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Abstract Efference copies refer to internal duplicates of movement-producing neural signals.

Their primary function is to predict, and often suppress, the sensory consequences of willed

movements. Efference copies have been almost exclusively investigated in the context of overt

movements. The current electrophysiological study employed a novel design to show that inner

speech – the silent production of words in one’s mind – is also associated with an efference copy.

Participants produced an inner phoneme at a precisely specified time, at which an audible

phoneme was concurrently presented. The production of the inner phoneme resulted in

electrophysiological suppression, but only if the content of the inner phoneme matched the

content of the audible phoneme. These results demonstrate that inner speech – a purely mental

action – is associated with an efference copy with detailed auditory properties. These findings

suggest that inner speech may ultimately reflect a special type of overt speech.

DOI: https://doi.org/10.7554/eLife.28197.001

Introduction
Sensory attenuation – also known as self-suppression – refers to the phenomenon that self-gener-

ated sensations feel less salient, and evoke a smaller neurophysiological response, than externally-

generated sensations which are physically identical (Hughes et al., 2013; Cardoso-Leite et al.,

2010). Sensory attenuation is believed to result from the action of an internal forward model, or IFM

(Blakemore et al., 2000a; Wolpert and Miall, 1996). According to this account, the sensory conse-

quences of self-generated movements are predicted based on a copy of the outgoing motor com-

mand, known as an efference copy. These predicted sensations are compared to the actual

sensations resulting from the movement, and the difference between predicted and actual sensation

(i.e., the sensory discrepancy – Wolpert and Miall, 1996) is sent higher up the neuronal hierarchy

for further processing (Seth and Friston, 2016). In the case of a self-generated movement, the inter-

nal prediction is able to account for, and ‘explain away’, much of the resulting sensation, which is

why self-initiated sensations typically feel less salient, and evoke a smaller neurophysiological

response, than externally-initiated sensations (Blakemore et al., 1998).

Sensory attenuation has been extensively studied in the context of overt speech production.

Auditory stimuli elicit an electrophysiological brain response (the auditory-evoked potential) with a

characteristic N1 component. The amplitude of this component is known to be sensitive to sound

intensity; i.e., loud sounds evoke larger N1 amplitudes than soft sounds (Näätänen and Picton,

1987; Hegerl and Juckel, 1993). Numerous electroencephalographic (EEG) and magnetoencepha-

lographic (MEG) studies have found that self-generated vocalizations elicit an N1 component (M100
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in the MEG) of smaller amplitude than the N1 component elicited when passively listening to the

same sounds (Ford et al., 2007a; Curio et al., 2000; Heinks-Maldonado et al., 2005;

Oestreich et al., 2015; Houde et al., 2002). This phenomenon has been dubbed N1-suppression,

and it suggests that self-generated sounds are processed as though they were physically softer than

externally-generated sounds, reflecting the action of an IFM (Greenlee et al., 2011; Heinks-

Maldonado et al., 2006). The suggestion that an IFM is responsible for sensory attenuation to overt

speech is bolstered by the finding that experimentally altering auditory feedback (e.g., by pitch-shift-

ing or delaying an individual’s voice, such that auditory sensations do not match the predictions of

the IFM) reduces the amount of N1-suppression (Heinks-Maldonado et al., 2006;

Behroozmand and Larson, 2011; Behroozmand et al., 2011; Aliu et al., 2009).

The central aim of the present study is to explore whether N1-suppression, which has consistently

been observed in response to overt speech, also occurs in response to inner speech, which is a

purely mental action. Inner speech – also known as covert speech, imagined speech, or verbal

thoughts – refers to the silent production of words in one’s mind (Perrone-Bertolotti et al., 2014;

Alderson-Day and Fernyhough, 2015). Inner speech is one of the most pervasive and ubiquitous of

human activities; it has been estimated that most people spend at least a quarter of their lives

engaged in inner speech (Heavey and Hurlburt, 2008). An influential account of inner speech sug-

gests that it ultimately reflects a special case of overt speech in which the articulator organs (e.g.,

mouth, tongue, larynx) do not actually move; that is, inner speech is conceptualized as ‘a kind of

action’ (Jones and Fernyhough, 2007, p.396 – see also Feinberg, 1978; Pickering and Garrod,

2013; Oppenheim and Dell, 2010). Support for this idea has been provided by studies showing

that inner speech activates similar brain regions to overt speech, including audition and language-

related perceptual areas and supplementary motor areas, but does not typically activate primary

motor cortex (Palmer et al., 2001; Zatorre et al., 1996; Aleman et al., 2005; Shuster and

Lemieux, 2005). While previous data suggest that inner and overt speech share neural generators,

relatively few neurophysiological studies have explored the extent to which these two processes are

functionally equivalent. If inner speech is indeed a special case of overt speech – ‘a kind of action’ –

eLife digest As you read this text, the chances are you can hear your own inner voice narrating

the words. You may hear your inner voice again when silently considering what to have for lunch, or

imagining how a phone conversation this afternoon will play out. Estimates suggest that we spend

at least a quarter of our lives listening to our own inner speech. But to what extent does the brain

distinguish between inner speech and the sounds we produce when we speak out loud?

Listening to a recording of your own voice activates the brain more than hearing yourself speak

out loud. This is because when the brain sends instructions to the lips, tongue, and vocal cords

telling them to move, it also makes a copy of these instructions. This is known as an efference copy,

and it enables regions of the brain that process sounds to predict what they are about to hear.

When the actual sounds match those predicted – as when you hear yourself speak out loud – the

brain’s sound-processing regions dampen down their responses.

But does the inner speech in our heads also generate an efference copy? To find out, Whitford

et al. tracked the brain activity of healthy volunteers as they listened to speech sounds through

headphones. While listening to the sounds, the volunteers had to produce either the same speech

sound or a different speech sound inside their heads. A specific type of brain activity decreased

whenever the inner speech sound matched the external speech sound. This decrease did not occur

when the two sounds were different. This suggests that the brain produces an efference copy for

inner speech similar to that for external speech.

These findings could ultimately benefit people who suffer from psychotic symptoms, for example

as part of schizophrenia. Symptoms such as hearing voices are thought to reflect problems with

producing and interpreting inner speech. The technique that Whitford et al. have developed will

enable us to test this long-held but hitherto untestable idea. The results should increase our

understanding of these symptoms and may eventually lead to new treatments.

DOI: https://doi.org/10.7554/eLife.28197.002
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then it would also be expected to have an associated IFM (Tian and Poeppel, 2010 – see also Fein-

berg, 1978; Numminen and Curio, 1999; Whitford et al., 2012; Ford et al., 2001a).

A significant challenge in determining the existence (or otherwise) of an IFM to inner speech is

that inner speech does not elicit a measurable auditory-evoked potential, which means that N1-sup-

pression to inner speech cannot be determined directly using current methodologies. However, the

existence of an IFM may be inferred based on how the production of inner speech suppresses the

brain’s electrophysiological response to overt speech (Tian and Poeppel, 2010; Tian and Poeppel,

2015; Tian and Poeppel, 2013; Tian and Poeppel, 2012). A critical feature of the IFM associated

with overt speech is that the efference copy is (a) time-locked to the onset of the action, and (b) con-

tains specific predictions as to the expected sensory consequences of that action (i.e., is content-

specific – Wolpert et al., 1995). Correspondingly, if inner speech were, in fact, associated with an

IFM, then its associated efference copy would be expected to be: (a) time-locked to the onset of the

inner speech, and (b) contain information as to the specific content of the inner speech. In this case,

engaging in inner speech would be expected to result in maximal N1-suppression to overt speech in

the case where two conditions were met: (1) the external sound was presented at precisely the same

time as the inner speech was produced, and (2) the content of the external sound matched the con-

tent of the inner speech.

The present study introduces a new experimental procedure that allowed us to test whether inner

speech produces N1-suppression to audible speech in the absence of any overt motor action. In this

protocol, participants were instructed to produce a single phoneme in inner speech at a specific

time, which was designated by means of a precise visual cue. At the same time, an audible phoneme

was presented in participants’ headphones; the audible phoneme could be either the same as

(Match condition) or different from (Mismatch condition) the inner phoneme. In the Passive condi-

tion, participants were instructed not to produce an inner phoneme. The results indicated that inner

speech resulted in N1-suppression, but only if the content of the inner phoneme matched the con-

tent of the audible phoneme. These results suggest that inner speech production is associated with

a time-locked and content-specific internal forward model, similar to the one that operates in the

production of overt speech. Furthermore, these results suggests that inner speech, by itself, is able

to elicit an efference copy and cause sensory attenuation, even in the absence of an overt motor

action.

Results

Inner speech experiment
On each trial of the experiment, participants watched a short animation of approximately 5 s dura-

tion. As illustrated in Figure 1a, the animation depicted a red vertical line (the ‘fixation’ line) that

remained in a fixed location in the middle of the screen. This fixation line was overlaid upon a thick

green horizontal bar (the ‘ticker tape’). A second, green, vertical line (the ‘trigger’ line), which was

embedded in the ticker tape, was initially presented at the far right-hand side of the screen. At the

start of each trial, participants fixated their eyes on the fixation line. After an interval of 1–2 s, the

green ticker tape and the green trigger line began to move leftwards across the screen towards,

and ultimately beyond, the stationary fixation line. At the exact time at which the trigger line inter-

sected the fixation line – the ‘sound-time’ – an audible phoneme was delivered to participants’ head-

phones (Figure 1c). The audible phoneme was a recording of a male speaker producing either the

phoneme /BA/ or the phoneme /BI/. (Note: for clarity, audible phonemes are capitalized in text

while inner phonemes are written in lower case. Our justification for choosing these two audible pho-

nemes in particular is presented below). Participants were instructed to generate an inner phoneme

at exactly the moment the fixation line intersected the trigger line (i.e., at the sound-time). The

experimental manipulation was the content of the inner phoneme that participants were instructed

to produce. There were three different types of trial blocks. In the first type of trial block, partici-

pants were asked to produce the inner phoneme /ba/ at the sound-time. The second type of trial

block was identical, except that participants were asked to produce the inner phoneme /bi/. On

each trial, participants were asked to imagine themselves moving their articulator organs (i.e.,

mouth, tongue, larynx, etc.) and vocalizing the inner phoneme, but not to actually make any move-

ments. In the third type of trial block, participants were not instructed to produce an inner phoneme,
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but were instructed to simply listen to the sounds. Following the sound-time, the trigger line contin-

ued to move for an additional 1 s before a text-box was displayed and participants were asked to

rate how successfully they followed the instructions on the trial.

The data were parsed into three discrete trial-types, which were analyzed as separate conditions:

(1) Match trials, in which the inner phoneme matched the audible phoneme (i.e., inner phoneme: /

ba/; audible phoneme: /BA/ OR inner phoneme: /bi/; audible phoneme: /BI/), (2) Mismatch trials, in

which the imagined phoneme did not match the audible phoneme (i.e., inner phoneme: /ba/; audi-

ble phoneme: /BI/ OR inner phoneme: /bi/; audible phoneme: /BA/, and (3) Passive trials, in which

the participant was not instructed to imagine a phoneme (i.e., inner phoneme: none; audible pho-

neme: /BA/ OR inner phoneme: none; audible phoneme: /BI/).

Following pre-processing (see EEG Processing and Analysis for full details), EEG data epochs

(time-locked to the onset of the audible phoneme) were averaged separately for each of the three

conditions (Match, Mismatch, Passive). The dependent variable was the amplitude of the N1 compo-

nent of the auditory-evoked potential elicited by the auditory phoneme.

The N1 peak was identified on each individual participant’s average waveform for each of the

three conditions. Figure 2 shows the auditory-evoked potentials averaged across electrodes FCz,

Fz, and Cz, as these were the electrodes at which N1 was maximal (see Figure 2a, voltage maps).

Figure 2b shows a box-and-whiskers plot of raw N1 amplitudes for each condition (Match, Mis-

match, Passive). Given that this experiment used a repeated measures design, Figure 2c shows a

scatterplot of the magnitude of the within-subjects differences between conditions, which constitute

the critical contrasts. These difference scores were approximately normally distributed with no clear

outliers. Repeated measures ANOVA revealed a significant main effect of Condition (F(2,82) = 4.21,

p = 0.018, hp
2 = 0.09) on the amplitude of the N1 peak. Analysis of simple effects revealed that N1-

amplitude in the Match condition was significantly smaller than both the Mismatch (t(41) = 2.54,

p = 0.015, dz = 0.39, CI(95%) = [0.187, 1.649]) and Passive (t(41) = 2.77, p = 0.008, dz = 0.43, CI

(95%) = [0.278, 1.776]) conditions (Figure 2c). There was no difference in N1-amplitude between the

Mismatch and Passive conditions (t(41) = 0.26, p = 0.800, dz = 0.04, CI(95%) = [�0.758, 0.977]).

As can be seen in Figure 2, while the topographies exhibited a fronto-central negativity in all

three conditions, centered on electrode FCz, there was a hint of a leftward shift in the scalp distribu-

tion in the Match condition. Thus, in order to ensure the stability of the results, we performed a sup-

plementary analysis with an expanded set of nine electrodes: specifically, Fz, FCz, Cz, F1, FC1, C1,

F2, FC2, and C2. The pattern of results was identical to when the analysis was restricted to the three

Phoneme
Inner

123

Fixation Trigger

Ticker Tape 123 123

Phoneme
Audible

Match/ba/

/bi/ Mismatch

Passive

/BA/

/BA/

/BA/

A B C D

Figure 1. A schematic of the experimental protocol. Participants were instructed to fixate their eyes on the central red fixation line (Panel A). After a

delay (1–2 s), the green trigger line, which was presented on the far right-hand side of the screen, and visible in participants’ peripheral vision, began to

move smoothly across the screen in a leftwards direction at a speed of 6.5˚/s (Panel B), such that after 3.75 s the trigger line overlapped with the

fixation line. At this precise moment, dubbed the ‘sound-time’, two events occurred simultaneously (Panel C). Firstly, the participant was asked to

imagine themselves producing a pre-defined phoneme in inner speech (either /ba/ or /bi/ or no inner phoneme). Secondly, an audible phoneme

(either /BA/ or /BI/), produced by a male speaker, was delivered to the participant’s headphones. In Match trials (Panel D, top, blue), the inner

phoneme was congruent with the audible phoneme (e.g., inner phoneme: /ba/; audible phoneme: /BA/). In Mismatch trials (Panel D, middle, red), the

inner phoneme was incongruent with the audible phoneme (e.g., inner phoneme: /bi/; audible phoneme: /BA/). In Passive trials (Panel D, bottom,

black), the participant did not produce an inner phoneme. Following the sound-time, the trigger line continued to move past the fixation line for an

additional 1 s. The trial was then complete and the participant was asked to rate how successfully they managed to follow the instructions on that trial,

on a scale from 1 (Not at all successful) to 5 (Completely successful).

DOI: https://doi.org/10.7554/eLife.28197.003
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Figure 2. Inner speech experiment: N1 component analysis. (A) Waveforms showing the auditory-evoked

potentials elicited by the audible phonemes in the Match condition (blue line), Mismatch condition (red line) and

Passive condition (black line). The N1-component is labelled; the waveforms were averaged across electrodes FCz,

Fz, and Cz, as these were the electrodes at which the N1 component was maximal. The waveforms are shown

collapsed across audible phoneme (audible /BA/ and /BI/), and the waveforms for the Match and Mismatch

conditions are shown collapsed across inner phoneme (inner /ba/ and /bi/). Voltage maps are plotted separately

for each condition; white dots illustrate the electrodes used in the analysis. (B) Box-and-whiskers plots showing the

amplitude of the N1 component elicited by the audible phonemes in the Match, Mismatch and Passive conditions.

The edges of the boxes represent the top and bottom quartiles, the horizontal stripe represents the median, the

cross represents the mean, the whiskers represent the 9th and 91st percentiles, and the colored dots represent the

participants whose data fell outside the range defined by the whiskers. (C) Scatterplots showing the within-

subjects difference scores (in terms of N1-amplitude) for the three contrasts-of-interest in the inner speech

experiment; namely Match minus Mismatch, Match minus Passive, and Mismatch minus Passive. These difference

scores were approximately normally distributed with no clear outliers. Each dot represents a single participant’s

difference score. The horizontal bars represent the mean, and the error bars represent the 95% confidence

interval.

DOI: https://doi.org/10.7554/eLife.28197.004

The following source data is available for figure 2:

Source data 1. Inner Speech Experiment - N1 amplitude and latency data.

DOI: https://doi.org/10.7554/eLife.28197.005
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midline electrodes. Specifically, the main effect of Condition remained significant (F(2,82) = 3.61,

p = 0.031, hp
2 = 0.08), as did the difference between the Match and Mismatch conditions (t(41) =

2.35, p = 0.024, dz = 0.36, CI(95%) = [0.122, 1.607]) and the Match and Passive conditions (t(41) =

2.57, p = 0.014, dz = 0.40, CI(95%) = [0.193, 1.624]). The difference between the Mismatch and Pas-

sive conditions remained non-significant (t(41) = 0.11, p = 0.916, dz = 0.02, CI(95%) = [�0.889,

0.800]). The Condition � Electrode interaction was also not significant (F(16,656) = 1.18, p = 0.323,

hp
2 = 0.03).

There was also a main effect of Condition on the latency of the N1 peak (F(2,82) = 5.03,

p = 0.016, hp
2 = 0.11. Analysis of the simple effects revealed that the N1-peak occurred significantly

earlier in the Match condition compared to the Passive condition (t(41) = 3.15, p = 0.003, dz = 0.49,

CI(95%) = [�6.927,–1.518]). There was no significant difference in N1-latency between the Mismatch

and Passive conditions (t(41) = 1.76, p = 0.087, dz = 0.27, CI(95%) = [�6.298, 0.441]), nor between

the Match and Mismatch conditions (t(41) = 1.29, p = 0.204, dz = 0.20, CI(95%) = [�3.316, 0.729]).

A visual inspection of Figure 2 also suggested between-condition differences in the P2 (150–190

ms) and P3 (250–310 ms) components of the auditory-evoked potential. While these components

were not directly relevant to our hypotheses, for completeness the data and analyses for these com-

ponents are presented below.

The P2 component occurred around 150–190 ms post-sound (see Figure 3a), while the P3 com-

ponent occurred around 250–310 ms post-sound (see Figure 4a). However, not all three conditions

generated a distinct peak for the P2 and P3 components. Specifically, the Match and Mismatch con-

ditions did not elicit a distinct P2, whereas the Passive condition did not exhibit a distinct P3. This

meant that (unlike for analysis of the N1) it was not possible to use a peak-detection approach for

these components. Instead, time-windows were identified for the P2 (150–190 ms) and P3 (250–310

ms) components, and the average voltage within these time-windows were analyzed (see EEG Proc-

essing and Analysis for more detail).

Figure 3a shows the average waveforms for the P2 component, averaged across the Cz, FCz,

and CPz electrodes, and Figure 3B shows a box-and-whiskers plot of raw P2 amplitudes for each

condition. One-way ANOVA revealed a main effect of Condition (F(2,82) = 6.60, p = 0.006, hp
2 =

0.14). Analysis of the simple effects revealed that amplitude of the P2 component was significantly

smaller in the Mismatch condition, relative to both the Match (t(41) = 3.54, p = 0.001, dz = 0.55, CI

(95%) = [0.555, 2.028]) and Passive (t(41) = 3.21, p = 0.003, dz = 0.50, CI(95%) = [�3.549, –0.810])

conditions (Figure 3C). The difference between the Match and Passive conditions was not significant

(t(41) = 1.26, p = 0.216, dz = 0.19, CI(95%) = [�0.540, 2.316]).

Figure 4a shows the average waveforms for the P3 component, averaged across the CPz, Cz,

and Pz electrodes, and Figure 4B shows a box-and-whiskers plot of raw P3 amplitudes for each con-

dition. ANOVA revealed a main effect of Condition (F(2,82) = 5.86, p = 0.004, hp
2 = 0.13). Analysis

of the simple effects revealed that the amplitude of the P3 component was significantly larger in the

Match condition relative to both the Mismatch (t(41) = 2.23, p = 0.032, dz = 0.34, CI(95%) = [0.117,

2.433]) and Passive (t(41) = 3.26, p = 0.002, dz = 0.50, CI(95%) = [0.813,

3.444]) conditions (Figure 4c). There was no significant difference between the Passive and Mis-

match conditions (t(41) = 1.31, p = 0.196, dz = 0.20, CI(95%) = [�0.458, 2.165]).

Overt speech experiment
To provide a point of reference with the inner speech experiment, we also conducted a follow-up

‘overt speech’ experiment. The overt speech experiment had an identical experimental procedure to

the inner speech experiment, except that participants were instructed to overtly – as opposed to

covertly – vocalize the phonemes at the sound-time. Just as in the inner speech experiment, an audi-

ble phoneme (i.e., /BA/ or /BI/) was delivered to participants’ headphones at the sound-time. Partici-

pants were instructed to vocalize the overt phonemes softly, so as to minimize the amount of bone

conduction of the sound to the ear. An additional ‘Motor-Control’ condition was also included in

which participants overtly vocalized the phonemes at the sound-time, but no audible phoneme was

delivered. The purpose of this condition was to allow us to identify and correct for the electrophysio-

logical activity generated by the motor act of producing the overt phoneme per se. This was done

by subtracting participants’ activity in the motor-only condition from their waveforms in the active

conditions (i.e., Match and Mismatch), as is common in sensory attenuation studies which compare
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Figure 3. Inner speech experiment: P2 component analysis. (A) Waveforms showing the auditory-evoked

potentials elicited by the audible phonemes in the Match condition (blue line), Mismatch condition (red line), and

Passive condition (black line). The P2-component is labelled; P2 amplitude was calculated as the average voltage

in the 150–190 ms time-window. The waveforms were averaged across electrodes Cz, FCz, and CPz, as these were

the electrodes at which the P2 component was maximal. Voltage maps are plotted separately for each condition;

white dots illustrate the electrodes used in the analysis. (B) Box-and-whiskers plots showing the amplitude of the

P2 component elicited by the audible phonemes in the Match, Mismatch, and Passive conditions. The edges of

the boxes represent the top and bottom quartiles, the horizontal stripe represents the median, the cross

represents the mean, the whiskers represent the 9th and 91st percentiles, and the colored dots represent the

participants whose raw data fell outside the range defined by the whiskers. (C) Scatterplots showing the within-

subjects difference scores (in terms of P2-amplitude) for the three contrasts-of-interest in the inner speech

experiment; namely Match minus Mismatch, Match minus Passive, and Mismatch minus Passive. These difference

scores were approximately normally distributed with no clear outliers. Each dot represents a single participant’s

difference score. The horizontal bars represent the mean, and the error bars represent the 95% confidence

interval.

DOI: https://doi.org/10.7554/eLife.28197.006

The following source data is available for figure 3:

Source data 1. Inner Speech Experiment - P2 amplitude data.

DOI: https://doi.org/10.7554/eLife.28197.007
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Figure 4. Inner speech experiment: P3 component analysis. (A) Waveforms showing the auditory-evoked

potentials elicited by the audible phonemes in the Match condition (blue line), Mismatch condition (red line), and

Passive condition (black line). The P3-component is labelled; P3 amplitude was calculated as the average voltage

in the 250–310 ms time-window. The waveforms were averaged across electrodes CPz, Cz, and Pz, as these were

the electrodes at which the P3 component was maximal. Voltage maps are plotted separately for each condition;

white dots illustrate the electrodes used in the analysis. (B) Box-and-whiskers plots showing the amplitude of the

P3 component elicited by the audible phonemes in the Match, Mismatch, and Passive conditions. The edges of

the boxes represent the top and bottom quartiles, the horizontal stripe represents the median, the cross

represents the mean, the whiskers represent the 9th and 91st percentiles, and the colored dots represent the

participants whose raw data fell outside the range defined by the whiskers. (C) Scatterplots showing the within-

subjects difference scores (in terms of P3-amplitude) for the three contrasts-of-interest in the inner speech

experiment; namely Match minus Mismatch, Match minus Passive, and Mismatch minus Passive. These difference

scores were approximately normally distributed with no clear outliers. Each dot represents a single participant’s

difference score. The horizontal bars represent the mean, and the error bars represent the 95% confidence

interval.

DOI: https://doi.org/10.7554/eLife.28197.008

The following source data is available for figure 4:

Source data 1. Inner Speech Experiment - P3 amplitude data.

DOI: https://doi.org/10.7554/eLife.28197.009
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motor-active and motor-passive conditions (Ford et al., 2014). The order of the conditions was ran-

domized for each participant, with the caveat that the Motor-Control condition was always run last.

Thirty individuals participated in the overt speech experiment. Participants’ mean age was 25.0

years (SD = 6.0) and 20 were female. Thirty-three participants were originally recruited for the study,

however three participants generated �60 usable epochs in one or more conditions (based on the

exclusion criteria described for the inner speech experiment) and were excluded from further

analysis. Figure 5 shows the auditory-evoked potentials averaged across electrodes FCz, Fz, and Cz

for the uncorrected (Figure 5a) and motor-corrected data (Figure 5b). Voltage-maps are presented

for the motor-corrected data. Raw N1 amplitudes for each motor-corrected condition are presented

as box-and-whiskers plots in Figure 5c, and Figure 5d shows scatterplots of the (within-subjects) dif-

ference scores between the conditions.

For the uncorrected data, repeated-measures ANOVA revealed a significant main effect of Condi-

tion (F(2,58) = 10.99, p < 0.001, hp
2 = 0.28) on the amplitude of the N1 peak. Critically, analysis of

simple effects revealed that N1-amplitude in the Match condition was significantly smaller than the

Mismatch condition (t(29) = 2.61, p = 0.014, dz = 0.48, CI(95%) = [0.472, 3.897]), consistent with the

results of the inner speech experiment. However, contrary to the results of the inner speech experi-

ment, N1-amplitude in the Passive condition was significantly smaller than both the Match (t(29) =

2.63, p = 0.013, dz = 0.48, CI(95%) = [0.646, 5.137]) and Mismatch (t(29) = 3.97, p < 0.001,

dz = 0.72, CI(95%) = [2.461, 7.691]) conditions in the overt speech experiment (see Figure 5a).

The pattern of results was identical for the motor-corrected data. Repeated-measures ANOVA

revealed a significant main effect of Condition (F(2,58) = 8.43, p = 0.001, hp
2 = 0.23). Analysis of sim-

ple effects revealed that N1-amplitude in the Match condition was significantly smaller than the Mis-

match condition (t(29) = 2.46, p = 0.020, dz = 0.45, CI(95%) = [0.384, 4.190]), and that N1-amplitude

in the Passive condition was significantly smaller than both the Match (t(29) = 2.20, p = 0.036,

dz = 0.40, CI(95%) = [0.150, 4.243]) and Mismatch (t(29) = 3.43, p = 0.002, dz = 0.63, CI(95%) =

[1.808, 7.159]) conditions (see Figure 5b, c and d).

Selecting the audible phonemes for the inner and overt speech
experiments
In order to select which two audible phonemes would be presented to participants in the inner and

overt speech experiments, we presented nine phonemes to 10 participants (age = 18.7 years,

SD = 1.1; seven female) while they listened passively. Each phoneme was presented 90 times, and

the presentation order was randomized. The nine phonemes were: /BA/, /BI/, /DA/, /DI/, /GA/, /KI/,

/PA/, /PI/, and /TI/. Each phoneme was ~200 ms in duration, presented at ~70 dB SPL, and was pro-

duced by the same male speaker.

Waveforms showing the auditory-evoked potentials elicited by the nine phonemes are presented

in Figure 6. The waveforms are shown collapsed across electrodes FCz, Cz, and Fz.

Of the nine different phonemes, /BA/ and /BI/were judged to be most similar in terms of their

amplitude and overall shape, and hence these phonemes were chosen for use as the audible pho-

nemes in both the inner and overt speech experiments.

Discussion
The present study used a novel experimental protocol to demonstrate that the production of an

inner phoneme resulted in sensory attenuation of the auditory-evoked potential elicited by a simulta-

neously-presented audible phoneme, in the absence of any overt motor action. Crucially, the pro-

duction of inner speech did not result in equal sensory attenuation to all sounds; sensory attenuation

was dependent on the content of the inner phoneme matching the content of the audible phoneme.

These results suggest that inner speech production is associated with a time-locked and content-

specific internal forward model, similar to the one believed to operate in the production of overt

speech (Hickok, 2012; Tourville and Guenther, 2011; Hickok and Poeppel, 2004; Houde et al.,

2013). In short, the results of this study suggest that inner speech alone is able to elicit an efference

copy and cause sensory attenuation of audible sounds.

The key finding of the present study was that the production of inner speech, by itself, led to N1-

suppression to an audible sound. N1-suppression has been reported many times previously in

response to overt speech (Ford et al., 2007a; Curio et al., 2000; Heinks-Maldonado et al., 2005;
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Figure 5. Overt speech experiment: N1 component analysis. The experimental protocol for the overt speech

experiment was identical to the inner speech experiment except that participants were required to overtly (as

opposed to covertly) vocalize the phoneme at the sound time. (A) Uncorrected waveforms showing the auditory-

evoked potentials elicited by the audible phonemes in the Match condition (blue line), Mismatch condition (red

Figure 5 continued on next page
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Oestreich et al., 2015; Houde et al., 2002). There is strong evidence that the mechanistic basis of

N1-suppression to overt speech involves an efference-copy mediated IFM (Eliades and Wang,

2003; Crapse and Sommer, 2008; Rauschecker and Scott, 2009). It thus seems reasonable to

assume that a similar mechanism underlies sensory attenuation in the case of inner speech. The idea

that inner speech shares mechanistic features with overt speech is consistent with the conceptualiza-

tion of inner speech ‘as a kind of action’ (Jones and Fernyhough, 2007, p.396) and, more generally,

with Hughlings Jackson’s belief that thinking is merely our most complex motor act: ‘sensori-motor

processes. . . form the anatomical strata of mental states’ (Hughlings Jackson, 1958, p.49). In the

words of Oppenheim and Dell (2010, p.1158), ‘inner speech cannot be independent of the move-

ments that a person would use to express it’.

It was notable that inner speech production resulted in N1-suppression if – and only if – the con-

tent of the inner phoneme matched the content of the audible phoneme; that is, only in the Match

condition. That said, we note that comparisons between the Match/Mismatch conditions on the one

hand, and the Passive condition on the other, should be treated with a degree of caution. This is

because data for these conditions came from different trial blocks, and (most importantly) differed in

terms of the task that participants were required to perform (i.e., produce a covert/overt phoneme

at the precise sound-time, versus passively listen to the audible phoneme). Notwithstanding the fact

that the N1-suppression effect has previously been found to be robust to variations in attention

(Timm et al., 2013; Saupe et al., 2013) and trial structure (Baess et al., 2011), this nevertheless

raises the possibility that differences in participants’ attention or task-preparation may have contrib-

uted to the observed differences between the ‘active’ conditions and the passive condition. We

note that this limitation is not restricted to the current study – it potentially applies to any procedure

that attempts to measure sensory suppression by comparing active and passive conditions, which

constitutes the vast majority of studies that have examined sensory suppression to overt speech.

Critically, however, this limitation does not apply to the key contrast between the Match and Mis-

match conditions. This is because data for these conditions came from the same trial blocks, in which

participants were required to perform exactly the same task on each trial. For example, in blocks in

which participants were required to produce the inner phoneme /ba/, they experienced both Match

trials (in which the audible phoneme was /BA/) and Mismatch trials (in which the audible phoneme

Figure 5 continued

line), and Passive condition (black line) in the overt speech experiment. The waveform for the motor-control

condition is also shown (green line: in this condition participants overtly vocalized a phoneme at the sound-time,

but no audible phoneme was delivered). The N1-component is labelled; the waveforms were averaged across

electrodes FCz, Fz, and Cz, as these were the electrodes at which the N1 component was maximal. The waveforms

are shown collapsed across audible phoneme (audible /BA/ and /BI/), and the waveforms for the Match,

Mismatch, and Motor Control conditions are shown collapsed across vocalized phoneme (overt /ba/ and /bi/). (B)

Motor-corrected waveforms showing the auditory-evoked potentials elicited by the audible phonemes in the

Match condition (blue line), Mismatch condition (red line), and Passive condition (black line) in the overt speech

experiment. The motor-corrected waveforms were generated by subtracting the activity generated in the motor-

control condition from each participant’s Match, Mismatch, and Passive waveforms. Voltage maps are plotted

separately for each condition; white dots illustrate the electrodes used in the analysis. (C) Box-and-whiskers plots

showing the amplitude of the N1 component elicited by the audible phonemes in the Match, Mismatch, and

Passive conditions in the overt speech experiment, using motor-corrected data for the Match and Mismatch

conditions. The edges of the boxes represent the top and bottom quartiles, the horizontal stripe represents the

median, the cross represents the mean, the whiskers represent the 9th and 91st percentiles, and the colored dots

represent the participants whose raw data fell outside the range defined by the whiskers. (D) Scatterplots showing

the within-subject difference scores (in terms of N1-amplitude) for the three contrasts-of-interest in the overt

speech experiment; namely Match minus Mismatch, Match minus Passive, and Mismatch minus Passive. These

difference scores were approximately normally distributed with no clear outliers. Each dot represents a single

participant’s difference score. The horizontal bars represent the mean, and the error bars represent the 95%

confidence interval.

DOI: https://doi.org/10.7554/eLife.28197.010

The following source data is available for figure 5:

Source data 1. Overt Speech Experiment - N1 amplitude data.

DOI: https://doi.org/10.7554/eLife.28197.011
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was /BI/), and there was no way for participants to predict whether the current trial would be a

Match or Mismatch trial prior to the onset of the audible phoneme. Hence attention, task-prepara-

tion, etc., during the pre-stimulus period could not differ systematically between Match and Mis-

match trials. Our factorial design also ensured that the differences between the Match and

Mismatch conditions were not driven by differences in the inner phoneme (i.e., /ba/ vs /bi/) or differ-

ences in the audible phoneme (i.e., /BA/ vs /BI/). Consequently, we can conclude with confidence

that the observed difference in N1 amplitude between Match and Mismatch trials reflects the impact

of participants’ inner speech on their sensory response to the audible phoneme. It is this contrast

that demonstrates that inner speech, like overt speech, is associated with a precise, content-specific

efference copy.

The results of the inner speech experiment mirror those of previous studies which have found sen-

sory attenuation to overt speech to be reduced or eliminated if auditory feedback deviates from

what would normally be expected; e.g., by pitch-shifting the feedback or providing foreign-language

feedback (Heinks-Maldonado et al., 2006; Behroozmand and Larson, 2011; Behroozmand et al.,

2011; Behroozmand et al., 2016; Larson and Robin, 2016). To confirm this pattern using the
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Figure 6. Auditory-evoked potentials elicited by nine different phonemes; namely: /BA/, /BI/, /DA/, /DI/, /GA/, /KI/, /PA/, /PI/, and/TI/. Each phoneme

was ~200 ms in duration, presented at ~70 dB SPL, and was produced by the same male speaker. Each phoneme was presented 90 times; the

presentation order was randomized. Participants were instructed to simply sit quietly and listen to the phonemes. Of the nine different phonemes, /BA/

and /BI/ were judged to be most similar in terms of their amplitude and overall shape, and hence these phonemes were chosen to be used as the

audible phonemes in both the inner and overt speech experiments.
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current procedure, we performed a supplementary experiment in which participants were required

to overtly vocalize the phoneme at the sound-time. The key result from the overt speech experiment

was that N1-amplitude elicited by an audible phoneme was significantly smaller when participants

simultaneously produced the same phoneme in their overt speech (Match condition), compared to

when they produced a different phoneme in their overt speech (Mismatch condition). This result,

which is consistent with numerous previous studies in the sensory attenuation literature (Heinks-

Maldonado et al., 2006; Behroozmand and Larson, 2011; Behroozmand et al., 2011;

Behroozmand et al., 2016; Larson and Robin, 2016), was identical to the corresponding contrast in

the inner speech experiment, in which participants had to produce phonemes in inner, as opposed

to overt, speech.

A second notable finding of the overt speech experiment was that N1-amplitude was significantly

smaller in the Passive condition compared to both active conditions (i.e., Match and Mismatch). A

potential ‘low-level’ explanation for this result lies in the fact that participants were required to make

an overt motor action in the overt speech experiment but not the inner speech experiment. While

the marked difference in pre-stimulus activity between the active and passive conditions (Figure 5a)

is consistent with this explanation, the fact that between-condition differences remained when cor-

recting for the motor-associated activity (Figure 5b) stands against this possibility (though see Hor-

váth, 2015; Sams et al., 2005 for a discussion of the challenges associated with motor correction

when comparing active and passive conditions in studies of sensory attenuation). An alternative

explanation for why N1 was smallest in the Passive condition is based on the idea that the auditory

N1-component is (in addition to sound intensity, discussed previously) also sensitive to stimulus

predictability, with predictable sounds evoking a smaller N1 than unpredictable sounds

(Behroozmand and Larson, 2011; Bäss et al., 2008; Lange, 2011). Our task differed from other

willed vocalization tasks in the literature in that the audible phoneme delivered to the headphones

was: (a) of a different person’s voice, and (b) much louder than the actual vocalization, as participants

were instructed to vocalize quietly in order to minimize bone conduction. In other words, a substan-

tial discrepancy between the predicted and actual sound existed, even in the Match condition. This

sensory discrepancy was even larger in the Mismatch condition, as the content of the sound was also

different. Consistent with the idea that N1-amplitude is sensitive to stimulus predictability, it is possi-

ble that the larger N1-amplitude in the active compared to the passive conditions was due to predic-

tion-errors as to the expected quality of the audible phoneme. It is further possible that such

detailed predictions as to phoneme quality do not occur in the context of inner speech (a suggestion

for which there is some empirical support – Oppenheim and Dell, 2008), which may account for

why N1-amplitude was not reduced in the passive condition in the inner speech experiment.

In summary, both the inner speech and overt speech experiments showed the same basic pattern

of results with respect to the key contrast: N1-magnitude was smaller if the phoneme generated by

the participant (either covertly or overtly) matched the audible phoneme than if it mismatched.

These findings suggest that inner speech – like overt speech – is associated with a precise, content-

specific efference copy, as opposed to a generic and non-specific prediction. Taken together, our

results provide support for the contention that inner speech is a special case of overt speech, which

does not have an associated motor act. The notion that inner speech generates an IFM in the

absence of an overt motor act has been hypothesized previously across several different literatures

(Jones and Fernyhough, 2007; Feinberg, 1978; Scott, 2013; Guenther and Hickok, 2015;

Ford et al., 2001b; Sams et al., 2005; Kauramäki et al., 2010). However, this hypothesis has been

notoriously difficult to test empirically, due to the covert nature of inner speech. Ford et al.,

(Ford and Mathalon, 2004) played participants repeated sentences over 30 s and asked them to

reproduce the same sentences in inner speech. Ford et al., found that the sentences elicited a

smaller N1-component when participants engaged in inner speech compared to when they did not,

consistent with the results of the present study. More recently, Tian and Poeppel (Tian and Poeppel,

2010) used MEG to show that the auditory cortex was activated immediately following production

of an inner phoneme in the absence of auditory feedback, which they took as evidence of an inner-

speech-initiated efference copy. In a subsequent study, which was a strong influence on our own,

Tian and Poeppel (Tian and Poeppel, 2013) asked participants to produce an inner phoneme within

a 2.4 s window. This window was followed by an audible phoneme that could either match or mis-

match the content of the inner phoneme. The authors found no difference in the amplitude of the

M100 between the match and mismatch conditions, inconsistent with the results of the present
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study. However, given the width of the temporal window in which participants were asked to pro-

duce their inner phoneme (2.4 s), the efference copy and auditory feedback would not necessarily

be expected to coincide under these conditions, in which case M100-suppression would not be

expected to occur. Tian and Poeppel (Tian and Poeppel, 2015) asked participants to signal their

production of an inner phoneme via a button-press, and measured the amplitude of the M100 com-

ponent evoked by a pre-recorded audible phoneme of their own voice which matched the content

of the inner phoneme, but which could be pitch-shifted or delayed. They found evidence of M100

suppression to unshifted, undelayed audible phonemes relative to a passive baseline condition, con-

sistent with the results of the present study. Pitch-shifting or delaying the auditory phonemes was

found to increase M100 amplitude above baseline levels. While this study’s design enabled the tim-

ing of the inner phoneme to be precisely specified, the fact that it was specified by means of an

overt motor action (i.e., a button-press), which is known to be associated with N1-suppression per se

(Hughes et al., 2013), raises the possibility of the motor action and inner speech being confounded.

Finally, Ylinen et al., (Ylinen et al., 2015) asked participants to mentally rehearse tri-syllabic pseudo-

words in inner speech. After several mental repetitions, an audible pseudoword was played which

had either matching or mismatching beginnings and endings to the rehearsed pseudoword. The

results revealed that audible syllables that were concordant with participants’ inner speech elicited

less MEG activity than discordant syllables, a result which is broadly consistent with the results of the

present study.

The current experiment holds some methodological advantages over previous designs. Firstly,

the experimental stimuli (animation, audible phonemes, rating-scale, etc.) were physically identical

across all conditions, as was the nature of participants’ task (i.e., to fixate on the screen and produce

an inner phoneme at a designated time). The only thing that differed between the different trial-

types was the inner phoneme that participants were asked to produce. This meant that the observed

differences in sensory attenuation could not have been due to any physical differences between the

conditions (Luck, 2005). Secondly, the fact that it was impossible to predict which of the two audible

phonemes would be presented on any given trial meant that it was impossible to distinguish Match

from Mismatch trials a priori. This meant that the observed results could not have been due to

between-condition differences in, for example, demand characteristics. Thirdly, the ‘ticker tape’ fea-

ture of the current protocol enabled participants to very accurately time-lock the onset of their inner

phoneme to match the onset of the external sound. In the current protocol, the position of the trig-

ger line refreshed every 8.3 ms, which presumably enabled participants to time the onset of their

inner phoneme far more accurately than would be possible with a countdown sequence, mental

rehearsal or open temporal window, such as have been used in previous studies (Tian and Poeppel,

2013; Ford et al., 2001b; Ylinen et al., 2015). Finally, the current protocol did not require partici-

pants to make an active movement to signal the onset of their inner phoneme, such as by pressing a

button. This is a significant advantage over previous studies which have employed a motor condition

to signal the onset of covert actions, as it avoids the potential confound associated with having tem-

porally-overlapping auditory-evoked and motor-evoked potentials – see Horvath (Horváth, 2015)

and Neszmélyi and Horvath (Neszmélyi and Horváth, 2017) for a discussion of the challenges asso-

ciated with ‘correcting’ for motor activity in studies of sensory attenuation. In light of its methodo-

logical features, the present study provides arguably the strongest evidence to date that inner

speech results in sensory attenuation of the N1-component of the auditory-evoked potential, even in

the absence of an overt motor response. Perhaps the most important strength of this paradigm is

that all the above issues were controlled within a single task, thereby removing any reliance on

cross-experimental inferences.

This study’s focus on the N1 component is consistent with the majority of the existing literature

on electrophysiological sensory attenuation. The rationale for focusing on N1 lies in the fact that the

amplitude of this component is volume dependent; that is, other things being equal, loud sounds

evoke N1-components of larger amplitude than do soft sounds (Näätänen and Picton, 1987;

Hegerl and Juckel, 1993). In prior studies of N1-suppression, participants have typically generated

sounds through overt actions such as overt speech, button-presses etc. The observation of N1-sup-

pression in such studies thus implies that the brain processes self-generated sounds as though they

were physically softer than identical external sounds. The N1-suppression demonstrated in the pres-

ent study extends this idea by suggesting that the brain also processes imagined sounds as though

they were physically softer than identical, unimagined sounds. In addition to providing evidence that
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inner speech is associated with an IFM of similar nature to overt speech, this finding provides evi-

dence that mental state influences perception at a fundamental level (Gregory, 1997).

With regards to the question of what mechanism could underlie sensory attenuation to inner

speech: a recent study by Niziolek, Nararajan and Houde (Niziolek et al., 2013) on sensory attenua-

tion in the context of overt speech production found that the degree of sensory attenuation was

stronger when participants produced vowel sounds that were closer (in terms of their acoustic prop-

erties) to their median production of these sounds, compared to when they produced vowel sounds

that were, for them, less typical. These results suggests that the efference copy associated with overt

speech production represents a sensory goal (i.e., ‘a prototypical production at the center of a vow-

el’s formant distribution’, p. 16115), and that the distance (in formant space) of any given utterance

from this ‘sensory prototype’ determines its degree of sensory attenuation. If inner speech is, in fact,

a special case of overt speech (as we have suggested above), then this raises the question of the

nature of the sensory goal in the context of inner speech production. One possibility, based on the

results of Niziolek et al., is that in the present study (in ‘imagine /ba/’ trials, for example) the sensory

goal was of a prototypical /ba/, which was presumably covertly ‘spoken’ in the participant’s own

voice (though see below for a discussion of the validity of this assumption). In this case, the partici-

pant’s prototypical /ba/ would never match perfectly with the audible phoneme, as the audible pho-

neme would never be the participant’s own voice.

The fact that the present study observed N1-suppression in the Match condition but not the Mis-

match condition is nevertheless consistent with the Niziolek et al., 2013 account, in that the dis-

tance, in formant space, between an inner /ba/ and an audible /BA/ would be smaller than the

distance between an inner /bi/ and an audible /BA/, even though the inner phoneme did not match

the audible phoneme perfectly in either case (as the audible phoneme was always produced by the

same unknown speaker). The fact that while Niziolek et al., 2013 observed maximal levels of sen-

sory attenuation to prototypical vowel sounds, they still observed significant (i.e., non-zero) levels of

sensory attenuation to atypical vowel sounds is also consistent with this idea. A prediction of this

account is that participants should show even greater levels of sensory attenuation in the Match con-

dition if the audible phoneme is presented in their own voice rather than the voice of an unknown

stranger; testing this prediction may be a worthwhile endeavor in future studies.

In regards to the assumption that the sensory goals of inner speech are the same as overt speech,

and that a person’s inner voice is the same as their actual voice, there is some evidence in support

of this conjecture: Filik and Barber (2011) provided evidence that people produce inner speech in

the same regional accent as their overt speech. However, other studies have reported evidence sug-

gesting that inner speech has impoverished acoustic properties relative to overt speech

(Oppenheim and Dell, 2008). It is also possible that inner speech can consist of several distinct ‘voi-

ces’, with each having specific auditory properties; the fact that people with auditory-verbal halluci-

nations often report hearing multiple voices with different auditory properties (McCarthy-

Jones et al., 2014) is consistent with this idea, if – as discussed further below – auditory-verbal hallu-

cinations ultimately reflect inner speech being misperceived as overt speech. Finally, it is also possi-

ble that the acoustic properties of inner speech are not fixed. Specifically, in the context of the

present study, it is possible that the acoustic properties of the audible phonemes began to influence

the inner phonemes, such that after numerous repetitions, participants began to imagine themselves

producing an inner phoneme with the acoustic properties of the audible phoneme. Testing these

possibilities may also be worthwhile in future studies.

While the primary focus of the paper was on the N1-component of the auditory-evoked potential,

between-condition differences were also observed in the amplitude of the P2 and P3 components

(see Figures 3 and 4). A likely explanation for the observed results in these later components

involves another ERP component, the N2, whose spatial and temporal distribution typically overlaps

with that of the P2 (Griffiths et al., 2016). The N2 and P3 components are among the most heavily

investigated components in the ERP literature (Näätänen and Picton, 1986; Polich, 2007), and are

typically elicited by tasks – such as the auditory oddball and Go/NoGo tasks – in which the partici-

pant is asked to identify (by means of a button-press, for example) ‘target’ stimuli which are nested

among ‘non-target’ stimuli (Smith et al., 2010; Spencer et al., 1999). Critically, the N2 and P3 can

also be elicited by tasks in which a mental response is required, such as when target stimuli have to

be mentally counted as opposed to signaled with a button-press (Mertens and Polich, 1997). We

suggest that, in the two inner speech conditions of our study, participants made a mental response –
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possibly a ‘template-matching response’ along the lines of whether the audible phoneme matched

their inner phoneme (Griffiths et al., 2016) – which they did not make in the Passive condition. In

this case, the audible phoneme in the inner speech conditions might be expected to elicit an N2 and

a P3 component, which would not be present in the Passive condition. The occurrence of a (nega-

tive-going) N2 in the inner speech condition would then interact and compete with the expression

of a (positive-going) P2 component elicited by the audible phoneme. The result would be the

absence of a distinct P2, but presence of a P3, in the inner speech conditions but not the Passive

condition – as observed empirically. It is also worth noting that Tian and Poeppel (Tian and Poeppel,

2013) observed a larger M200 component in their match vs. mismatch comparison, consistent with

the enhanced P2 observed in the Match vs. Mismatch comparison in the present study. Taken

together, these results suggest that the M200/P2 component may index something other than a sen-

sory prediction, possibly involving a cognitive ‘template matching’ process.

The implied existence of an efference copy to inner speech holds important implications for how

to best understand some of the psychotic symptoms associated with schizophrenia. Some of the

most characteristic of these symptoms seem to reflect the patient misattributing, to external agents,

self-generated motor actions (e.g., delusions of control) and self-generated thoughts (e.g., delusions

of thought insertion, auditory-verbal hallucinations – Feinberg, 1978; Frith, 1987). An influential

account of these experiences argues that they arise because of an abnormality in the IFM associated

with both physical and mental actions (Feinberg, 1978; Frith, 1992). This IFM abnormality leads to

an inability to predict and suppress the consequences of self-generated actions, which leads to con-

fusion as to their origins. This hypothesis has a strong theoretical foundation: for example, the dis-

tinctive symptom of thought echo, in which the patient hears their own thoughts spoken out loud by

an external voice, can be well explained as the patient’s own inner speech being misattributed and

misperceived as an external voice (Frith, 1992). However, while numerous studies have provided

empirical evidence showing that schizophrenia patients exhibit subnormal levels of sensory attenua-

tion to their own physical actions (Whitford et al., 2011; Blakemore et al., 2000b; Shergill et al.,

2005), including subnormal levels of N1-suppression to overt speech (Ford et al., 2001a;

Ford et al., 2007b; Ford et al., 2001c), there is little empirical evidence that schizophrenia patients

show sensory attenuation deficits to self-generated mental actions such as inner speech. Further-

more, the few studies that did report sensory attenuation deficits to inner speech in patients with

schizophrenia did not include a ‘mismatch’ condition, raising the possibility that these sensory atten-

uation deficits ultimately reflect attentional deficits in the patient group (Ford and Mathalon, 2004;

Ford et al., 2001d). We suggest that the failure to identify electrophysiological sensory attenuation

deficits to inner speech in schizophrenia patients is not because the deficits do not exist, but rather

because previous experimental protocols have been insufficiently sensitive to detect them. In order

to maximize the chances of detecting sensory attenuation deficits to inner speech in schizophrenia

patients, we suggest that future experiments should: (a) ensure that the onset of inner speech is pre-

cisely time-locked to the audible sound, without reverting to using a willed action (e.g., a button-

press) to signal inner speech-onset, as this could potentially lead to the auditory and motor

responses being confounded; (b) limit the content of inner speech to phonemes rather than entire

sentences as this enables the onset and content of the inner speech to be more tightly controlled;

(c) investigate patients exhibiting those symptoms that seem to most clearly reflect misperceived

inner speech (e.g., thought echo, other auditory-verbal hallucinations), rather than grouping patients

with different symptom profiles into a clinically-heterogeneous ‘schizophrenia’ group. By providing

an optimized protocol for quantifying N1-suppression to inner speech, our hope is that the present

study can provide a methodological framework for identifying and assessing sensory attenuation

deficits in inner speech in patients with schizophrenia.

In conclusion, the present study demonstrated that engaging in inner speech resulted in sensory

attenuation (specifically, N1-suppression) of the electroencephalographic activity evoked by an audi-

ble phoneme, but only if the content of inner speech matched the content of the audible phoneme.

These results suggest that inner speech evokes an efference-copy-mediated IFM, which is both con-

tent-specific and time-locked to the onset of inner speech, which is consistent with the existing liter-

ature on sensory attenuation to overt speech. Cumulatively, this implies that inner speech may

ultimately be ‘a kind of action’, and a special case of overt speech, as long suggested by prominent

models of language. Accordingly, these findings not only provide insight into the nature of inner

speech, but also provide an experimental framework for investigating sensory attenuation
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deficits in inner speech, such as have been proposed to underlie some psychotic symptoms in

patients with schizophrenia.

Materials and methods

Participants
Forty-two healthy individuals participated in the inner speech experiment. Participants’ mean age

was 23.4 years (SD = 7.3) and 24 were female. Fifty participants were originally recruited for the

study, however eight participants generated � 60 usable epochs in one or more conditions and

were excluded from further analysis – see EEG Processing and Analysis for further details. The study

was conducted at the University of New South Wales (UNSW Sydney; Sydney, Australia), and

approved by the UNSW Human Research Ethics Advisory Panel (Psychology).

Procedure
Participants were seated in a quiet, dimly-lit room, approximately 60 cm from a computer monitor

(BenQ XL2420T, 1920 � 1080 pixels, 144 Hz), and were fitted with headphones (AKG K77 Percep-

tion) and an EEG recording cap. EEG was recorded with a BioSemi ActiveTwo system from 64 Ag/

AgCl active electrodes placed according to the extended 10–20 system. A vertical electro-oculo-

gram was calculated by recording from an electrode placed below the left eye, and subtracting its

activity from that of electrode FP1; a horizontal EOG was recorded by placing an electrode on the

outer canthus of each eye. We also placed an electrode on the tip of the nose, on the left and right

mastoid, and on the masseter muscle to detect jaw movements. During data acquisition, the refer-

ence was composed of CMS and DRL sites, and the sampling rate was 2048 Hz.

In regards to the animation that participants viewed on each experimental trial: the ticker tape

moved at a constant velocity of 6.5˚/s, which meant that it took 3.75 s until the trigger line inter-

sected the fixation line. The ticker tape was marked with labels ‘3’, ‘2’ and ‘1’ that passed the fixa-

tion line 3 s, 2 s, and 1 s prior to the trigger line (see Figure 1b). The two audible phonemes, /BA/

and /BI/, were selected on the basis of a pilot study which indicated that amongst nine candidate

audible phonemes (/BA/, /BI/, /DA/, /DI/, /GA/, /KI/, /PA/, /PI/, /TI/), the two audible phonemes /

BA/ and /BI/ produced auditory-evoked potentials that were most similar in terms of their amplitude

and overall shape (see Figure 6). The two audible phonemes were produced by the same male

speaker, and were similar in terms of their loudness (~70 dB SPL) and duration (~200 ms).

There were 60 trials in each trial block. Participants were instructed to fix their gaze on the fixa-

tion line on every trial. At the start of each block, participants were told that on every trial of that

block they should produce a particular inner phoneme (either /ba/ or /bi/) at the exact moment the

trigger line interested the fixation line, or (in Passive blocks) that they should simply listen to the

audible sound and not try to imagine anything. Each audible phoneme (/BA/ and /BI/) was presented

on 50% of trials within each trial block, and the order was randomized for each participant. This

meant that, in those blocks in which participants were instructed to generate a particular inner pho-

neme (i.e., active blocks), on half of trials their inner phoneme matched the audible phoneme, while

on half of trials it mismatched. Following each trial, participants were asked to rate their success in

imagining the instructed inner phoneme at the sound-time (or in not imagining anything in the Pas-

sive condition). These ratings were made on a scale from 1 (‘Not at all successful’) to 5 (‘Completely

successful’), and were reported using the computer keypad. Participants’ average ratings were

4.09 out of 5 (SD = 0.65) for Match trials, 4.01 (SD = 0.67) for Mismatch trials, and 4.87 (SD = 0.40)

for Passive trials. The order of the trial blocks (imagine /ba/, imagine /bi/, or passive) was random-

ized for each participant. Each block took approximately 7 min to complete, and was repeated twice

over the course of the experiment. Stimulus presentation was controlled by MATLAB (MathWorks,

Natick, MA), using Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007).

EEG processing and analysis
The data pre-processing and analysis was performed in BrainVision Analyzer (Brain Products GmbH,

Munich, Germany). The EEG data were re-referenced offline to the nose electrode. Data were first

notch filtered (50 Hz) to remove mains artefact, and then band-pass filtered from 0.1 to 30 Hz using

a phase-shift free Butterworth filter (48 dB/Oct slope). The filtered data were separated into 800 ms
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epochs (200 ms prior to sound onset, 600 ms post-onset), and baseline corrected to the mean volt-

age from –100 to 0 ms. The epochs were corrected for eye-movement artefacts, using the technique

described in (Gratton et al., 1983), and any epoch with a signal exceeding a peak-to-peak ampli-

tude of 200 mV for any channel was excluded. To ensure data quality, epochs were classified as unus-

able and excluded prior to analysis if they failed to meet the above criterion, or if the participant

rated their success on the trial as �2 out of 5. The remaining usable epochs were included in the

analysis and used to make the average waveforms for the three conditions. There were an average

of 103.1 (SD = 14.8) usable epochs in the Match condition (of a max. possible 120), 97.0 (SD = 18.3)

in the Mismatch condition, and 107.2 (SD = 17.6) in the Passive condition.

The amplitude of the N1-component of the auditory-evoked potential was the primary dependent

variable. The N1 peak was identified on each participant’s average waveform (Whitford et al.,

2011; Ford et al., 2007b) as the most negative local minimum in the window 25–175 ms post-stimu-

lus onset. The auditory N1-component typically has a fronto-central topography (Näätänen and Pic-

ton, 1987), which was verified in the current data: N1 was maximal at electrode FCz (see Figure 2a).

Supplementary analyses were also performed on the P2 and P3 components in the inner speech

experiment. As it was not possible to use a peak-detection approach for these components (as not

all conditions exhibited a clear P2 and P3 peak), time-windows were identified for the P2 (150–190

ms) and P3 (250–310 ms) components. Average voltage within these time-windows was the depen-

dent variable in these supplementary analyses.

Statistical analysis
Data were analyzed using repeated-measures ANOVA, with one factor Condition (three levels:

Match, Mismatch and Passive). In the case of a main effect of Condition, contrasts were used to

unpack the simple effects. The Greenhouse-Geisser correction was used in the case of a violation in

the assumption of sphericity. N1 was maximal at electrode FCz for all three conditions, however in

order to improve the reliability of the analysis, the data was averaged across FCz and neighboring

electrodes Fz and Cz (Näätänen and Picton, 1987; Woods, 1995). All of the relevant statistics

remained significant when analysis was restricted to electrode FCz.

With regards to the supplementary analyses on the P2 and P3 components: the P2 component

(150–190 ms) was maximal at electrode Cz; the data were collapsed across Cz and neighboring elec-

trodes FCz and CPz for the statistical analysis. The P3 component (250–310 ms) was maximal at elec-

trode CPz; the data were collapsed across CPz and neighboring electrodes Cz and Pz for the

statistical analysis.

Due to the novelty of the paradigm, it was not possible to obtain precise estimates of the

expected effect size. Thus we powered our study to detect a small effect size, based on the heuristic

provided by (Cohen, 1969); our sample size of 42 provided adequate power (b = 0.8) to detect a

small effect size (hp
2 = 0.04) at a = 0.05. The power analysis was conducted with G*Power software

(version 3.1.9.2; Faul et al., 2007). Each experiment was performed only once.
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