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Abstract: Subclinical ketosis is a metabolic disease in early lactation. It contributes to economic
losses because of reduced milk yield and may promote the development of secondary diseases. Thus,
an early detection seems desirable as it enables the farmer to initiate countermeasures. To support early
detection, we examine different types of data recordings and use them to build a flexible algorithm
that predicts the occurence of subclinical ketosis. This approach shows promising results and can be
seen as a step toward automatic health monitoring in farm animals.
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1. Introduction

Subclinical ketosis (SCK) is a common metabolic disease of dairy cows in early lactation, characterised
by an increased concentration of ketone bodies in the absence of clinical signs of disease [1]. Analyzing
the concentration of ß-hydroxybutyrate (BHB) in blood is the recommended reference test for detecting
ketosis in dairy cows [2]. A commonly used threshold to define SCK is a ß-hydroxybutyrate (BHB)
concentration in blood >1.2 mmol/L [3,4]. To detect SCK in dairy cows, various hand-held devices
are commercially available, which were recently evaluated for use on farms [5,6]. The occurrence of
SCK in dairy cows is associated with an increased risk of sequalae (e.g., clinical ketosis, displaced
abomasum, metritis), decreased milk yield and impaired reproductive performance [3,7,8], affecting
the economics of a dairy farm [9]. Major risk factors for the occurrence of ketosis are an excessive body
condition score (BCS) before calving, an increased colostrum volume at first milking and an advanced
parity [10]. Recent studies showed that subclinical and clinical diseases are associated with distinct
animal behaviours, e.g., rumination as well as with standing and lying times, respectively [11,12].
Nowadays, more and more farmers rely on sophisticated sensor technologies for continuous and
automated real-time monitoring of animal behaviours as well as of their health status [13,14]. The aim
of this study was to predict the ketosis status of dairy cows within the first two weeks of lactation, based
on 12 input variables, inter alia of the accelerometer system SMARTBOW (Smartbow GmbH, Weibern,
Austria). The prediction is made using a flexible classification algorithm combining time series based
acceleration data with other input specifically designed to cope with possibly different availability of
data. In Sections 2.1–2.3, we discuss the different types of recorded data and how they were assessed.
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Moreover, we define our proposed algorithm and the main parts of it in Sections 2.4 and 2.5. Section 3
contains the results from a statistical comparison of parts of the recorded data and the classification
results. We conclude our work with a short summary and discussion in Section 4.

2. Materials and Methods

2.1. Animal Data and Sampling Procedures

Animal sampling and data collection were approved by the institutional ethics committee of
the University of Veterinary Medicine Vienna, Austria (ETK-09/02/2016) as well as the Slovakian
Regional Veterinary Food Administration. The study was conducted in 2016 and 2017 on a Slovakian
dairy farm, housing approximately 2700 Holstein-Friesian cows. Animals were housed in ventilated
freestall barns with group pens or cubicles, with rubber mats bedded with dried slurry separator
material. To determine influences of barn climate and barn humidity on cows’ health status, climate
loggers (Tinytag 2 Plus, Gemini Data Loggers Ltd., Chichester, West Sussex, UK) were installed in
all groups. Temperature and humidity were automatically recorded and stored every hour. Animals
were enrolled in the study at drying off, approximately 60 days prior to the expected calving date
(D0) and followed up for at least 10 days, i.e., up to 10 days in milk (DIM). Blood samples were
collected in week 8 (day −62 to day −56), 3 (day −21 to day −15), 2 (day −14 to day −8) and 1 (day
−7 to day −1) before the expected calving date from a coccygeal vessel using vacuum tubes coated
with a clot activator for serum collection (Vacuette, 9 mL, Greiner Bio-One GmbH, Kremsmünster,
Austria). After clotting for a minimum of 30 min, samples were centrifuged [10 min, 18 ◦C, 3000× g;
(Eppendorf Centrifuge 5804, Eppendorf AG, Hamburg, Germany]) to harvest serum. Serum was stored
at −20 ◦C until further analysis at the Clinical Pathology Unit (CPU) of the University of Veterinary
Medicine, Vienna, Austria. Samples collected in the week before parturition and at D0 were analyzed
for non-esterified fatty acids (NEFA) at the CPU. At days 3, 5, and 8 of lactation, the BHB concentration
was determined by use of an electronic hand-held device (FreeStyle Precision Xtra, Abbott GmbH
and Co. KG, Wiesbaden, Germany), previously validated for dairy cows [6]. Animals showing BHB
concentrations of >1.2 mmol/L were defined as suffering from subclinical ketosis and classified as
‘sick’. Body condition score (BCS) was visually estimated according to Edmonson et al. [15] and back
fat thickness (BFT) was measured by an ultrasound device (Easy-Scan Linear, IMV Imaging, Meath,
Ireland) as previously described by Schröder and Staufenbiel (2006) [16] in weeks 8 and 3 prior to
calving and on D0.

2.2. Accelerometer

In this study, we used the accelerometer system SMARTBOW (Smartbow GmbH, Weibern,
Austria), which was recently evaluated for monitoring of rumination [17,18] and detecting estrus
events [19]. The system includes ear-tags (size and weight of 52× 36× 17 mm and 34 g) equipped with
a three-dimensional accelerometer, receivers (SMARTBOW WallPoint) that are installed in the barn,
and a local server (SMARTBOW Farmserver). Recorded data were sent from the ear-tags wirelessly
and in real time to the receivers and transmitted to the local server, where data were processed by
specific algorithms. In this study, 10 Hz sensors were used for measuring acceleration in three axes of
head and ear movements of the animal with a range from −2 to +2 g. All cows were equipped with
the sensor-based ear-tags approximately three weeks before the expected day of calving. In this study,
the raw recordings were transformed into 7 data-streams that we are provided with. We inspect two
time frames: the week before the day of calving and the the week after the day of calving. These seven
data-streams represent the minutes per hour spent:

• lying/not lying,
• ruminating/not ruminating,
• inactive/active/highly active.
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The time spent in either of the states in each category above add up to 60 min; thus, we converted
the data into 5 dimensional data-sets for every individual, namely minutes per hour spent lying,
ruminating, inactive, active, and highly active.

A example of such 5 data-streams for both the pre-partal and post-partal time frame can be seen
in Figure 1 below. Moreover, we present the average time spent in the respective behaviours for sick
and healthy cows after calving in Figure 2.
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Figure 1. Depiction of the five time series for a single individual before (left) and after calving (right).
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Figure 2. Time spent with respective behaviours after calving, averaged for healthy (dotted) and
sick animals.

For thorough examination, a decision on how to tackle missing data, and some results based on
the presented sensor data, we refer to [20]. A summary of the data can be found in Table 1.

Table 1. Amount of healthy and diseased animals.

Health Status Examples Frequency

Healthy 565 84.20%
Sick 106 15.80%

2.3. Health Data

The second type of data we consider is health data either directly recorded on farm site or based
on previous calvings. Measurements that are either ordinal or nominal are transformed into metric
features. In the following list, the features that were assessed are described in detail:

• Body Condition Score (BCS): A total of three measurements were made, 8 weeks before calving
(−8 w), 3 weeks before calving (−3 w) and on the day of calving (D0).
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1. −8 w
2. −3 w
3. D0

In Figure 3, the distribution of these three features is visualised:
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Figure 3. Histograms of the BCS at different times: 8 weeks prior (left), 3 weeks prior (middle), day of
calving (right).

• Back Fat Thickness (BFT): As described above, three measurements were made:

4. −8 w
5. −3 w
6. D0

In Figure 4, the distribution of the BFT is visualised:
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Figure 4. Histograms of BFT in mm at different times: 8 weeks prior (left), 3 weeks prior (middle),
Day of Calving (right).

7. Non-Esterified Fatty Acids (NEFA): We used the maximal NEFA Value of all measurements
as described in Section 2.1. This feature is vizualised in Figure 5.

8. 305 day Milk-Yield Equivalent: A measure that standardizes the milk yield of the previous
lactation. Its impact on different diseases can be found in [21].

9. This feature consists of the maximum observed fat/protein ratio during the previous lactation.
10. Parity: We distinguished between primi- and multiparous cows and transformed these

categories as follows: primiparous→−1, multiparous→ 1.
Feature 8, 9 and 10 are depicted in Figure 6.
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Figure 5. Histogram of the maximum NEFA value.
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Figure 6. Histograms of features 8, 9, and 10.

• The following features are based on the locations the animals spent their time in the last two
weeks before calving. We distinguished between three functional areas, namely cubicles (FA 1),
feed alley (FA 2), and passageways (FA 3). These 9 features are depicted in Figure 7.

11. Ratio of Hours spent only in FA 1
12. Ratio of Hours where the animal spent more time in FA 3 than in FA 1
13. Ratio of Hours where the animal spent more time in FA 2 than in FA 1
14. Mean time spent per hour in FA 1
15. Mean time spent per hour in in FA 2
16. Mean time spent per hour in in FA 3
17. Standard Deviation of Time spent per hour in FA 1
18. Standard Deviation of Time spent per hour in FA 2
19. Standard Deviation of Time spent per hour in FA 3
20. This feature describes the amount of hours in the last week before calving, where the animal

was exposed to a temperature–humidity index (THI) of 72 or higher, where a THI ≥ 72 is
defined by the Austrian Chamber of Agriculture as “moderate heat-stress”, based on [22,23].
We can see the distribution of this feature in Figure 8 below.
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Figure 7. Histograms of features 11–19.
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Figure 8. Histogram of the amount of time spent exposed to a THI of ≥ 72.

The histograms above already give a first overview on to what extent the respective features differ
between healthy and diseased individuals. A statistical comparison of all 20 features is discussed in
Section 3.1.

2.4. Mathematical Section

This section covers the mathematical and algorithmic aspects for classifying the animals’ health
status, i.e., we define the central elements that constitute our classification algorithm. As we are
provided with two different types of input, namely time series and features, we utilise methods for
both types.

Time Series Classification (TSC) is a non-trivial task, which is thematized in numerous publications.
State of the art in TSC is ensemble methods based on transformations of the original series and using
flexible distance measures. Simple approaches, such as using Nearest Neighbour algorithm with a
suitable similarity measure, still yield comparative results [24,25]. Deep learning approaches are shown
to be promising but are still outperformed by distance based methods [26]. As simple methods are
desirable both for the simplicity and the comparative performance, we designed a flexible measure to
quantify the similarity between two time series which builds the basis for the first step in classification:
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Definition 1 (Distance Matrix (DIMA)). Letting a, b ∈ Rn, f : R×R→ R and g : {1, . . . , n}2 → R with
n ∈ N, we define the function D1:

D1(a, b) := D1(a, b; f , g, p) =

(
n

∑
i=1

n

∑
j=1

f (ai, bj)g(i, j)

) 1
p

. (1)

Unfortunately, we can show that we have to oppose heavy limitations on the parameters to
guarantee metric properties:

Theorem 1. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn and δij be Kronecker’s delta

δij :=

{
1 if i = j

0 if i 6= j
.

Consider the function D1(a, b; f , g, p) defined as in (1). With the choice

f (ai, bj)g(i, j) := |ai − bj|pδij =

{
|a− b|p if i = j

0 if i 6= j
,

D1 is a metric on Rn for p ≥ 1 and is equivalent to the n-dimensional Minkowski Distance [27]. More generally,

g(i, j) := δijhi

with some weights hi that fulfil either: ∀hi : hi ∈ R+ or ∀hi : hi ∈ R− are the only possible choices of g for D1

being a metric on Rn.

Proof of Theorem 1. See Appendix A.

Although the metric properties are of interest from a mathematical point of view and needed for
some search speed-up algorithms [28], we can nevertheless utilise this function in a learning approach.
As the general formulation of DIMA above allows for a variety of parameter settings, we assume that
the function could be adjusted to build a central element for many other time series classification tasks.
In our experiment, we decided on the following set of parameters:

p = 1, f (ai, bj) = |ai − bj|

The function g(i, j) is constructed as follows: given a training set of uni-variate data with two
healthy and sick classes, with nh and ns elements in the respective classes:

Xh = {xh,1, xh,2, . . . , xh,nh
} and Xs = {xs,1, xs,2, . . . , xs,ns}

with
xh,i := (xh,i,1, . . . xh,i,n), i = 1, . . . , nh and xs,i := (xs,i,1, . . . xs,i,n), i = 1, . . . , ns

we calculate the respective class means

xhealthy =
1

nh

(
nh

∑
j=1

xh,j,1, . . . ,
nh

∑
j=1

xh,j,n

)
and xsick =

1
ns

(
ns

∑
j=1

xs,j,1, . . . ,
ns

∑
j=1

xs,j,n

)

and define the matrix G, where In×n denotes the n× n Identity Matrix:

Gij = sign(min{|xhealthy,i − xsick,j|, |xsick,i − xhealthy,j|} −max{|xhealthy,i − xhealthy,j|, |xsick,i − xsick,j|})
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G(λ) := λG + (1− λ)In×n

λ ∈
{

2−i|i ∈ {0, . . . , 15}
}
∪ {1− 2−i|i ∈ {0, . . . , 15}}, g(i, j) := G(λ)ij

Please note that, in case of λ = 1, D1 reduces to the Manhattan Distance with our choices. In Figure 9
below, we see an exemplary visualisation of the matrix G(0) = G for our two considered time frames.
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Figure 9. Depiction of the matrix G(0). Each column represents one of the five five behaviours. First,
row: before calving, second row: after calving. Colouring: 1 = Orange, −1 = Blue.

2.5. Machine Learning in Animal Disease Detection

Machine Learning approaches have been heavily used in animal behavioural/disease assessment
over the last few years. Take as an example [29], where the authors applied different methods for
detection of subacute ruminal acidosis in dairy cows. In their results, k-Nearest Neighbors showed
the best results, outperforming deep learning methods and decision trees. In [30], the authors test
deep learning architectures for early detection of respiratory disease in pigs and compare them with
classical time series regression approaches. Their results do not show any significant differences in
performance measures of the presented methods. The authors of [31] used a wearable device and a
one-class support vector machine algorithm to detect lameness in dairy cows.

Having introduced the first main element of our approach in the last sub-section, we continue
with shortly describing another two central elements: We utilise Nearest Centroid Classification [32]
using Function D1 with G(λ) as above for TSC, and a Naive Bayes Classifier [33] for the feature-based
classification. We decided on the NCC algorithm as it is simple and inherently avoids bias based on class
frequencies. Moreover, we utilised the well-known naive Bayes algorithm, as it can be easily adjusted
to handle missing features both in the learning step and while testing, as we can learn parameters on
reduced examples, and just omit the probabilities for testing where a data-point is missing. Thus, our
algorithm can be employed for 1 to up to 20 features available. In case of all features missing, one could
introduce indecisive results, to indicate that the next steps are up to farm management, or classify solely
based on ear-tag data. We omit the description of these two algorithms, and information can be found
in the respective citations. Moreover, we decided on a feature-selection step using Relief [34].

We describe the tailor-made algorithm in the following section.

2.6. Proposed Algorithm

The first step is to split up the data into stratified sets for 10-fold cross validation. About 90%
constitute the training data, on which the parameters are learned, while the resulting algorithm is used
to classify the remaining ∼10 percent. The results are added up. Thus, we repeat the following steps
10 times:
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1. For every data stream of the sensor data, we learn an optimal parameter λ such that the
leave-one-out inner cross validation balanced error is minimised using an NCC with distance
function D1 with G(λ). In case of ties, the highest value of λ is chosen.

2. Using these 5 (possibly different) parameters, we assume an animal to be sick or healthy, if the
five trained NCCs from Step 1 decided at least 4 out of 5 times for a certain class label.

3. The remaining examples are classified as follows:

(a) The features are sorted according to the results from using Relief on the whole training set.
For using this algorithm, we need a complete data-set where we only include examples in
which all features are available.

(b) Afterwards, we employ an inner 10-fold cross validation to find the optimal amount of
features to take, starting with the ones ranked highest and consecutively add the following
according to our ordering. The optimum is calculated with respect to balanced accuracy. In
this step, we also only include training examples that are complete.

(c) The features are finally processed using a Naive Bayes algorithm to classify the yet
undecided examples.

The estimated labels are compared with the actual ones and the outcomes are added up to the
results presented in Section 3.2.

3. Results

3.1. Statistical Comparison

In this section, we compare the features we defined Section 2.3 using significance tests. We employ
a Two Sided Mann–Whitney U Test with a p-value of 0.05. We decided for a non-parametric test, as our
data-set violates assumptions such as normality. Using Bonferroni Correction for multiple hypothesis
tests, we arrive at a threshold for significant results of 0.05/20 = 0.0025. The Mean ± Standard
Deviation (µ± σ) of each feature for both sick and healthy animals can be found in Table 2 below.
Moreover, we added the exact p-values of each individual comparison, where a ∗ indicates a
significant difference.

Table 2. Statistical comparison of features. We state that the respective class means plus one standard
deviation and the p-value when comparing using a Mann–Whitney test.

BCS -8 w BCS -3 w BCS Day0 BFT -8 w BFT -3 w

µ± σ healthy 3.19 ± 0.432 3.426 ± 0.428 3.298 ± 0.41 13.425 ± 5.002 15.393 ± 5.261
µ± σ sick 3.377 ± 0.446 3.613 ± 0.445 3.395 ± 0.424 15.527 ± 5.83 17.581 ± 5.261

p-value 0.00753024 0.000629145 * 0.0493177 0.0148332 0.000184263 *

BFT Day0 NEFA 305-D Milk Max f/p Ratio Parity

µ± σ healthy 15.248 ± 4.846 0.296 ± 0.222 11538.3 ± 1528.18 1.686 ± 0.327 0.096 ± 0.996
µ± σ sick 16.892 ± 5.577 0.384 ± 0.256 11317.7 ± 1713.15 1.676 ± 0.372 0.151 ± 0.993

p-value 0.00630105 0.00015792 * 0.33808 0.449638 0.600132

Location1 Location2 Location3 Time Area 1 Time Area 2

µ± σ healthy 0.703 ± 0.09 0.074 ± 0.032 0.098 ± 0.042 50.658 ± 3.188 5.564 ± 1.853
µ± σ sick 0.748 ± 0.093 0.059 ± 0.026 0.08 ± 0.037 52.285 ± 2.96 4.705 ± 1.857

p-value 0.00020492 * 0.000434685 * 0.00242925 * 0.0000765469 * 0.000498528 *

Time Area 3 SD Area 1 SD Area 2 SD Area 3 Hours THI Greater 72

µ± σ healthy 3.563 ± 1.478 16.821 ± 2.937 11.711 ± 2.309 10.233 ± 2.577 6.981 ± 11.911
µ± σ sick 2.825 ± 1.155 15.336 ± 2.811 10.538 ± 2.374 8.799 ± 2.039 10.858 ± 12.576

p-value 0.000151992 * 0.0000174387 * 0.0000541604 * 0.0000066027 * 0.0000583004 *

Table 2 above shows that seven of our features do not differ statistically significant between
healthy and sick animals, while 13 or 65% do. We can observe that the BCS before calving is higher for
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diseased animals, with a significant difference three weeks before calving, a finding that supports the
results in [10]. In addition, in accordance with [10], the prevalence of SCK in multiparous animals is
slightly higher, although there is no significant difference. Our results corroborate the findings in [35]
where the authors also found a significant difference in NEFA concentration between healthy and
ketotic cows.

All features based on location show significant differences, a result which we interpret as indicating
that animals with higher risk of SCK tend to move less, i.e., variate their location less frequently than
healthy cows.

In [36], the authors concluded that heat stress increases the ketosis risk mid-lactation. Our results
point to the hypothesis that even prepartal heat stress may have an influence on development of SCK,
as the average time spent under heat stress is significantly higher in diseased cows than in healthy
ones. On the contrary, the authors of [37] calculated a 1.6 times higher risk of clinical ketosis in early
lactation if the THI was lower than 83 on the day of calving in comparison to hotter days.

As we discussed the topic of possibly missing data, we briefly state the percentages of missing
features below in Table 3.

Table 3. Percentages of features missing.

Feature 1 2 3 4 5 6 7 8 9 10 11–19 20

% Missing 31.45 11.03 1.19 31.45 11.03 1.19 1.79 0.15 0.00 0.15 26.23 0.00

3.2. Classification Results

As we assumed the location features to be rather specific, we evaluated our algorithm a total of
four times, where we included the data described as follows:

1. Sensor data before calving, location features included
2. Sensor data before calving, location features not included
3. Sensor data after calving, location features included
4. Sensor data after calving, location features not included

Applying our algorithm using a tenfold cross validation yielded the following results: We start
out with stating the confusion matrices, for the prepartal sensor data with location features included
(left) and without a location (right):

Prognosis

Sick Healthy Total

Actual
Sick 70 36 106

Healthy 223 342 565

Total 293 378 671

Prognosis

Sick Healthy Total

Actual
Sick 71 35 106

Healthy 230 335 565

Total 291 370 671

Moreover, we state the results when considering the acceleration data after calving below. On the
left-hand side, we find the results when including the location data; on the right-hand side, the results
when excluding them:

Prognosis

Sick Healthy Total

Actual
Sick 67 39 106

Healthy 151 414 565

Total 218 453 671

Prognosis

Sick Healthy Total

Actual
Sick 71 35 106

Healthy 149 393 416

Total 220 451 671
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Based on these confusion matrices, we can calculate some famous performance measures, which
we present in Table 4 below. The best values in each column are boldfaced.

Table 4. Performance Measures for our proposed algorithm for both time frames. Acc = Accuracy, Sens
= Sensitivity, Spec = Specificity, Prec = Precision, J = Youdens Index, κ = Cohens κ, MCC = Matthews
Correlation Coefficient, NPV = Negative Predictive Value.

Experiment Acc Sens Spec J κ F-Score Prec MCC NPV Lift

1 0.6051 0.6698 0.5929 0.2627 0.1504 0.3489 0.2359 0.1927 0.9054 1.6454
2 0.6140 0.6604 0.6053 0.2657 0.1548 0.3509 0.2389 0.1954 0.9048 1.6732
3 0.7168 0.6321 0.7327 0.3648 0.2553 0.4136 0.3073 0.2841 0.9139 2.3651
4 0.7258 0.6698 0.7363 0.4061 0.2826 0.4356 0.3227 0.3155 0.9224 2.5399

The results, which clearly show better results for the post-partal time frame, are consistent with
the findings in [20]. Although using pre-partal data seems desirable with respect to early detecting,
the results indicate that the difference is more distinct post partum as all considered performance
measures are the highest for Experiment 4.

Moreover, when comparing the difference w.r.t to the inclusion of location data, the results are
slightly better when excluding the location data for both times frames, which is surprising given the
statistically significant differences between healthy and sick cows as described in Section 3.1.

The percentage of correctly identified sick animals (=Sensitivity) varies from 63.2%–67.0% while
the ratio of correctly identified healthy animals (=Specificity) varies from 59.3%–73.6%. The Negative
Predictive Value is very high for all experiments (0.91%–0.92) but should be treated with caution as it
is highly affected by an imbalanced data structure. As described in Table 1, we are dealing with an
imbalanced class structure.

When looking at the results from Experiment 4, we see that more than two-thirds of the sick
animals were detected correctly, while nearly 75% of the healthy animals were labelled correctly. Due
to the imbalanced prevalence of class labels, estimating “sick” for a data set is only correct for about
32%, as can be seen by inspecting the precision, which still leaves room for improvement.

The algorithm proposed in Section 2.4 can be easily adjusted to include more individuals being
classified as sick, useful e.g., when assuming the algorithm as a first “selection”. For that, we can
learn a threshold in Naive Bayes such that a certain percentage of “sick” training examples is classified
correctly. Moreover, we can only filter data-sets in the first step where all five NCC were decided for
the same class label, which leaves possibly more examples without a definitive decision.

3.3. Parameters and Relevant Features Learned

As we estimated the classification quality in a cross validation scheme, we repeatedly selected
possibly different subset of features. We state the results as we assume these choices reflect the relevance
of the respective features. As we distinguish between two experiments each, where we either included
or excluded location features, we have a total of 20 feature selection procedures for both scenarios.

Figure 10 shows that the amount of times a feature was chosen varies greatly, as it ranges from
3 up to 19. NEFA was chosen in 19 out of 20 splits, an indicator of its relevance for detecting SCK.
Moreover, all BCS and BFT values were chosen in more than a third of all splits. The three least chosen
features are all based on location.
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Figure 10. Bar-Chart with amount every feature was chosen in our inner cross validation step.

Figure 11 shows that, also when excluding the location features, the amount of times a feature
was chosen varies greatly from 3 up to 16. NEFA was chosen in 16 out of 20 splits, followed by THI,
Milkyield and BCS -3 w. Based on this observation, the Parity and Max f/p ratio can be considered as
having low relevance.

Feature Nr.
7 20 8 2 4 1 5 6 3 10 9

0

5

10

15

# of Times Chosen

Figure 11. Bar-Chart with amount every feature was chosen in our inner cross validation step, when
excluding the location features.

4. Discussion

In this article, we presented results from a study to identify indicators for subclinical ketosis in
dairy cows around calving. Moreover we constructed an algorithm, which aims for estimating the
health status.

We included a statistical comparison of different parameters, based on milk yield and components,
animal movements within the barn, ambient temperature, and on visual observation. The results
showed significant differences in 13 of the examined parameters between healthy cows and ones
suffering from SCK. A literature review showed that our results partly corroborate the conclusions
from other studies.

In a second step, we introduced a flexible machine learning approach, which combines elements
of TSC with classical feature based algorithms. It is designed to be simple, interpretable, and flexible
with respect to data availability. The results show that our approach is a promising first step for
automatic recognition of diseases in dairy cows.

Future work will include more elaborate machine learning approaches to tackle the problem of
early detection of SCK.
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Appendix A

Proof. We want to prove the following statements:

f (a, b)g(i, j) = |a− b|pδij ⇒ D1 is equivalent to the n-dimensional Minkowski distance (A1)

D1 is a metric on Rn ⇒
(

g(i, j) = δijhi, with hi ∈ R+, i ∈ {1, . . . , n}
)

∨
(

g(i, j) = δijhi, with hi ∈ R−, i ∈ {1, . . . , n}
)

(A2)

Let us begin with (A1): We plug into the definition of D1 with our special choice for f and g:

D1(a, b; f , g, p) =

(
n

∑
i=1

n

∑
j=1
|ai − bj|pδij

) 1
p

=


n

∑
i=1

n

∑
j=1,j 6=i

|ai − bj|pδij︸ ︷︷ ︸
=0

+
n

∑
i=1

δii︸︷︷︸
=1

|ai − bi|p


1
p

=

(
n

∑
i=1
|ai − bi|p

) 1
p

. (A3)

Since the last expression (A3) is equivalent to the n-dimensional Minkowski distance, we finished the
first proof.

Let us continue with the second statement (A2):
First, we observe that (A2) is equivalent to the following implication:

D1 is a metric on Rn ⇒ g(n̂, m̂) = 0 ∀n̂, m̂ ∈ {1, . . . , n} with n̂ 6= m̂. (A4)

∧ (g(n̂, n̂) > 0 ∀n̂ ∈ {1, . . . , n} ∨ g(n̂, n̂) < 0 ∀n̂ ∈ {1, . . . , n}) (A5)

The proof of (A4) is trivial for n = 1, as every statement with an universal quantifier (∀) on an
empty set is true. The proof of (A5) is also trivial for n = 1, since g(1, 1) cant be zero, as this would
imply M(a, b) = 0 for all a,b. Therefore, let us continue proving (A4) by assuming n ≥ 2: Suppose
now D1 is a metric on n, which means that the metric conditions have to hold. First, we derive some
properties of f : We start with the observation that f (x, x) has to be 0 for all x ∈ R:

f (x, x) = 0 ∀x ∈ R. (A6)

Let a = (x, . . . , x)T ∈ Rn, x ∈ R: From the Identity of Indiscernibles-property of a metric, we see:

D1(a, a) = 0⇐⇒ D1(a, a)p = 0⇐⇒
n

∑
i=1

n

∑
j=1

f (ai, aj)g(i, j) = 0⇐⇒
n

∑
i=1

n

∑
j=1

f (x, x)g(i, j) = 0

⇐⇒ f (x, x)
n

∑
i=1

n

∑
j=1

g(i, j) = 0⇐⇒ ( f (x, x) = 0)
∨(

n

∑
i=1

n

∑
j=1

g(i, j) = 0

)
.

Next, we can easily show that

n

∑
i=1

n

∑
j=1

g(i, j) 6= 0 (A7)

has to hold under the assumption that D1 is a metric. Therefore, let

a = (x, . . . , x)T , b = (y, . . . , y)T ∈ Rn, x, y ∈ R, x 6= y.
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We know that D1(a, b)p > 0 has to hold. Assume now (A7) as false:

D1(a, b)p =
n

∑
i=1

n

∑
j=1

f (ai, bj)g(i, j) =
n

∑
i=1

n

∑
j=1

f (x, y)g(i, j) = f (x, y)
n

∑
i=1

n

∑
j=1

g(i, j) = 0

Seeing this contradiction, we arrive at the conclusion that (A7) has be true, which yields that

f (x, x) = 0 ∀x ∈ R. (A8)

Our next step is to prove that

f (x, y) = f (y, x) ∀x, y ∈ R, and (A9)

f (x, y) 6= 0 ∀x, y ∈ R, x 6= y (A10)

have to hold. Therefore, we inspect the symmetry condition of our metric using the same a, b as above,
which tells us that

D1(a, b) = D1(b, a) =⇒ D1(a, b)p = D1(b, a)p ⇐⇒
n

∑
i=1

n

∑
j=1

f (ai, bj)g(i, j) =
n

∑
i=1

n

∑
j=1

f (bi, aj)g(i, j)

⇐⇒
n

∑
i=1

n

∑
j=1

f (x, y)g(i, j) =
n

∑
i=1

n

∑
j=1

f (y, x)g(i, j)⇐⇒ f (x, y)
n

∑
i=1

n

∑
j=1

g(i, j) = f (y, x)
n

∑
i=1

n

∑
j=1

g(i, j). (A11)

Using the fact that (A7) holds, we can simplify to

⇐⇒ f (x, y) = f (y, x). (A12)

Next, we aim for (A10): Since a 6= b, we know because of the metric properties that

D1(a, b) > 0 =⇒ D1(a, b)p > 0⇐⇒
n

∑
i=1

n

∑
j=1

f (ai, bj)g(i, j) > 0

⇐⇒
n

∑
i=1

n

∑
j=1

f (x, y)g(i, j) > 0⇐⇒ f (x, y)
n

∑
i=1

n

∑
j=1

g(i, j) > 0.

Using (A7), we can derive

⇐⇒ f (x, y) 6= 0 ∀x, y ∈ R, x 6= y

We can use these proven properties of f to finally show that g has to have the aforementioned
properties. Therefore, let 1 ≤ n̂, m̂ ≤ n, m̂ 6= n̂. We define four vectors a, b, c, d ∈ R:

a = (x, x, . . . , x , y,︸︷︷︸
Positionn̂

x, . . . , x)T , b = (x, x, . . . , x , y,︸︷︷︸
Positionm̂

x, . . . , x)T ,

c = (x, . . . , x)T , d = (x, x, . . . , x , y,︸︷︷︸
Positionn̂

x . . . , x , y,︸︷︷︸
Positionm̂

x, . . . , x)T .
(A13)
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Using the metric properties, we know that

D1(a, a) = 0⇐⇒ D1(a, a)p = 0⇐⇒
n

∑
i=1

n

∑
j=1

f (ai, aj)g(i, j) = 0

⇐⇒
n

∑
i=1,i 6=n̂

n

∑
j=1,j 6=n̂

=0 (A8)︷ ︸︸ ︷
f (x, x) g(i, j) +

n

∑
i=1,i 6=n̂

f (x, y)g(i, n̂) +
n

∑
j=1,j 6=n̂

f (y, x)g(n̂, j) +

=0 (A8)︷ ︸︸ ︷
f (y, y) g(n̂, n̂) = 0

⇐⇒
n

∑
i=1,i 6=n̂

f (x, y)g(i, n̂) +
n

∑
j=1,j 6=n̂

f (y, x)g(n̂, j) = 0⇐⇒
n

∑
j=1,j 6=n̂

f (y, x)g(n̂, j) = −
n

∑
i=1,i 6=n̂

f (x, y)g(i, n̂)

⇐⇒ f (y, x)
n

∑
j=1,j 6=n̂

g(n̂, j) = − f (x, y)
n

∑
i=1,i 6=n̂

g(i, n̂).

Using the symmetry property (A9), the fact (A10) and renaming the indices, we get:

⇐⇒ f (x, y)
n

∑
j=1,j 6=n̂

g(n̂, j) = − f (x, y)
n

∑
i=1,i 6=n̂

g(i, n̂)⇐⇒ ∀n̂ = 1, . . . , n :
n

∑
i=1,i 6=n̂

g(n̂, i) = −
n

∑
i=1,i 6=n̂

g(i, n̂) (A14)

Since we know that D1 is a metric, we see:

D1(a, c) = D1(c, a) =⇒ D1(a, c)p = D1(c, a)p

⇐⇒
n

∑
i=1,i 6=n̂

n

∑
j=1

=0 (A8)︷ ︸︸ ︷
f (x, x) g(i, j) +

n

∑
j=1

f (y, x)g(n̂, j) =
n

∑
i=1

n

∑
j=1,j 6=n̂

=0 (A8)︷ ︸︸ ︷
f (x, x) g(i, j) +

n

∑
i=1

f (y, x)g(i, n̂)

⇐⇒ f (y, x)
n

∑
j=1

g(n̂, j) = f (x, y)
n

∑
i=1

g(i, n̂)

Using the symmetry property (A9):

⇐⇒ f (y, x)
n

∑
j=1

g(n̂, j) = f (y, x)
n

∑
i=1

g(i, n̂)

Using the fact (A10) and renaming the indices, we get

⇐⇒ ∀n̂ = 1, . . . , n :
n

∑
i=1

g(n̂, i) =
n

∑
i=1

g(i, n̂) (A15)

Next, we add up/subtract the results (A14) and (A15):

(A14) + (A15) : 2
n

∑
i=1,i 6=n̂

g(n̂, i) + g(n̂, n̂) = g(n̂, n̂)

(A14)− (A15) : g(n̂, n̂) = 2
n

∑
i=1,i 6=n̂

g(i, n̂) + g(n̂, n̂)
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subtracting g(n̂, n̂) and dividing by 2 on both sides in both equations give us

n

∑
i=1
i 6=n̂

g(n̂, i) = 0 ∀n̂ = 1, . . . , n. (A16)

n

∑
i=1
i 6=n̂

g(i, n̂) = 0 ∀n̂ = 1, . . . , n. (A17)

For the case n = 2, we are done with the proof of (A4), as in this case both (A16) and (A17) read as

g(1, 2) = 0 and g(2, 1) = 0.

Assume now that n ≥ 3:

D1(a, b) = D1(b, a) =⇒ D1(a, b)p = D1(b, a)p

⇐⇒
n

∑
i=1
i 6=n̂

n

∑
j=1
j 6=m̂

=0 (A8)︷ ︸︸ ︷
f (x, x) g(i, j) +

n

∑
j=1
j 6=m̂

f (y, x)g(n̂, j) +
n

∑
i=1
i 6=n̂

f (x, y)g(i, m̂) +

=0 (A8)︷ ︸︸ ︷
f (y, y) g(n̂, m̂)

=
n

∑
i=1
i 6=m̂

n

∑
j=1
j 6=n̂

=0 (A8)︷ ︸︸ ︷
f (x, x) g(i, j) +

n

∑
j=1
j 6=n̂

f (y, x)g(m̂, j) +
n

∑
i=1
i 6=m̂

f (x, y)g(i, n̂) +

=0 (A8)︷ ︸︸ ︷
f (y, y) g(m̂, n̂)

⇐⇒
n

∑
j=1
j 6=m̂

f (y, x)g(n̂, j) +
n

∑
i=1
i 6=n̂

f (x, y)g(i, m̂) =
n

∑
j=1
j 6=n̂

f (y, x)g(m̂, j) +
n

∑
i=1
i 6=m̂

f (x, y)g(i, n̂)

Using the symmetry property (A9) and the fact (A10), we can pull out a factor f (x, y) in all sums and
divide by it. Moreover, we rename the indices and get:

⇐⇒
n

∑
i=1
i 6=m̂

g(n̂, i) +
n

∑
i=1
i 6=n̂

g(i, m̂) =
n

∑
i=1
i 6=n̂

g(m̂, i) +
n

∑
i=1
i 6=m̂

g(i, n̂). (A18)

Use the facts (A16) and (A17) that

n

∑
i=1
i 6=n̂

g(n̂, i) = 0,
n

∑
i=1
i 6=m̂

g(m̂, i) = 0,
n

∑
i=1
i 6=n̂

g(i, n̂) = 0,
n

∑
i=1
i 6=m̂

g(i, m̂) = 0. (A19)

We subtract the first and fourth expression from (A19) from the left hand side of (A18), and the
second and third expression from (A19) from the right-hand side of (A18), which gives us

g(n̂, n̂)− g(n̂, m̂) + g(m̂, m̂)− g(n̂, m̂) = g(m̂, m̂)− g(m̂, n̂) + g(n̂, n̂)− g(m̂, n̂),

which simplifies to

g(n̂, m̂) = g(m̂, n̂) ∀m̂ 6= n̂, 1 ≤ m̂, n̂ ≤ n. (A20)
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Finally, we look at D1(d, d):

D1(d, d) = 0⇐⇒ D1(d, d)p = 0

⇐⇒
n

∑
i=1

i 6=n̂,m̂

n

∑
j=1

j 6=n̂,m̂

=0 (A8)︷ ︸︸ ︷
f (x, x) g(i, j) +

n

∑
i=1

i 6=n̂,m̂

f (x, y)g(i, n̂) +
n

∑
i=1

i 6=n̂,m̂

f (x, y)g(i, m̂)

+
n

∑
j=1

j 6=n̂,m̂

f (y, x)g(n̂, j) +
n

∑
j=1

j 6=n̂,m̂

f (x, y)g(m̂, j) +

=0 (A8)︷ ︸︸ ︷
f (y, y)

(
g(n̂, n̂) + g(n̂, m̂) + g(m̂, n̂) + g(m̂, m̂)

)
= 0

⇐⇒
n

∑
i=1

i 6=n̂,m̂

f (x, y)g(i, n̂) +
n

∑
i=1

i 6=n̂,m̂

f (x, y)g(i, m̂) +
n

∑
j=1

j 6=n̂,m̂

f (y, x)g(n̂, j) +
n

∑
j=1

j 6=n̂,m̂

f (x, y)g(m̂, j) = 0.

As above, we use the symmetry property (A9) and the fact (A10), pull out a factor f (x, y) in all
sums and divide by it. Moreover, we rename the indices and get:

n

∑
i=1

i 6=n̂,m̂

g(i, n̂) +
n

∑
i=1

i 6=n̂,m̂

g(i, m̂) +
n

∑
i=1

i 6=n̂,m̂

g(n̂, i) +
n

∑
i=1

i 6=n̂,m̂

g(m̂, i) = 0. (A21)

Subtracting all four expressions in (A19) from (A21), we get:

−g(m̂, n̂)− g(n̂, m̂)− g(n̂, m̂)− g(m̂, n̂) = 0

⇐⇒ g(n̂, m̂) = −g(m̂, n̂) ∀m̂ 6= n̂, 1 ≤ m̂, n̂ ≤ n. (A22)

Adding up (A20) + (A22) gives us

g(n̂, m̂) = 0 ∀m̂ 6= n̂, 1 ≤ m̂, n̂ ≤ n. (A23)

which concludes our proof of (A4) for n ≥ 3.
To finally show (A2), we have to prove (A5) for n > 1. As we already showed that g(i, j) has to be

0 for i 6= j, we assume that D1 takes the following form:

D1(a, b)p =
n

∑
i=1

f (ai, bi)g(i, i). (A24)

We define a = (x, x, . . . , x)T as above and two more vectors b and c:

b = (x, x, . . . , x
, y,︸︷︷︸

Position i
x, . . . , x)T , c = (x, x, . . . , x

, y,︸︷︷︸
Position j

x, . . . , x)T

We now prove (A5) by showing that the opposite assumptions lead to a contradiction. Assume
therefore that (A5)’ holds:

∃i, j, i 6= j : g(i, i) ≤ 0∧ g(j, j) ≥ 0

As we assume D1 to be a metric, we know that D(a, b)p > 0∧ D(a, c)p > 0. Using (A7) and the
simplified form of D1 (A24), we see that the following statement has to hold:

f (x, y)g(i, i) > 0∧ f (x, y)g(j, j) > 0 (A25)
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Inspecting (A25), we see that neither g(i, i) = 0 nor g(j, j) = 0 can fulfil these inequalities, thus we
assume g(i, i) < 0 ∧ g(j, j) > 0. Using these assumptions and dividing by g(i, i) resp. g(j, j), we
arrive at:

f (x, y) < 0∧ f (x, y) > 0 (A26)

As we arrived at a contradictory result (A26) by assuming (A5)’ to hold, we can conclude that (A5) has
to hold and therefore we have proven (A2).
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