenic inflam-
mation are urgently needed for the treatment of HCC.
The tumor microenvironment consists of multiple of immune

cells, endothelial cells, mesenchymal cells, along with inflamma-
tory mediators and extracellular matrix (ECM) molecules.[8,9] In
the tumor microenvironment, immune and stromal cells are the 2
most important non-tumor components. Many algorithms have
been developed to predict tumor purity in various cancers based
on the specific gene expression signature from the Cancer
Genome Atlas (TCGA) database.[10,11] For instance, Estimation
of Stromal and Immune cells in Malignant Tumor tissues using
Expression data (ESTIMATE) have been widely applied to
analyze the tumormicroenvironmental in various tumors, such as
glioblastoma,[12] cutaneous melanoma,[13] and colon cancer.[14]

In this algorithm, through the analysis of specific gene expression
signature of immune and stromal cells, immune and stromal
scores were calculated to predict the infiltration of non-tumor
cells. However, the immune and/or stromal scores of HCC has
not been investigated in detail.
In the present study, based on TCGA database, the immune

and stromal scores of HCC were calculated through the
application of ESTIMATE algorithm. Importantly, we extracted
a list of immune-related genes which were closely associated with
outcome of HCC.
2. Material and methods

2.1. Gene expression datasets

Level 3 gene expression profile (level 3 data) of melanoma
patients were downloaded from the TCGA data portal (https://
portal.gdc.cancer.gov/). Clinical characteristics of HCC patients
were also downloaded fromTCGA data portal, including gender,
age, histological grade, T stage, clinical stage, survival time, and
survival status. ESTIMATE algorithm was applied to the gene
expression matrix to calculate the immune and stromal scores of
HCC tissues.[15] For validation, GSE10141 onmRNA expression
2

of the HCC patients with complete clinical information were
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE10141), which consists of 85 tumor samples. And the gene
expression data were determined using the Illumina HumanHT-
12 V4.0 microarray platforms.

2.2. Differential analysis of expressed genes

The differentially expressed genes (DEGs) between high/low
immune-score groups and high/low stromal-score groups were
identified through the package of “edgeR” in R language.[16]

jlog2FCj>2 and adj. P< .05 were set as the cutoffs to identify
significantly DEGs. Heatmaps were generated using the pheat-
map package in R software.

2.3. Kaplan-Meier survival analysis

A univariate Cox model was used to investigate the relationship
between patients’ recurrence-free survival (RFS) and immune-
related genes. Survival analysis was performed using Kaplan-
Meier methods. Two-sided log-rank tests were employed to
determine the survival differences between high/low immune-
score groups and high/low stromal-score groups using the
“survival” package in R.

2.4. Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were applied to explore the potential
function of immune-related genes using “ggplots2” and
“clusterProfiler” packages in R software. P< .05 and enrichment
>2 were used as the cutoff values.

2.5. Hub gene identification

In addition, all immune-related genes were uploaded to the
STRING database (http://string-db.org/) to construct the protein-
protein interaction network (PPI),[17] which was reconstructed
and further analyzed via Cytoscape v3.5.1 software.[18] Individ-
ual networks with more than 20 nodes were included for further
analysis. Significant modules in the PPI network were screened
using Molecular Complex Detection plug-in (degree cutoff = 2,
max. depth = 100, k-core = 2, and node score cutoff = 0.2).

2.6. TME analysis

Tumor Immune Estimation Resource (TIMER) algorithm was
further applied to measure the relationship between the
expression of the recurrence-related genes and the abundance
of 6 types of infiltrating immune cells (B cells, CD4+ T cells, CD8
+ T cells, neutrophils, macrophages, and dendritic cells
[DCs]).[19] In order to investigate the possible associations
between distinct patterns of immune infiltration and prognosis of
HCC patients, we divided those patients into k clusters using the
k-means algorithm, and survival analysis was applied to explore
the associations between clusters and RFS.

2.7. Statistical analysis

R was used for data collation and analysis. Data were expressed
as mean ± SD. Comparisons among different groups were
performed by one-way ANOVA using GraphPad Prism 6.
P value< .05 was considered statistically significant.
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3. Results

3.1. Immune scores and stromal scores are significantly
associated with clinical features of HCC

In our study, 269 HCC patients with complete gene expression
data and clinical information in TCGA database were included in
our analysis. Among them, there are 81 females and 188 males.
According to the ESTIMATE algorithm, immune scores were
distributed between –866.31 and 3146.06, and stromal scores
ranged from –1625.38 to 1171.12, respectively. As Figure 1A
shows, the distribution of immune scores did not vary across
different clinical stage of HCC, and so did the stromal scores,
as is shown in Figure 1B (P= .191, P= .145). Figure 1C showed
that the immune scores were not significantly associated with
the histological grade of HCC patients (P= .916). While in
Figure 1D, the distribution of stromal scores differed in HCC
with different levels of histological grade (P= .012). The
correlations of other clinical information with immune or
stromal scores were displayed in Figure S1, Supplemental Digital
Content, http://links.lww.com/MD/G410 in detail.
To explore the effects of immune and stromal scores on

patients’ survival, we divided those patients into the high/low
group based on their median values, respectively. As is shown in
Figure 1E, the RFS time of patients with lower immune scores was
longer than those with higher immune scores. Consistently, we
found that stromal scores were significantly positively associated
with RFS, patients with high stromal scores had poorer RFS than
those with low scores (Fig. 1E). These data suggested that
immune and stromal cells in the tumor microenvironment are
positive factors for the patients’ prognosis.
3.2. Comparison of gene expression profile with immune
and stromal scores in HCC

In order to find the prognostic related genes in the tumor
microenvironment of HCC, we firstly analyzed the DEGs
between high/low immune-score groups and high/low stromal-
score groups. In the high-immune score group, 1338 genes were
upregulated and 84 genes were downregulated (Fig. 2A).
Similarly, in the high-stromal score group, there were 1041
upregulated genes and 81 downregulated genes (Fig. 2B). In
addition, Venn diagrams (Fig. 2C, D) showed that 802 genes
were commonly upregulated in both high-stromal and high-
immune score groups, and 28 genes were commonly down-
regulated.
Moreover, to further explore the potential function of these

DEGs, functional enrichment analysis was applied to the
intersection genes (802 upregulated genes and 28 downregulated
genes). Top GO terms identified included regulation of leukocyte
activation, T cell activation, regulation of lymphocyte (biological
process [BP]), ECM, side of membrane, external side of plasma
membrane (cellular component [CC]), ECM structural constitu-
ent, glycosaminoglycan binding, cytokine receptor activity
(molecular function) (Fig. 2E). The result of KEGG analysis
showed that these gene were enriched in hematopoietic cell
lineage, cytokine-cytokine receptor interaction, and viral protein
interaction with cytokine receptor (Fig. 2F). Based on the above
results, we found that these genes were positively involved in
tumor microenvironment, and were identified as immune related
genes.
3

3.3. Correlation between the expression of immune-
related genes and the recurrence-free survival

A univariate Cox model was applied to explore the potential
relationship between patients’ RFS and immune-related genes.
Among the 830 intersection genes, a total of 169 genes were
shown to be significantly correlated with the RFS of HCC
patients. We just displayed 7 potential genes in Figure 3, which
were also confirmed by another independent dataset from GEO
database.

3.4. Protein-protein interactions among immune-related
genes

By using the STRING database, the PPI network of 830
intersection genes (802 upregulated genes and 28 downregulated
genes) was established and consisted of 435 nodes and 123,682
edges. We arranged these genes in the order of degree. A gene
with a higher degree is often considered more important in the
network (Figure S2, Supplemental Digital Content, http://links.
lww.com/MD/G411). With the tool of Cytoscape, we performed
a series of deeper analyses on this gene network. Finally, the 3
most significant modules, which contained as least 20 nodes were
extracted from PPI network byMolecular Complex Detection for
further study. In module A (Fig. 4A), which contained 44 nodes
and 1892 edges, PTGER3, CLC19, C5AR1, CCR2, and GPR18
were remarkable for having most connections with other
members of the modules (Fig. 4A). In module B with 37 nodes
and 1332 edges, GPR84, CD177, CLEC5A, CYBB, and LAIR1
had higher connectivity degree values (Fig. 4B). Module C
consisted of 29 nodes and 812 edges (Fig. 4C) was occupied with
several immune response critical genes in the center, including
COL3A1, COL1A2, COL16A1, COL14A1, COL10A1, and so
on.

3.5. Functional enrichment analysis of immune-related
genes

The prognostic genes we got from the TCGA database were
further analyzed using GO and KEGG methods and the results
were shown in Figure 5. With respect to CC, these genes were
significantly enriched in T cell activation, regulation of T cell
activation, leukocyte cell-cell adhesion (Fig. 5A); For BP,
enrichments were focused on ECM, collagen trimer, external
side of plasma membrane (Fig. 5B). Additionally, molecular
function enrichment indicated that these genes were involved in
some BPs such as ECM structural constituent, cytokine receptor
activity, integrin binding (Fig. 5C). The results of KEGG
pathways suggested that cytokine-cytokine receptor interaction,
hematopoietic cell lineage, Th17 cell differentiation may be
activated in the tumor microenvironment (Fig. 5D). The above
analyses of these genes indicated that immune response and
inflammation related pathways play an important role in HCC.

3.6. Validation in the GEO database

To verify the prognostic genes, we downloaded another
independent HCC dataset fromGEO dataset. The results showed
that only 7 genes out of a total of 169 genes were validated to
have association with the recurrence survival of HCC patients.
Patients with higher expression of ACKR1, CD4, CD6, FCN3,
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Figure 1. Immune and stromal scores were associated with clinical features and prognosis of HCC. (A,B) The relationship between immune/stromal scores and
tumor stage. (C,D) The relationship between immune/stromal scores and histological grade. (E,F) Kaplan-Meier survival curve of recurrence-free survival (RFS)
between high-immune/stromal scores group and low-immune/stromal scores group in HCC. HCC = hepatocellular carcinoma.
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RYR1, and SUSD5 had significantly longer RFS time except for
the gene of PI16 (Fig. 6).

3.7. Correlation between abundance of immune infiltrates
and ACKR1, CD4, CD6, FCN3, PI16, RYR1, and SUSD5

Tumor-infiltrating lymphocytes have been shown to possess an
independent prognostic utility for cancers,[20,21] so we investi-
4

gated whether the expression of ACKR1, CD4, CD6, FCN3,
PI16, RYR1, and SUSD5 were correlated with immune
infiltration levels in HCC. The results showed that the expression
of ACKR1, CD4, CD6, FCN3, PI16, RYR1, and SUSD5 had
significant correlations with tumor purity. In addition, CD4,
CD6, RYR1, and SUSD5 shared the same immune cell profile,
showing a clear association with B cell, CD8+ T cells, CD4+ T



Figure 2. Comparison of gene expression profile with immune and stromal scores in HCC. (A,B) Heatmap of the differentially expressed genes (DEGs) based on
immune and stromal scores in HCC. (C,D) A Venn diagram was utilized to screen commonly upregulated (C) or downregulated (D) DEGs based on immune and
stromal scores. (E,F) GO and KEGG analysis of commonly upregulated and downregulated DEGs. GO=Gene Ontology, HCC = hepatocellular carcinoma,
KEGG=Kyoto Encyclopedia of Genes and Genomes.
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Figure 3. Kaplan-Meier analysis showed the correlation between expression of individual DEGs and RFS in HCC patients. Seven genes that had further validated in
GEO dataset were shown. P< .05 in Log-rank test. DEGs = differentially expressed genes, GEO = Gene Expression Omnibus, HCC = hepatocellular carcinoma,
RFS = recurrence-free survival.
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cell, neutrophils, DCs, macrophages populations. However, little
or no correlation was found between analyzed immune cell
populations and both DARC, FCN3, and PI16 (Fig. 7).

3.8. Immune infiltrates analysis in HCC

In addition, the abundances of 6 immune infiltrates (B cells, CD4
+ T cells, CD8+ T cells, neutrophils, macrophages, and DCs) in
HCC were estimated through TIMER database. The result
showed that DCs was most abundant in the microenvironment of
HCC and CD4+ T cell was the second most abundant (Fig. 8B).
However, as is known to all, the abundance of tumor-infiltrating
immune cells was different for every patient.[22] So, it is necessary
for us to discern patterns of immune infiltration through the
unsupervised clustering with the k-means algorithm based on the
immune-cell proportions of all samples. Eight was set as the
optimal number of clusters (k-means = 8, Fig. 8A). The cell
proportion with 6 immune cell types for each cluster are shown in
Figure 8D. Furthermore, survival analysis was applied for each
Figure 4. PPIs among immune-related genes. (A–C) Top 3 modules of PPI networ
of 37 nodes and 1332 edges, and (C) Cluster 3 consisted of 29 nodes and 182

6

cluster and the result was shown in Figure 8C. Although it is not
statistically significant, Kaplan-Meier survival curves showed
that the cluster 8 which is defined by a high level of DCs and CD4
+ T cell was associated with a better prognosis than other clusters.
And other clusters such as cluster 1, cluster 2 which were defined
by less DCs and more other immune cells were associated with
poor prognosis. The findings above showed DCs played a crucial
role in progress of HCC.

4. Discussion

Liver cancer is one of the most frequent and deadly cancers in the
world with more than 800,000 new cases and 780,000 deaths in
2018.[23] Tumor heterogeneity is the major factor contributing to
the refractory nature of HCC. Although many treatments have
been developed in the past few decades, the prognosis of
advanced liver cancer remains poor. Tumor heterogeneity
consists of both tumor cells and heterotypic components,
including immune/inflammatory cells, vascular structures, mes-
ks. (A) Cluster 1 consisted of 44 nodes and 1892 edges. (B) Cluster 2 consisted
edges. PPI = protein-protein interaction.



Figure 5. Functional enrichment analysis of immune-related genes. (A–C) GO analysis of the genes in these top 3modules. (D) KEGG analysis of the genes in these
top 3 modules. GO = Gene Ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes.

Figure 6. Validation of correlation of DEGs extracted from TCGA database with RFS in GEO dataset. (A–G) Patients with high expression of ACKR1, CD4, CD6,
FCN3, PI16, RYR1, and SUSD5 had significantly longer RFS time than patients with low expression of them. DEGs = differentially expressed genes, GEO = Gene
Expression Omnibus, RFS = recurrence-free survival, TCGA = the Cancer Genome Atlas.

Li et al. Medicine (2021) 100:39 www.md-journal.com
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Figure 7. Correlation between abundance of immune infiltrates and ACKR1 (A), CD4 (B), CD6 (C), FCN3 (D), PI16 (E), RYR1 (F), and SUSD5 (G).
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enchymal cells, and ECM.[24] In recent years, many researches
have focused on the microenvironment of tumor regulating the
tumor progression and metastasis.[25–27] As is known to all, liver
cancer is a kind of cancer which is mostly induced by
inflammation, and the immune cells play an important role in
liver cancer initiation and development.[28] Therefore, the goal of
our study is to understand themicroenvironment and its potential
mechanism of HCC.
8

In our study, ESTIMATE algorithm was applied to calculate
the tumor purity of HCC. The results showed that the stromal
score was significantly associated with pathological grade of
HCC, indicating a significant function of stromal cells in the
malignant progression of HCC patients. Previous studies have
that the immune/inflammatory cells and stromal cells play a
crucial role in tumor progress, and influences therapeutic
response and clinical outcome.[29] Therefore, we analyzed the



Figure 8. The immune landscape of the tumor microenvironment in HCC. (A) Samples clustering and analysis optimal number of clusters. (B) The immune
infiltration cells in the HCC. (C) Survival analysis of HCC patients in different clusters. (D) Unsupervised clustering of all HCC patients based on immune-cell
proportions. HCC = hepatocellular carcinoma.
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relationship between immune/stroma score and the clinical
features of HCC patients. The results showed that the stromal
score was associated with histological grade, and patients with
high scores (both immune score and stroma score) had a better
prognosis than patients with low scores. It indicated that
immune/stroma score would have strong potential to be
translated into clinical practice, as the current high-throughput
gene expression measurement technology has been well devel-
oped and been applied in clinic widely recent years.
Next, we analyzed the DEGs between high/low immune-score

groups and high/low stromal-score groups. Intersection genes
(802 upregulated genes and 28 downregulated genes) were
further analyzed though GO and KEGG analysis. The results
showed intersection genes were mostly involved in immune-
related BP, such as regulation of leukocyte activation, T cell
activation, and regulation of lymphocyte. In addition, a total of
830 genes were analyzed with the prognosis of HCC, and finally
169 genes were found to be inversely linked to the RFS of HCC
patients. This is consistent with previous reports that the tumor
microenvironment coexisted and interacted with immune cells to
promote the growth of HCC.[30–32]
9

In order to further explore the relationship between immune-
related genes and the progression of HCC, PPI network, and M-
CODE a plugin was applied. The results showed that the genes in
the top 3 most significant modules almost enriched in T cell
activation, regulation of T cell activation, leukocyte cell-cell
adhesion, cytokine-cytokine receptor interaction, hematopoietic
cell lineage, and Th17 cell differentiation. Same to the previous
findings, the immune-related genes significantly participated in
the development of HCC. Moreover, the present study found
C5AR stimulated cell invasion and migration in HCC cells, and
blocking the expression of C5AR had therapeutic promise to
inhibit HCC invasiveness.[33] In patients with liver cancer, CCL2
was overexpressed and associated with the prognosis of HCC,
blockade of CCL2/CCR2 signaling inhibited malignant growth
and metastasis in murine.[34]

Furthermore, we validated the 830 intersection genes in GEO
dataset. The results showed that HCC patients with high
expression of ACKR1, CD4, CD6, FCN3, PI16, RYR1, and
SUSD5 had significantly longer RFS time than patients with low
expression of them. ACKR1/DARC functions as a decoy receptor
for many CXC and CC chemokines, such as CCL2 and

http://www.md-journal.com
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CXCL8.[35] ACKR1 was downregulated in thyroid cancer,
colorectal cancer, breast cancer, and pancreatic cancer, and have
been reported to inhibit the development of several tumor
through clearance of angiogenic chemokines.[36–39] CD4 and
CD6 both encodes a membrane glycoprotein of T-lymphocytes.
Today, inducing the infiltration of cytotoxic T lymphocytes into
the tumor has become a common approach to manage
cancer.[40,41] It indicated that the recruitment of T-cells in the
microenvironment of HCC might be an effective anti-cancer
immunotherapy and enhance the survival of patients. It was
reported that ficolin-3 (FCN3) was decreased in HCC,[42,43] but
there were no more studies on the association between FCN3 and
HCC, the role of FCN3 in the development of HCC needs to be
further studied. In addition, PI16, RYR1, SUSD5 have not
previously been correlated with HCC prognosis, and could serve
as novel biomarkers for HCC patients. Consistent with the
previous studies, we can conclude that immune-related genes play
a crucial role in the progression of tumor, but the real mechanism
under these genes still needs further researches and studies.
Finally, we found that DCs were the most abundant in the

microenvironment of HCC through TIMER algorithm. Then
HCC patients were divided into 8 clusters according to the
proportion of immune cells. In addition, the survival analysis
between 8 clusters and prognosis HCC were applied. The results
showed that DCs did significantly influence prognosis of HCC.
DCs are key regulators of the adaptive immune response, and are
necessary for inducing anti-tumor T cell responses. However,
DCs cannot always induce effective immunity according to the
suppressive mechanisms of tumors.[44] Tumor cells havemeans of
suppressing DCs function and lead these DCs to confer immune
suppression at the local TME.[45] DCs was reported to possess
high anti-tumor and cytotoxic activity against HCC,[46,47] and is
widely applied for therapeutic tumor vaccine deliver according to
their antigen-presenting ability.[48] In our study, we found the
number of DCs was significantly associated with the prognosis of
HCC. It implies that DCs could be a potent target in efforts to
generate therapeutic immunity against HCC, although the
underlying mechanism remains to be studied.
In summary, through various analyses, we had a better

understanding of the role of the tumor microenvironment in
HCC, and discovered 7 genes closely related to the recurrence
survival of HCC, which could be identified as novel biomarkers
for prognostic assessment of HCC.
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