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Abstract
As infectious disease surveillance systems expand to include digital, crowd-sourced, and

social network data, public health agencies are gaining unprecedented access to high-reso-

lution data and have an opportunity to selectively monitor informative individuals. Contact

networks, which are the webs of interaction through which diseases spread, determine

whether and when individuals become infected, and thus who might serve as early and

accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—

sampling the most connected, random, and friends of random individuals—in three complex

social networks—a simple scale-free network, an empirical Venezuelan college student net-

work, and an empirical Montreal wireless hotspot usage network. Across five different sur-

veillance goals—early and accurate detection of epidemic emergence and peak, and

general situational awareness—we find that the optimal choice of sensors depends on the

public health goal, the underlying network and the reproduction number of the disease (R0).

For diseases with a low R0, the most connected individuals provide the earliest and most

accurate information about both the onset and peak of an outbreak. However, identifying

network hubs is often impractical, and they can be misleading if monitored for general situa-

tional awareness, if the underlying network has significant community structure, or if R0 is

high or unknown. Taking a theoretical approach, we also derive the optimal surveillance

system for early outbreak detection but find that real-world identification of such sensors

would be nearly impossible. By contrast, the friends-of-random strategy offers a more prac-

tical and robust alternative. It can be readily implemented without prior knowledge of the

network, and by identifying sensors with higher than average, but not the highest, epidemio-

logical risk, it provides reasonably early and accurate information.
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Author Summary

As public health agencies strive to harness big data to improve outbreak surveillance, they
face the challenge of extracting meaningful information that can be directly used to
improve public health, without incurring additional costs. In this article, we address the
question:Which nodes in a social network should be selectively monitored to detect and
monitor outbreaks as early and accurately as possible?We derive best-case performance
scenarios, and show that a practical strategy for data collection–recruiting friends of ran-
domly selected individuals–is expected to perform reasonably well, in terms of the timing
and reliability of the epidemiological information collected.

Introduction
Public health agencies rely on diverse sources of information for detecting emerging outbreaks,
situational awareness (e.g., estimating prevalence or severity), prediction of future burden, and
triggering initiation of control measures. For influenza alone, the CDC has deployed at least
eight different surveillance systems [1]. With the public health sector facing increasing budget
constraints [2, 3], disease surveillance is at a critical juncture where next-generation big data
can potentially be harnessed to revolutionize traditional data-limited practices and improve
real-time situational awareness, early detection and forecasting of disease outbreaks.

HealthMap—an event-based system that aggregates worldwide news to generate global
health risk maps—was among the first effective demonstrations of internet-driven surveillance
[4, 5]. In 2009, Google Flu Trends—a detection algorithm for internet search queries of influ-
enza-related terms—brought next-generation indicator-based syndromic surveillance to the
forefront of public health [6–11]. It generally aligns well with seasonal dynamics in the US and
Europe, but fell short during the 2009 H1N1 pandemic [12–14]. In the last few years, next-gen-
eration surveillance has exploded with efforts to combine both event and syndromic indicator
data from search engines [15, 16], crowdsourcing (e.g., Flu Near You in the US and Influenza-
net in Europe) [17, 18], Twitter (e.g., MappyHealth) [19, 20], and Facebook [21, 22]. While
these new approaches are promising, public health agencies face the significant challenge of
comprehensively integrating these diverse data sources to achieve specific surveillance objec-
tives. Many next generation data sources, whether passively scraping data gathered for an inci-
dental purpose or actively engaging volunteer participants, can be used to infer the underlying
network through which disease, opinions or information spreads.

Decades of sociology and epidemiology research have demonstrated that network structure
can profoundly influence the spread of disease and behavior, and determine if and when indi-
viduals are affected [23–30]. In particular, there are diverse methods for quantifying the impor-
tance or centrality of a node (individual) in a network, many of which have been shown to
predict epidemiological risk and indicate optimal targets for interventions such as vaccination
[31–37, 41–43].

In designing disease surveillance systems for networked populations, one seeks to identify
nodes (sensors) that are likely to provide timely and accurate indications of epidemic activity.
While analogous to the selection of efficient targets for vaccination on networked populations,
the best sensors are not necessarily those most likely to be infected and infect others. Nodes that
are the earliest or most often infected may be unreliable indicators of the broader epidemiologi-
cal situation. Conversely, a representative cross-section of a network may provide accurate situa-
tional awareness, but the rate of detection from a representative cross-section may be too slow
to serve as a timely trigger of control measures. Rapidity of targeted action during the initial
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phase of an outbreak is fundamental to the effectively curtailing transmission and minimizing
disease burden. In previous work on livestock diseases, a network path based strategy has been
proposed for identifying surveillance locations that would provide timely and accurate outbreak
data [40]; in a recent analysis of disease surveillance in a high school population, Smieszek and
Salathé introduce a promising sensor selection criteria (total time students spend collocated
with other students) that is expected to yield timelier and more accurate information than alter-
native centrality-based criteria [47, 48]. Christakis et al. performed an experimental comparison
of two social-network-based strategies in a college population [46]. In one strategy, the sensors
were a random selection of students; in the other, the sensors were identified as friends of one or
more random students. The friends-of-random surveillance group was expected to be biased
towards more central individuals, and provided an indication of the 2009–2010 pandemic
H1N1 influenza epidemic that was two weeks earlier than the random surveillance group.

Here, we use a mathematical model to systematically evaluate these and other strategies for
selecting surveillance sensors across several networks and for an ensemble of common public
health objectives. We quantify the timing and accuracy of the information gained by monitor-
ing the disease states of strategically chosen sensors, as well as the robustness of the informa-
tion across epidemiological scenarios characterized by different reproduction numbers, R0s.
We find that the best surveillance targets are not always those with the highest epidemiological
risk or those most representative of the underlying network.

Methods

Epidemic model
We simulate disease outbreaks in contact networks using a stochastic chain-binomial model
that classifies the disease status of individuals as susceptible-exposed-infected-recovered
(SEIR) [44, 45]. Networks consist of nodes representing individuals and edges between pairs of
nodes representing contacts between individuals. The degree of a node is the number of other
nodes to which it is connected via an edge.

During a simulated epidemic, each node is in one of four states: susceptible (S), exposed to
disease but not yet infectious (E), infectious (I), or recovered (R). If a node i in state S shares an
edge with a node j in state I, then j will infect i with probability β and i will transition from S to
E. After a period of l days, i will enter the infectious state I. It will remain infectious for d days,
and then move to the immune state R.

The reproduction number of a disease, denoted R0, indicates the growth rate of an epidemic
and the expected number of secondary infections arising from a single infected host in an
entirely susceptible population. Sustained epidemics are only possible when R0 > 1. In a ran-
dom network, R0 is related to β as follows [49]:

R0 ¼ b
k2h i � kh i

kh i
� �

; ð1Þ

where hki and hk2i are the mean degree and the mean squared degree, respectively, of nodes in
the network. R0 depends explicitly on both the intrinsic transmission rate of the pathogen and
the structure of the network. For our analyses, we specify R0 and use Eq 1 to solve for the corre-
sponding β. For the empirical networks considered, clustering, modularity and other non-ran-
dom structures may cause the resulting R0 to differ slightly from the one initially specified.

For each simulation, we fix the latent period to l = 4 days and the infectious period to d = 7,
roughly in the range of estimates for common respiratory diseases, including influenza [50,
51]. Epidemics are initialized with a single random infected node and allowed to evolve until
there are no remaining infected nodes.
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Contact networks
Social interactions often generate complex network structures, with features that impose non-
trivial constraints on the flow of information, behavior and disease [52–55]. We evaluated net-
work-based surveillance strategies using three classes of social networks with distinct topologi-
cal attributes.

1. Scale-free networks: Networks generated using the Barabasi-Albert algorithm [55] with
N = 10,000 nodes, starting withm0 = 3 nodes and iteratively adding nodes with edges to
m = 3 existing nodes.

2. Student network: A social network formed by N = 4,634 students (nodes) of the Engineering
Department from Universidad de Los Andes in Merida—Venezuela, where edges indicate
that students attended the same class during the fall 2008 semester (For more information
refer to Supporting information S1 Fig).

3. Montreal WiFi Network: A co-location network for N = 103,425 users (nodes) of the Île
Sans Fil free public wireless network in Montreal, Canada, where edges represent concur-
rent hotspot usage [56].

The degree distributions of the scale-free and Montreal network resemble power laws [55,
56], while the student network has a relatively homogeneous (Poisson) degree distribution.
The Montreal network, but not the other two, exhibits strong community structure [56].

Surveillance strategies
We propose three strategies for designing network-based surveillance systems. Each strategy
is a criteria for selecting a subset of individuals to monitor for their disease state: (1)most con-
nected: select the highest degree individuals in the network; (2) random: select individuals at
random; and (3) random acquaintance: select a random acquaintance of random individuals
(which should be biased toward high degree individuals [57]). These strategies are illustrated
in Fig 1 for a scale-free network, where each surveillance subset includes five of the 100 nodes
(in red).

The most connected strategy assumes complete knowledge of the network structure,
whereas the random and random acquaintance strategies do not.

Fig 1. Schematic representation of the proposed surveillance strategies.Red circles indicate nodes that
are selected to be surveillance sensors. For the random acquaintance strategy, yellow squares indicate
randomly chosen nodes from which one random acquaintance was selected to be a surveillance sensor.

doi:10.1371/journal.pcbi.1004928.g001
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Evaluation of surveillance strategies
We assess the performance of each surveillance strategy with respect to four different public
health goals, listed below (Fig 2). For each strategy-network combination, we build surveillance
subsets by selecting 1% of all nodes (unless otherwise specified) via the strategy. We then esti-
mate performance by running stochastic SEIR simulations, and make the following four com-
parisons between the prevalence time-series in the whole population to that of surveillance
subset:

1. Early warning: The lag between the surveillance subset reaching 1% prevalence and the
entire population reaching 1% [58–60] prevalence.

2. Peak timing: The lag between the surveillance subset reaching its epidemic peak and the
entire population reaching its epidemic peak.

3. Peak magnitude: The ratio of peak prevalence in the surveillance subset and peak prevalence
overall.

4. Situational awareness: The complement of the normalized mean absolute error (MAE),
minimized over possible lags, is given by

1�min
l

P
tj
xt
M

� ytþl

N
jP

t

xt
M

þ ytþl

N

� � : ð2Þ

Here, xt and yt are the prevalence in the surveillance subset and in whole population at time
t, respectively, N is the population size,M is the size of the surveillance subset, and λ is the
lag.

All results are averaged over 2000 stochastic SEIR simulations. At the beginning of each
simulation, the surveillance subset is chosen anew according to the given strategy. For each
objective function, we quantify both the magnitude of the effect and its robustness with respect

Fig 2. Surveillance objectives. To evaluate strategies, we compare the epidemic curve (prevalence time
series) of the subset of nodes under surveillance (green lines) with the epidemic curve for the whole
population (blue lines). We calculate the time lag between the surveillance group and whole population
reaching 1% prevalence (early warning). We also calculate the time lag between the surveillance group and
whole population reaching their epidemic peaks and the ratio of the magnitudes of the two peaks (peak
forecasting), as well as the complement of the normalized mean absolute error (MAE)(situational awareness).

doi:10.1371/journal.pcbi.1004928.g002
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to a key epidemiological quantity, R0. High sensitivity of the information provided by a surveil-
lance system to R0 indicates that the system may be unreliable or uninterpretable in situations
where R0 is unknown or changing.

Results and Discussion
In all three networks, the most connected strategy selects subsets of nodes that are most likely
to experience earlier and more intense epidemics, whereas the random strategy yields collec-
tions of sensors that are highly representative of the population as a whole (Fig 3). The random
acquaintance strategy produces subsets that provide some early warning in the scale-free and
Montreal networks, but not in the highly homogeneous student network. The epidemic curves
in the Montreal network occasionally exhibit multiple peaks, driven by underlying community
structure [56].

A systematic evaluation of the three strategies in the three focal networks (Fig 4) shows that
the most connected strategy consistently provides the earliest warning for both the beginning
and peak of the season. The most connected strategy also exhibits the highest peaks and the
least overall similarity to the full epidemic curve (Fig 4, red points). However, the timing of the
early warning can be highly sensitive to R0, presenting a challenge when there is uncertainty
regarding R0. For example, when R0 = 3, the most connected surveillance subset crosses the sea-
son onset threshold an average of 2.5, 27 and 35 days before the entire population in the stu-
dent, scale-free and Montreal networks, respectively. When R0 = 5, these early warning periods
decrease to averages of 0.71, 15,2 and 18.1 days, respectively (Fig 4B, 4D and 4F). The epidemic
peak in the most connected surveillance subsets also depends on R0, reducing confidence in the
estimation of peak burden under uncertainty (Fig 4A, 4C and 4E). In the Montreal network,
the average ratio between the peak in the surveillance subset and the peak overall decreases
from 29 to 15.3 as R0 increases from 3 to 5 (Fig 4E). In general, as R0 increases, the height of
the epidemic peak in the entire population approaches that in the most connected subset of the
population.

The random strategy yields surveillance systems that closely reflect the overall epidemiologi-
cal dynamics, with early warning values close to zero and peak ratios close to one, across all
networks and values of R0 (Fig 4, blue points). The random acquaintance surveillance groups
perform relatively well in both the scale-free and Montreal networks (Fig 4A, 4B, 4E and 4F,
green points). The random acquaintance approach offers helpful early warning for both season
onset and peak, though not as much as the most connected group. Importantly, the random
acquaintance approach exhibits greater robustness with respect to R0 in the timing of early

Fig 3. Typical epidemic curves for the three focal networks: (A) scale-free, (B) student and (C) Montreal. Lines indicate the fraction of infected nodes
overall (magenta) and in 1% subsets of nodes selected according to the most connected (red), random (blue), and random acquaintance (green)
surveillance strategies during a single SEIR simulation with R0 = 3.

doi:10.1371/journal.pcbi.1004928.g003
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warning, peak ratio, and situational awareness (overall correlation between surveillance epi-
demic curve and population epidemic curve) compared with the most connected group. How-
ever, in the student network, the random and random acquaintance subsets are virtually
indistinguishable (Fig 4C and 4D). The student network is highly homogeneous, with most

Fig 4. Performance of most connected (red), random (blue), and random acquaintance (green) strategies with respect to
predicting the timing andmagnitude of the peak (graphs A, C, and E), and achieving early warning and situational
awareness (graphs B, D, and F). Points and error bars indicate mean and standard deviation in performance over 2000
simulations, respectively. Performance depends on both R0 and network structure: scale-free (graphs A and B), student (graphs C
and D), and Montreal (graphs E and F).

doi:10.1371/journal.pcbi.1004928.g004
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nodes having close to the average number of contacts. Thus, random acquaintances tend to be
average as well.

As the size of a surveillance system increases, the detected epidemic curves converge on the
full epidemic curve, thereby improving situational awareness (Fig 5). In the scale-free and stu-
dent networks, the performance of the three different surveillance strategies stabilizes to a
quasi-stationary prevalence around 3%, which entails tracking 300 of 10,000 nodes and 139 of
4,634 nodes in the two networks, respectively. In the Montreal network, the random and ran-
dom acquaintance groups reach their optimal performance by 0.5% (517 of 103,425 of nodes),
while the most connected group is still improving beyond 10% (10,342 of 103,425 of nodes).

There are innumerable alternative strategies for selecting surveillance nodes, including pri-
oritization based on other well-studied network centrality measures [38, 39]. For example, k-
shell decomposition [37] and eigenvector centrality [53] are more computationally demanding
and challenging to implement in practice, yet are not expected to significantly improve out-
comes (S2 Fig).

A theoretically optimal surveillance strategy
Following Newman [53], we use percolation theory to model SIR epidemics on networks, and
derive the optimal surveillance group for early detection of an epidemic. We consider a disease
with transmissibility β and recovery rate γ spreading through a network of sizeN. During the ini-
tial outbreak, the probabilities of each node being infected at time t are approximated by the vector

xðtÞ ¼ eðbk�gÞtv; ð3Þ

where κ is the leading eigenvalue of the adjacency matrix and v its corresponding eigenvector [53].
We extend this equation to calculate the time lag between a subset S of the network of size

M� N reaching a given prevalence threshold p and the overall population prevalence reaching
p. Let 1 be the vector of length N containing all ones, 1 = (1, . . ., 1), and 1S be the binary vector
of dimension N indicating whichM nodes are under surveillance

1S ¼
1 if node i is in the surveillance subset S

0 otherwise:

(

For example, if the 1% most connected nodes were selected for surveillance in a network of size
N = 1000, then the entries of 1S corresponding to the ten highest degree nodes would be one,
and the remaining entries would be zero.

Fig 5. Size of surveillance systems impacts performance. Situational awareness (similarity between surveillance epidemic curve and full
epidemic curve) improves as the surveillance system expands in the (A) scale-free, (B) student and (C) Montreal networks. Surveillance
groups were chosen using the most connected (red), random (blue), and random acquaintance (green) strategies.

doi:10.1371/journal.pcbi.1004928.g005
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Let τ and τS be the times at which the entire population and a given surveillance group
reach the prevalence threshold p and pS, respectively. Substituting into the above equation, we
find

p ¼ xðtÞ � 1
N

¼ eðbk�gÞtv � 1
N

ð4Þ

and

pS ¼
xðtSÞ � 1S

M
¼ eðbk�gÞtSv � 1S

M
: ð5Þ

To solve for the timing of early warning achieved through surveillance Δτ = τS − τ, we equate p
= pS,

eðbk�gÞtv � 1
N

¼ eðbk�gÞtSv � 1S

M
: ð6Þ

This implies

Dt ¼ 1

bk� g
ln

c
cS

� �
; ð7Þ

where c = v � 1/N and cS = v � 1S/M are the average eigenvector centralities in the network as a
whole and the surveillance subset, respectively. The early season lag between the surveillance
subset and the whole population can thus be positive or negative, and depends on ratio of their
average eigenvector centralities.

We assessed the validity of this mean field approximation by comparing the expected early
warning period (Eq 7) to simulated early warning periods for both the most connected subset
and the subset of the 1% highest eigenvector centrality nodes. To match the assumptions of our
mean field model, we simulated SIR rather than SEIR transmission dynamics. The simulations
mirrored the theoretical expectations for both types of surveillance subsets in all three net-
works, as shown for the scale-free network (Fig 6).

Next, we solve for the surveillance subset that maximizes the length of the early warning
period. For a given surveillance system sizeM, the earliest warning is achieved when 1S indi-
cates theM nodes in the network with the highest valued entries in v. Thus, the theoretically

Fig 6. Comparing theory and simulation for early warning period in the scale free network. As R0

increases, the lag between the surveillance subset and the entire population reaching the early detection
threshold decreases for both the (A) 1% highest eigenvector centrality nodes and (B) 1% highest degree
nodes. Red curves indicate theoretical approximations; box plots show distribution of SIR simulation results.

doi:10.1371/journal.pcbi.1004928.g006
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optimal surveillance strategy for early warning of epidemic onset selects nodes with the highest
eigenvector centrality.

Importantly, Δτ depends on the disease parameters β and γ. Regardless of the choice of sur-
veillance nodes 1S, the timing of the early warning period will, therefore, increase as R0
decreases. An exception occurs when the average eigenvector centrality in the surveillance sub-
set equals that in the population as a whole (c = cS). In that case, there is no early warning (Δτ =
0). These properties are reflected in the sensitivity to R0 observed in our simulations (Fig 4B,
4D and 4F).

For the networks under consideration, the most connected strategy produces surveillance
groups with relatively high eigenvector centrality while the random strategy yields groups with
average eigenvector centrality. However, eigenvector centrality in random acquaintance groups
depends on the underlying network: in homogeneous networks such as the student network, it
will be average, whereas in heterogeneous networks, it will be above average.

Identifying the optimal surveillance nodes
Identifying individuals with the highest eigenvector centrality is challenging in real-world pop-
ulations, where the underlying network structure is generally unknown. However, finding indi-
viduals with above average degree centrality is possible using local information. If eigenvector
centrality is correlated to degree centrality, as it is in the three networks we consider (see Fig 7),
it may be possible to use highly connected nodes as a proxy for high eigenvector centrality
nodes.

One strategy for finding high degree centrality nodes is to follow chains of random acquain-
tances. This has been explored extensively in the context of respondent-driven sampling, such
as chain-referral (i.e., “snowball”) sampling [64]. In particular, consider the simple random
walk in which, at each step, the walker moves to a neighboring node selected uniformly at ran-
dom. For connected, undirected networks, this is equivalent to the PageRank algorithm with
no damping factor [53]. Assuming the network is fully connected, the distribution of the ran-
dom walker afterm steps approaches a stationary distribution asm!1, in which the proba-
bility of landing on a node is exactly proportional its degree [65]. Thus, the more connected the
node, the more likely we are to reach it.

Fig 7. Scatter plots of eigenvector centrality vs. (scaled) degree centrality of nodes in the (A) scale-free, (B) student, and (C) Montreal
networks. Both eigenvector and degree centralities are scaled to have maximum value 1, and log-log plots are shown for (A) and (C). The student
network shows strong correlation between the two centrality measures, with a Spearman rank correlation coefficient of 0.819. For the scale-free and
Montreal networks, the measures have more moderate rank correlation coefficients of 0.441 and 0.620, respectively.

doi:10.1371/journal.pcbi.1004928.g007
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Precisely, let ki be the degree of node i and P(k) the degree distribution of the network. The
nth moment of the degree distribution is:

hkni ¼ 1

N

X
i

kni ¼
X
k

knPðkÞ: ð8Þ

LetDm denote the degree of the node at which the random walk resides on themth step, starting
from a node chosen uniformly at random. Assuming the mean degree hki<1, then the distribu-
tion ofD1 is given by kP(k)/hki. If hk3i<1, which is true for any finite graph but will be vio-
lated for power-law networks without cutoff, the mean and standard deviation ofD1 are given by

m1 ¼ hk2i
hki ; s1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk3i
hki � hk2i

hki
� �2

s
: ð9Þ

By comparison, the distribution of randomly sampled nodes (D0) has mean μ0 = hki and standard
distribution s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2i � hki2

q
. Thus, the random walk sample is biased towards nodes with

larger degrees. For intermediate values ofm, the distribution ofDm can only be derived with full
knowledge of the underlying graph. Instead, this distribution converges to that ofD1 at a rate
that depends on the second largest eigenvalue of the adjacency matrix of the graph. If this eigen-
value is close to one, which is usually the case for connected networks with high modularity, con-
vergence is very slow and random walk sampling may require numerous steps to achieve its
optimal performance. Methods that bias the random walk towards higher eigenvector centrality
nodes should be more effective in this setting. For example, the maximal entropy random walk
samples nodes proportional to eigenvector centrality just as the simple random walk considered
earlier samples nodes according to their degree centralities [66]. However, the transition probabil-
ities of the the maximal entropy random walk require global information about the network,
making it impractical to implement without approximation as part of the sampling strategy.

Eq 9 provide a theoretical upper bound to the mean centrality that can be achieved when
using a random walk on a network to design a surveillance system. In particular, for a random-
walk surveillance subset of sizeM = �N with fixed � and large N, the empirical mean of the sam-

ple will become approximately normal with mean μ1 and standard deviation s1=
ffiffiffiffiffi
M

p
, as illus-

trated for our three study networks (Fig 8).

Fig 8. Randomwalks increase centrality in the surveillance subset. For purposes of comparison, degree (blue) and eigenvector centrality (red) are
divided by the maximum degree and maximum eigenvector centrality, respectively, in each network. Mean degree approaches its theoretical limit (dashed
lines), and mean eigenvector centrality also increases as the random walks progress in the (A) scale-free (subset contains � = 1% of nodes), (B) student (� =
2%), and (C) Montreal (� = 0.1%) networks. As expected, the mean degree converges to a normal distribution with mean μ1 and standard deviation σ1
(gray shading) as the number of steps in the walk, k, increases. The random walks converge within a few steps in the scale-free and student networks, but
require more steps in the highly modular Montreal network.

doi:10.1371/journal.pcbi.1004928.g008
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Conclusions
The success of both traditional surveillance systems such as the U.S. Outpatient Influenza-like
Illness Surveillance Network (ILINet) and next generation participatory systems including Flu-
NearYou [17, 18], depends on targeted recruitment of reliable, informative providers. With
Meaningful Use and the advent of digital disease detection, we are moving from an era of
sparse, volunteer-based data into an era of data inundation [16, 61]. Nonetheless, we still face
the challenge of finding reliable data sources. Effective mining of electronic medical records,
social media and other internet source data, such as Google, Twitter or Facebook, requires sift-
ing through petabytes of data for streams that can provide early and accurate information
about emerging outbreaks. While random representative sampling is a good rule-of-thumb
and has guided the development of numerous surveillance systems, we can improve the timeli-
ness of surveillance by exploiting our evolving understanding of social networks and their
impacts on infectious disease dynamics [24, 28–30, 45, 49, 52–55, 62, 63].

In an ideal scenario where both the contact network and the reproduction number (R0) of
the disease are known in advance, public health agencies can monitor the most informative
nodes and achieve very accurate and early assessments of emerging epidemics. For example,
we find that surveillance of the most connected individuals in the Montreal WiFi network
can increase lead time on detecting epidemic emergence by two to three weeks and anticipat-
ing the epidemic peak by over a week. We show analytically that the optimal strategy for
early detection of emerging outbreaks is targeting individuals with the highest eigenvector
centrality, a measure that considers the connectivity of a node’s neighbors, and those neigh-
bors’ neighbors, and so on [53]. It can only be calculated with full knowledge of the network,
and estimates the proportion time spent on a node during an infinitely long random walk
along the edges of the network. While providing the longest lead time (between the surveil-
lance system crossing a prevalence threshold and the rest of the population crossing that
threshold), the timing is highly dependent on R0. In fact, regardless of which nodes are under
surveillance, epidemiological activity becomes more synchronized and the lag time shrinks as
R0 increases.

This ideal scenario is generally unrealistic. When the contact network is unknown, we can-
not easily identify the most central individuals, for many measures of centrality. Even if we
could monitor the most connected individuals, correct interpretation of the resulting signal
requires some knowledge of R0. In general, low R0 implies a longer lag time between epidemio-
logical events in the surveillance group and corresponding events in the general population,
and a larger discrepancy between prevalence in the surveillance group and overall epidemiolog-
ical activity. Several recent studies have identified epidemiologically relevant measures of cen-
trality that can be estimated from readily obtainable school, social network, and workplace
data [42, 43, 47, 48]. We hypothesize that these more tractable centrality-based sensors may
exhibit a similar trade off between timeliness and robustness.

The random acquaintance strategy, which chooses random contacts of random nodes, pro-
vides a practical method for identifying individuals with higher than average centrality. The
intuition is that when choosing a random friend of a node rather than just a random node, the
choice is biased towards individuals with more friends. In heterogeneous networks, such as the
scale-free and Montreal WiFi network considered here, random acquaintance groups provide
some degree of early warning (significantly more than randomly selected nodes) and exhibit
epidemic curves that reflect overall disease activity (significantly better than the most con-
nected nodes). This is corroborated by the empirical finding that friends of random students
served as better outbreak sentinels than random students during 2009 H1N1 pandemic [46].
Although the timing of the early warning and the discrepancy between the estimated
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prevalence and true prevalence will depend on R0, the uncertainty can potentially be quantified
and incorporated into confidence intervals.

In a relatively homogeneous network, such as the Venezuelan student network, the random
acquaintance strategy finds fairly average nodes and does not improve upon the random strat-
egy with respect to the surveillance objectives. This finding is consistent with basic theory on
Erdős-Réyni networks: in a random network with a Poisson degree distribution, the average
degree of random acquaintances will be exactly average [57]. Therefore, if a population is suffi-
ciently homogeneous, surveillance systems should simply target random individuals or employ
other methods for identifying highly connected individuals.

We conclude that the friends-of-random strategy, while not optimal for all public health
objectives, balances risk and representativeness, provides reasonably robust, accurate and early
warning, and can be applied without knowledge of the underlying contact network. Volunteer-
based surveillance systems, like Flu Near You, could potentially improve coverage by recruiting
friends of existing members. Network analysis, in general, allows us to anticipate individual-
level epidemiological risk and can thereby help us improve and strategically extend surveillance
systems to enhance the early and reliable identification of outbreaks.

Supporting Information
S1 Fig. Venezuelan students network. Key features of the Venezuelan students network
(JPEG)

S2 Fig. Comparison of strategies. Performance of the top-dregree (green), eigenvector cen-
trality (red) and k-shell decomposition strategies when calculating the Peak time difference
(left) and Peak ratio (right) for the three networks used: Scalefree (top), Students (middle) and
Montreal (bottom).
(JPEG)
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