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Vitellogenin induction in caudal 
fin of guppy (Poecilia reticulata) 
as a less invasive and sensitive 
biomarker for environmental 
estrogens
Jun Wang, Shuwei Ma, Zhenzhong Zhang, Mingyi Zheng, Yifei Dong & Shaoguo Ru

Guppy (Poecilia reticulata) is an ideal model for studying environmental estrogens, and its large caudal 
fin has a high capacity to regenerate. This study analyzed the feasibility of caudal fin for detecting 
vitellogenin (Vtg), the most commonly used biomarker of environmental estrogens. Firstly, a sandwich 
ELISA for guppy Vtg was developed using purified lipovitellin and its antibody and it had a working 
range of 7.8–1000 ng/mL and detection limit of 3.1 ng/mL. The ELISA was used to detect tissue 
distribution of Vtg. In male guppy exposed to 50 and 100 ng/L 17β-estradiol (E2), Vtg concentration in 
caudal fin was higher than that in whole fish, brain, eyes, gonad, and skin, and was close to that in the 
liver. Furthermore, male guppies were exposed to environmental concentrations of 17a-ethinylestradiol 
(EE2) and bisphenol S (BPS) to validate the utility of caudal fin Vtg for detecting estrogenic activities. 
The lowest observed effect concentration of EE2 and BPS were lower than 2 ng/L and 1 μg/L, which were 
below or equal to the values reported for other species, demonstrating that caudal fin Vtg was highly 
sensitive to estrogenic chemicals. Therefore, caudal fins of guppies are suggested as alternative samples 
for Vtg biomarker detection.

Environmental estrogens have aroused great concern worldwide owing to their adverse effects on wildlife health, 
including altered sex hormone levels1, gonadal abnormalities, reduced fertility2, and feminization of males3. To 
screen chemicals with estrogenic activity, US Environmental Protection Agency and Organization for Economic 
Cooperation Development (OECD) have developed test guidelines using small fish species as model organ-
isms and vitellogenin (Vtg) as a core biomarker4, 5. Currently, plasma and whole-body homogenates (WBH) are 
normally used for Vtg detection, which involves killing experimental organisms6, 7. In some cases, such as field 
sampling of natural populations and serial monitoring of the effects of estrogenic chemicals on experimental 
organisms, a less invasive sampling method for repeated Vtg measurements is needed. Several studies reported 
that skin mucus was an alternative choice for Vtg quantification8, 9. However, Maltais et al.10 and our previous 
study11 found that Vtg levels in fish skin mucus were considerably lower than those in plasma, demonstrating 
that surface mucus Vtg induction exhibited a lower sensitivity to estrogenic chemicals. Recently, Zhong et al.12 
reported that Vtg could be detected in various extrahepatic tissues of 17α-ethinylestradiol (EE2)-exposed male 
zebrafish (Danio rerio), and recommended skin and eye tissues as for Vtg analysis. Sampling of these tissues 
would kill the fish, thus it was unable to measure Vtg induction at a later point in time. By contrast, caudal fin has 
a high capacity to regenerate, and zebrafish caudal fin could quickly regenerate in approximately two weeks after 
95% excision13. We speculated that using caudal fins as the sampling tissue could be helpful for continuous meas-
urement of Vtg biomarker. However, it is still unclear whether caudal fin contains Vtg and whether the sensitivity 
of Vtg induction in caudal fin is high enough to detect weak estrogenic activity.

The guppy (Poecilia reticulata) has a large caudal fin, which is almost half of their total length and can regen-
erate quickly and reliably after amputation, restoring both size and shape14, 15. Thus, it provides a good model to 
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evaluate the feasibility of caudal fin Vtg as a less invasive biomarker for detecting environmental estrogens. Guppy 
is easily cultured in the laboratory and easy to identify gender due to its obvious secondary sexual characteristics 
(Fig. 1). Moreover, it was reported that guppy was more sensitive to exogenous estrogens than zebrafish and rain-
bow trout16, 17. Guppy was therefore considered an ideal model to study environmental estrogens18, 19. However, 
Vtg in guppy is still detected using qualitative methods, such as SDS-PAGE and Western blot analysis, and its 
quantitative tool has not been developed owing to the lack of anti-guppy Vtg antibody until now17, 20.

In the present study, guppy lipovitellin (Lv), the main egg yolk protein derived from Vtg, was purified and used 
to prepare antibodies. Using the purified Lv and its antibody, a sandwich ELISA for measuring guppy Vtg was 
established. Subsequently, Vtg induction in the WBH, caudal fin, liver, brain, eye, gonad, and skin tissues of male 
guppy exposed to different concentrations of 17β-estradiol (E2) were measured by Western blot and the sandwich 
ELISA to evaluate the possibility of using caudal fin for Vtg detection. Furthermore, the reliability of Vtg in caudal 
fin as a biomarker of estrogenic contamination was validated by quantifying Vtg levels in WBH, liver, and caudal 
fin of male guppy exposed to environmental concentrations of two different exogenous estrogens, EE2 and bisphe-
nol S (BPS), which are two commonly detected estrogenic chemicals in aquatic environments.

Results
Purification of Lipovitellin.  Ovarian homogenate yielded two peaks in gel filtration chromatography and 
the first peak appeared clear protein bands (Fig. 2). Thus fractions of this peak were collected and subjected to 
anion exchange chromatography. The main peak was found in 25 mM Tris-HCl buffer containing 0.1 M NaCl and 
it showed a single band in Native-PAGE (Fig. 3).

Characterization of Lipovitellin.  The purified protein was stained positively with Schiff reagent, methyl 
green, and Sudan black B (Fig. 4), confirming that it was a phospholipoglycoprotein.

The apparent molecular weight of guppy Lv was estimated to be approximately 480 kDa by native-PAGE 
(Fig. 5A). On SDS-PAGE, guppy Lv resolved into a major band at 112 kDa and a minor band at 83 kDa (Fig. 5B).

Figure 1.  Photograph of male and female guppy (Poecilia reticulata).

Figure 2.  Elution profiles of ovarian homogenates on a Sephacryl S-300 column (A) and Native-PAGE (4–7.5%) 
detection of peak elution (B). lane 1, Peak P1; lane 2, Peak P2.



www.nature.com/scientificreports/

3Scientific REportS | 7: 7647  | DOI:10.1038/s41598-017-06670-6

Figure 3.  DEAE anion exchange column of guppy Lv (A) and Native-PAGE (4–7.5%) of the peak eluted with 
buffer containing 0.1 M NaCl (B).

Figure 4.  Specific staining of carbohydrate (lane 2), phosphorus (lane 3) and lipid components (lane 4) for the 
purified protein. Lane 1 was stained with CBB.
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Specificity of the antiserum to vitellogenin.  Western blot results showed that anti-Lv antibody detected 
several bands in WBH from E2-exposed male guppy and the purified Lv, while no visible bands were detected in 
WBH from male fish (Fig. 6).

Development and validation of an ELISA for guppy vitellogenin.  Serial dilutions of HRP-labeled 
anti-Lv antibody were used as detecting antibodies to determine the optimal condition of the assay (Fig. 7A). 
When the detecting antibody was diluted 1:1250 times, the curve showed a wide linear work range with high 
maximum absorbance of about 2.6. Under this condition, the working range of this assay was 7.8–1000 ng/mL 
(y = 1.1747x − 1.0473, R2 = 0.992), and the detection limit was estimated as 3.1 ng/mL (Fig. 7B). Moreover, the Lv 
standard curve was parallel to dilutions of WBH from E2-exposed male guppy over the entire working range of 
the assay, while control male WBH showed no reaction in the ELISA (Fig. 7C). The matrix effects for caudal fin 
and WBH were found to be reduced to acceptable levels when they were diluted 20-fold and 40-fold, respectively 
(Figs S1 and S2). At these levels of dilution, the matrix interferences were similar to those observed in the case 
of the matrix free buffer (PBST). Therefore, the practical detection limit for Vtg in caudal fin and WBH samples 
were 62 and 124 ng/mL, respectively.

The intra- and inter-assay CVs of the ELISA within the working range were 0.73~3.85% and 0.36~7.43%, 
respectively (Tables 1 and 2).

Distribution of Vitellogenin in male guppy exposed to E2.  After a 21-day exposure, the distribution 
of Vtg in male guppy was qualitatively detected by Western blot analysis. Prior to E2 exposure, there was no posi-
tive signal for Vtg in WBH of control male fish, while strong signal was found in WBH of ovariectomized female 
fish. After exposure to 50 ng/L E2 for 21 days, three clear positive bands were detected in the liver and caudal fin, 
which had the similar position to that of WBH from the female guppy (Fig. 8A). In 100 ng/L E2 exposure group, 
male fish showed detectable Vtg signals in skin, caudal fin, gonad, liver, eye, and brain tissues, and the strong-
est signal was detected in the liver (Fig. 8B). Positive bands were observed in all tissues of male fish exposed to 
100 ng/L E2 and the number of bands was more than the fish exposed to 50 and 100 ng/L E2 (Fig. 8C).

Vtg concentrations in each tissue and WBH of male guppy in control and exposure groups were quanti-
fied by ELISA (Fig. 9). In control male guppies, Vtg values were all below the detection limit of ELISA, while 
concentration-dependent increases of Vtg concentrations were observed in all tissues of male guppies after 21 day 
exposure to E2. In 200 ng/L E2-exposed male fish, Vtg concentrations in brain, eye, testis, skin, caudal fin, whole 
body, and liver tissues showed an increasing tendency, and concentrations of Vtg in caudal fin, whole body, and 
liver were above 7 μg/g. Similarly, Vtg concentrations in caudal fin, whole fish, and liver of male fish exposed 
to 100 ng/L E2 were 2.42 ± 0.13 μg/g, 2.05 ± 0.14 μg/g, 2.73 ± 0.20 μg/g, significantly higher than other tissues in 
the same group (P < 0.01). For 50 ng/L E2 group, Vtg concentrations in caudal fin, whole fish and liver were 
1.31 ± 0.10 μg/g, 0.71 ± 0.06 μg/g, and 1.56 ± 0.15 μg/g. Moreover, Vtg concentration in caudal fin was signifi-
cantly higher than in the whole fish (P < 0.05).

Figure 5.  Native PAGE (4–7.5%) (A) and SDS-PAGE (B) electrophoretic patterns of purified guppy Lv. lane 1, 
protein maker; lane 2, the purified Lv.

http://S1
http://S2
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Caudal fin vitellogenin induction in male guppy exposed to environmental concentrations of 
EE2 and BPS.  Vtg concentrations in caudal fin of male guppy exposed to 2, 10, and 50 ng/L EE2 for 21 days 
were 0.35 ± 0.08 μg/g, 0.55 ± 0.08 μg/g, and 2.18 ± 0.37 μg/g, respectively (P < 0.01, Fig. 10A). In 2 and 10 ng/L 
EE2 exposure groups, there was no difference in Vtg concentrations between these sampled tissues. Exposure to 1, 
10, and 100 μg/L BPS also increased the concentration of caudal fin Vtg significantly compared to solvent control 
group (P < 0.01, Fig. 10B). Furthermore, 10 μg/L BPS exposure induced the highest caudal fin Vtg concentration, 
while 100 μg/L BPS dose resulted in less induction of Vtg, which showed the same trend as Vtg in the liver and 
whole body.

Figure 6.  Western blot analysis of WBH from male (lane 1), E2-exposed male guppy (lane 2), and purified Lv 
(lane 3) using anti-Lv antiserum as primary antibody.
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Discussion
In the present study, Vtg in caudal fin of guppy was found to be highly sensitive to exogenous estrogens, and it 
could be used as a less invasive biomarker for measuring estrogenic activity. As the most commonly used bio-
marker for environmental estrogens, Vtg was normally quantified by ELISA21, 22. Our previous study confirmed 
that Lv was very stable and showed the same binding efficiency to anti-Lv antibody as did Vtg. In addition, the 
ELISA developed using Lv as the antigen could quantify Vtg more accurately23. Therefore, in the present study, 
we chose Lv to develop the ELISA for quantification of guppy Vtg. Guppy Lv purified by a two-step chromato-
graphic method was characterized as a phospholipoglycoprotein with an apparent molecular weight of approx-
imately 480 kDa and produced a major band of approximately 112 kDa in SDS-PAGE, which was similar to that 
in other teleosts11, 24. Western blot elucidated that the polyclonal antibody raised against purified Lv reacted with 
WBH from E2-exposed male guppy, whereas no positive reaction occurred in control male WBH, indicating that 
the anti-Lv antibody was highly specific to guppy Vtg25. The sandwich ELISA developed using purified Lv and 
anti-Lv antibody had a working range of 7.8–1000 ng/mL and a detection limit of 3.1 ng/mL, which was consistent 
with the vaules reported for Vtg ELISA of tilapia (Sarotherodon melanotheron)26 and rare minnow (Gobiocypris 
rarus)27. In order to avoid the matrix effect, all tissues except caudal fin were diluted at least 1:40 in the routine 
assay. The average intra-assay and inter-assay CVs of Lv-based sandwich ELISA were 2.1% and 4.1%, respectively, 
which were lower than those of ELISAs developed using Vtg as antigen28, 29, demonstrating that the established 
ELISA had high precision. Moreover, the parallelism observed between the Lv standard curve and WBH dilution 
curves of E2-exposed male guppy demonstrated that anti-Lv antibody recognized Lv and Vtg similarly. In addi-
tion, the ELISA did not detect positive signal in control male WBH, indicating that this assay was very specific to 
Vtg30, 31. The above results confirmed that the sandwich ELISA established in the present study could accurately 
quantify guppy Vtg.

Guppy is a new promising model organism for studying environmental estrogens32, 33. Male guppies have a 
large caudal fin that is easily regenerated15. If the sensitivity of Vtg induction in caudal fin is close to that in WBH, 
caudal fin could replace the whole fish as the preferred sample for Vtg detection, which will be more suitable for 
field investigations of wild populations and for repeated vtg measurements. In the present study, Vtg concentra-
tions in caudal fin, liver, brain, eyes, gonads, skin of male guppy exposed to E2 were quantified using the devel-
oped sandwich ELISA developed. It was found that exposure to 50, 100, and 200 ng/L E2 significantly increased 
Vtg concentrations in all tissues. The amount of Vtg in all exposure groups was greatest in the liver tissue, which 
was consistent with the tissue distribution of Vtg reported in zebrafish12. In the 100 ng/L E2-exposed group, the 
concentration of Vtg in caudal fin was significantly higher than that in eyes, skin, other tissues, and the whole fish. 
Vtg concentration in caudal fin of male fish exposed to 50 ng/L E2 was 1.85 times that of whole fish, and it was 
much closer to Vtg concentration in the liver than that in the 100 ng/L E2-exposed group. Evidently, Vtg induction 

Figure 7.  Determination of optimal dilution of HRP-labeled anti-Lv IgG (A), and a representative standard 
curve obtained for guppy Lv (B) and WBH dilution curves of control male and E2-exposed male guppy in 
sandwich ELISA (C).

Variation g-Lv concentration (ng/ml) N CV (%)

Intra-assay

49.88 ± 1.92 8 3.85

100.90 ± 2.26 8 2.24

406.21 ± 6.21 8 1.53

798.93 ± 5.87 8 0.73

Inter-assay

50.45 ± 3.08 8 6.10

97.07 ± 7.22 8 7.43

391.46 ± 9.81 8 2.51

801.33 ± 2.86 8 0.36

Table 1.  Precision tests of the sandwich ELISA. Values of Lv concentration are expressed as mean ± standard 
deviation; N is the number of determinations; and CV is the coefficient of variation.
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in caudal fin had equal or even higher sensitivity than Vtg in whole fish at lower E2 concentrations (<100 ng/L). 
Owing to the ease of sampling and lower damage to fish, caudal fins can be good alternatives to WBH for the 
detection of Vtg in guppy.

To further test the reliability of caudal fin Vtg for the detection of estrogenic activity, the present study used 
two common exogenous estrogens to carry out exposure experiments. EE2 is the most detected synthetic estro-
gen that is not broken down in surface and sewage waters. Concentrations of EE2 in surface water of the UK, 
Japan, and Canada usually ranged from 1 to 20 ng/L34, 35, 36, although a maximum of 273 ng/L was found in US 
streams37. Many studies have reported that Vtg induction in various fish species after waterborne exposure to EE2 
(Fig. 2). The lowest observed effect concentration (LOEC) of Vtg induction was normally 5–20 ng/L for zebraf-
ish, medaka (Oryzias latipes), and fathead minnow (Pimephales promelas)38, 39, 40, except one study reported the 
LOEC of Vtg induction in male fathead minnow for EE2 was 1 ng/L41. For three-spined stickleback (Gasterosteus 
aculeatus), Sheepshead minnow (Cyprinodon variegatus), and Mummichog (Fundulus heteroclitus), the LOEC 
of Vtg induction for EE2 was higher than 50 ng/L42, 43, 44. In the present study, we found that 2 ng/L EE2 exposure 
significantly induced caudal fin Vtg, indicating that the LOEC of Vtg induction in guppy caudal fin was lower 
than 2 ng/L EE2, which was lower than the values reported for most tested species. Moreover, Vtg concentration 
in caudal fin was not significantly different from that in the liver and whole fish. Thus, the results demonstrated 

Test species Status Exposure type and concentrations Detected sample
LOEC Vtg 
indution References

Zebrafish (Danio rerio)

adult male
8-day flow-through exopsure to 0.7, 
2.2, 3.6, 6.6, 10.1, 13.5, 17.2, 26.1, and 
90.1 ng/L

whole-body homogenate 3.6 ng/L 47

adult male 21-day semi-static exposure to 5, 10, 25 
and 50 ng/L plasma 10 ng/L 38

adult male 21-day semistatic exposure to 0–25 ng/L plasma 10 ng/L 48

juvenile 38-day semistatic exposure to 10 and 
100 ng/L whole-body homogenate 10 ng/L 49

adult male 21-day semi-static exposure to 1.67, 3.0, 
7.5, 10, and 20 ng/L plasma 1.67 ng/L 50

juvenile 90-day static exposure to 0.1, 1, 10, and 
25 ng/L whole-body homogenat 10 ng/L 51

Medaka (Oryzias latipes)

adult male 28-day static exposure to 10 and 
100 ng/L plasma 10 ng/L 52

adult male 21 day flow-through exposure to 31.3, 
62.5, 125, 250 and 500 ng/L liver 62.5 ng/L 39

adult male 21-day flow-through exposure to 6.2, 
12.2, 24.5, 49.9, and 93.2 ng/L plasma 24.5 ng/L 53

adult male 14-day static exposure to 0.2, 5, 500, and 
2,000 ng/L plasma 500 ng/L 54

juvenile 38-day semistatic exposure to 10 and 
100 ng/L whole-body homogenate 100 ng/L 49

Fathead minnows 
(Pimephales promelas)

adult male 7-day flow-through exposure to 0.5, 1, 5, 
10, 50, and 100 ng/L plasma 5 ng/L 55

adult male 8 day flow-through exposure to 10 and 
100 ng/L plasma 10 ng/L 56

adult male 21-day static exposure to 10, 20, and 
40 ng/L plasma 10 ng/L 40

adult male 21-day flow-through exposure to 0.1, 1, 
3, 10, and 100 ng/L plasma 1 ng/L 41

juvenile 21-day flow-through exposure to 2, 5, 
and 20 ng/L whole-body homogenate 5 ng/L 57

Three-spined stickleback 
(Gasterosteus aculeatus) adult male 21-day flow-through exposure to 5, 50, 

and 200 ng/L plasma 50 ng/L 42

Carp (Cyprinus carpio) juvenile 10-day exposure to 1, 10, 25, and 50 ng/L plasma 10 ng/L 58

Rainbow trout 
(Oncorhynchus mykiss) juvenile 21-day semistatic exposure to 5, 10, and 

25 ng/L plasma 5 ng/L 59

Sheepshead minnow 
(Cyprinodon variegatus) adult male 16-day flow-through exposure to 20, 

100, 200, 500, and 1000 ng/L plasma 100 ng/L 43

Murray rainbowfish 
(Melanotaenia fluviatilis) adult male 7-day semistatic exposure to 1, 5, 10, 50, 

and 100 ng/L Plasma 5 ng/L 60

Atlantic salmon (Salmo 
salar) juvenile 7-day static exposure to 5 and 50 ng/L plasma 50 ng/L 61

Mummichog (Fundulus 
heteroclitus) adult male 21-day static exposure to 1, 10, and 

100 ng/L plasma 100 ng/L 44

Guppies (Poecilia reticulata) adult male 21-day semistatic exposure to 2, 10, and 
50 ng/L tail fin 2 ng/L This study

Table 2.  Lowest observed effect concentration (LOEC) of Vtg induction in different fish exposed to waterborne 
17a-ethynylestradiol.
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that Vtg in caudal fin of male guppy could detect weak estrogenic activity of EE2. In addition, this study tested 
the sensitivity of guppy caudal fin Vtg to BPS, which has emerged as a potential bisphenol A replacement and has 
been frequently detected in aquatic environments of various countries in recent years. A maximum of 7.2 μg/L 
of BPS was found in Adyar River of India45. Naderi et al.46 reported that 10 μg/L BPS exposure could significantly 
increase the plasma Vtg concentration in male zebrafish. In this study, 1 μg/L BPS exposure for 21 days was found 
to significantly increase Vtg concentration in caudal fin, indicating that caudal fin Vtg in male guppy had an equal 
or even higher sensitivity to BPS than plasma Vtg in zebrafish. The above results confirmed that Vtg induction in 
caudal fin of guppy was highly sensitive to estrogenic chemicals and could be used as a reliable biomarker for the 
detection of estrogenic activity in the aquatic environment, though the stress of handling fish repeatedly should 
then be taken into account.

In summary, a sandwich ELISA for accurate quantification of guppy Vtg was established using purified 
Lv and its polyclonal antibody. Subsequently, this ELISA was used to detect tissue distribution of Vtg in male 
guppy exposed to exogenous estrogens. Caudal fin produced Vtg in response to low concentrations of exogenous 
estrogens, and its Vtg concentration was significantly higher than that in the whole fish at low E2 concentration. 
Further, we found that caudal fin Vtg of guppy was capable of detecting estrogenic activities of EE2 and BPS at 
environmentally relevant concentrations. Therefore, we suggest guppy caudal fin with a high capacity to regener-
ate as a potential alternative sample for repeated Vtg analysis.

Methods
Experimental fish.  Sexually mature red albino guppies (Poecilia reticulata) (wet mass, 0.32 ± 0.10 g; stand-
ard length, 2.2 ± 0.4 cm) were mainatined in 50-L aquaria filled with 30-L dechlorinated tap water at 26 ± 1 °C, 
with 7.0 ± 0.1 mg/L dissolved oxygen and 14 h:10 h light-dark cycle. The fish were fed with newly hatched brine 
shrimp twice and half of the aquaria water was replaced daily. In addition, the fish were handled according to 
the National Institute of Health Guidelines for the handling and care of experimental animals and the animal 
utilization protocol was approved by the Institutional Animal Care and Use Committee of the Ocean University 
of China.

Figure 8.  Western blot analysis of Vtg induction in different tissues of adult male guppy exposed to 50 (A), 100 
(B), and 200 ng/L E2 (C) for 21 days. Lane 1, WBH of ovariectomized female fish; lane 2, WBH of control male 
fish; lane 3, skin; lane 4, caudal fin; lane 5, gonad; lane 6, liver; lane 7, eye; lane 8, brain.

Figure 9.  Concentrations of Vtg in guppy exposed to 50, 100, and 200 ng/L E2 for 21 days. Values are 
means ± S.D and asterisks indicate statistically significant difference from the control group (**P < 0.01).
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Lipovitellin purification.  Ovaries were removed from adult female guppies and homogenized in ice-cold 
homogenate buffer (20 mM Tris-HCl, pH 7.5, containing 100 mM NaCl and 10 mM EDTA) using a glass homog-
enizer. After centrifugation at 8,000 × g for 10 min at 4 °C. Lv was purified from ovarian homogenates by gel filtra-
tion (Sephacryl S-300 HR 16/60 column; GE Healthcare, Uppsala, Sweden) and anion-exchange chromatography 
(DEAE-Sepharose FF 12/20 column; GE Healthcare, Uppsala, Sweden) according to our previously reported 
methods62. After determination of protein concentration by the Bradford assay using bovine serum albumin 
(BSA) as the standard, the purified Lv was stored at −80 °C.

Lipovitellin characterization.  The purified protein was analyzed using native polyacrylamide gel electro-
phoresis (PAGE; 4–7.5%), and the gels were stained with Coomassie Brilliant Blue (CBB), Schiff reagent, methyl 
green, and Sudan black B following the methods as describe by Pan et al.63.

The molecular mass of purified Lv was estimated by HMW native marker Kit (GE Healthcare, USA) according 
to the method described by Sun and Zhang64. Polypeptide components of Lv were analyzed by sodium dodecyl 
sulfate (SDS)-PAGE. After electrophoresis, gels were stained with CBB, and molecular weight of polypeptide units 
was estimated using an unstained protein ladder (20–200 kDa, Thermo Scientific, Waltham, MA, USA).

Antibody production and label.  Polyclonal antiserum against guppy Lv was raised in rabbits following 
routine methods. Briefly, rabbits were injected subcutaneously with 1 mL of Lv solution (800 μg) emulsified in 
complete Freund’s adjuvant followed by another three boosts of Lv solution (500 μg) in incomplete Freund’s adju-
vant at 2-week intervals. Blood was collected, centrifuged, and anti-Lv immunoglobulin G (IgG) was purified 
from the supernatant by affinity chromatography on a HiTrap Protein G column (GE Healthcare). The purified 
IgG was labeled with horseradish peroxidase (HRP, Sigma, USA) by an improved sodium periodate-oxidation 
method25.

Western blot of Vitellogenin.  Western blot analysis was performed to check the specificity of anti-Lv 
antibody to guppy Vtg. The WBH of control male and E2-exposed male guppy, and the purified Lv were electro-
phoresed on SDS-PAGE and then transferred onto polyvinylidene difluoride membranes. After incubation with 
anti-Lv antibody at a 1:1000 dilution, the membranes were incubated with HRP-conjugated goat anti-rabbit IgG 
(Solarbio, Beijing, China) at a 1:2000 dilution. Finally, the membranes were visualized with freshly prepared DAB 
substrate.

Figure 10.  Concentrations of Vtg in guppy exposed to 2, 10, and 50 ng/L EE2 (A) and 1, 10, and 100 μg/L BPS 
(B) for 21 days. Values are means ± S.D. and asterisks indicate statistically significant difference from the control 
group (**P < 0.01).
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Sandwich ELISA.  A sandwich ELISA was developed by the procedure of Mitsui et al.65 with minor mod-
ification. Microtiter plates (Costar, Cambridge, MA) were coated with 100 μL of anti-Lv IgG diluted in 0.05 M 
sodium carbonate overnight at 4 °C and washed three time with 200 μL/well of PBST (10 mM PBS containing 
0.05% Tween-20). The wells were then incubated with 200 μL PBST containing 1% BSA for 1 h at 37 °C. After 
three washes with PBST, 100 μL of samples and standard serially diluted with PBST were added to each well and 
incubated at 37 °C for 1 h. The wells were washed five times and received 100 μL/well of HRP-labeled anti-Lv 
antibody at serial dilutions (1:1250, 1:2500, 1:5000, 1:10 000). After incubation at 37 °C for 1 h, the color was 
developed with 100 μL of tetramethylbenzidine enzyme substrate (Solarbio, China) and stopped by adding 100 μL 
of 2 M sulfuric acid. Absorbance values were measured at 450 nm in a plate reader. Standards and samples were 
run in duplicate.

The reliability of ELISA assay were evaluated by measuring its precision, sensitivity, and specificity30. Briefly, 
precision was evaluated using various purified Lv concentrations by measuring the intra- and inter-assay coeffi-
cients of variation (CV%), which were defined as the standard deviation devided by the mean and mutiplied by 
100. The specificity was assessed by comparing curves of serial dilutions of WBH from E2-treated male guppy and 
the Lv standard curve. The limit of detection was defined as the concentration corresponding to the mean of the 
absorbance values for 12 replicates of the zero standards plus two times the standard deviation. Additionally, the 
matrix effect of caudal fin and WBH samples were evaluated by two different methods30, 38.

Tissue distribution of Vitellogenin in male guppy exposed to E2.  Adult male guppies (n = 16) were 
exposed to nominal concentrations of 50, 100, and 200 ng/L E2 in 5-L aquaria. The stock solution of E2 was 
prepared in ethanol and kept at 4 °C. The ethanol concentration in each group was below 0.001%. The exposure 
solution was renewed daily. After 21 days of exposure, fish were anesthetized in a bath of tricane methane sulfate, 
body lengths and weights were measured. The liver, eyes, testis, brain, and skin of each fish were separated with 
sterilized scissors and tweezers. Stainless steel blades were used to cut one third of caudal fins with an approxi-
mate weight of 0.02 g. Each tissue was weighed, diluted 1:4 (v/v) in 10 mM PBS containing 0.02% aprotinin, and 
homogenized by an automatic grinding machine (ShangHai Jingxin industrial development CO., LTD) with a 
homogeneous velocity of 50 HZ for 2 min. After centrifugation (8000 g, 10 min) at 4 °C, the supernatant was 
transferred to a clean tube for Vtg detection by Western blot and sandwich ELISA assay. All assays were carried 
out in duplicate.

Vitellogenin induction in caudal fin of male guppy exposed to EE2 and BPS.  Adult male guppies 
(n = 20) were exposed to 2, 10, and 50 ng/L EE2 and 1, 10, 100 μg/L BPS, respectively. After 21 days, caudal fin, 
liver tissue, and whole body were homogenated and centrifugated as described above. Vtg in the supernatant were 
quantified by the developed sandwich ELISA.

Statistics.  Vtg induction data are presented as the mean ± standard deviation, and the differences between 
the control and exposed groups were assessed by one-way analysis of variance followed by a Tukey’s post hoc tests. 
Prior to parametric analysis, data were log-transformed to achieve variance homogeneity. All statistical tests were 
conducted using SPSS 18.0 software (SPSS Inc., USA), and values were determined as significant when P < 0.05.

Data Availability.  All data has been included in the manuscript. The primary data is available to all inter-
ested researchers by contacting wangjun@ouc.edu.cn.
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