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Vestibular function in children
with cochlear implant: Impact
and evaluation
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and Weijing Wu*

Second Xiangya Hospital, Central South University, Changsha, China

Over the last 30 years, cochlear implant (CI) has been dedicated to

improving the rehabilitation of hearing impairments. However, CI has shown

potential detrimental e�ects on vestibular function. For children, due to

atypical symptoms and di�culty in cooperating with vestibular function tests,

systematic and objective assessments of vestibular function with CI have been

conducted sparsely. This review focuses on the impact of vestibular function

in children with CI and summarized the evaluation of vestibular function

in children. In addition, some recommended strategies are summarized

and proposed.
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Introduction

In the last decades, children with bilateral severe to profound sensorineural hearing

loss (SNHL) have benefited greatly from cochlear implants (CI). While the effects of CI

surgery on residual cochlear function have been studied more frequently, its effects on

vestibular function have received less attention.

Clinical studies have shown a 2–35% incidence of vertigo and a 20–80% incidence

of vestibular abnormalities in postoperative CI patients (1). Some scholars believe that

patients with CI will develop symptomatic or asymptomatic vestibular impairment

sooner or later (2).

CI can cause vestibular impairment by direct damage to vestibular sensory structures,

disruption of fluid balance in the inner ear, inflammatory response, or direct electrical

stimulation, according to Handzel et al. (3). The normal motor development of

newborns and children, as well as optimal motor skill in preschool and school-age

children, is dependent on the activity of the inner ear balance organ (vestibular organ).

When compared to children without vestibular dysfunction, children with vestibular

dysfunction have delayed development of gross motor milestones such as standing and

walking (4). We firmly believe that vestibular examination is critical for patients because

of its impact on their early development. Vestibular function testing in children can be

challenging for a variety of reasons. Children have limited communication skills, atypical

symptoms, difficulty recognizing their symptoms are abnormal, short attention span, and

sometimes nausea and vomiting reactions (5). Various clinical strategies for adapting

vestibular testing to children have been proposed since the 1980s. The most commonly
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reported approaches to date are minimized caloric irrigations,

adapted rotational tests, video-assisted head impulse test

techniques (vHIT), and vestibular evoked myogenic potentials

(VEMP) (6).

In this paper, we analyze the factors that cause changes

in vestibular function after CI surgery and summarize the

assessment methods of vestibular function and vestibular

rehabilitation patterns in children with CI. Meanwhile, we

explore the outcomes of CI on vestibular function and the

selection of corresponding diagnosis and treatment strategies.

Impact of vestibular function in
children with cochlear implant

Mechanisms of vestibular function
changes due to cochlear implant surgery

Several mechanisms that cause vestibular impairment

have been reported, damage to the vestibular end organs

may occur as a result of direct trauma caused by possible

misalignment of the electrode insertion into the vestibular

steps, electrical stimulation of the vestibular organs by the

implant, intraoperative perilymphatic deficit, endolymphatic

flow disturbance generating endolymphatic edema, and foreign

body reaction with labyrinthitis or vestibular fibrosis (7–10).

Histopathological studies of the temporal bone after cochlear

implantation show cochlear effusion with collapsed vesicles in

more than half of the cases (3). Another common finding is the

incorrect insertion of electrode arrays in the vestibule (11).

Because of its proximity to the electrode insertion path, the

saccule is thought to be more vulnerable to damage than the

utricule or semicircular canal, and this proximity may make the

saccule more susceptible to surgical injury in the presence of

electrode insertion, drilling, or changes in the fluid environment

of the inner ear (12, 13).

Different surgical accesses have also been reported to have

different effects on vestibular function. Yoon et al. (14) divided

the patients into two groups according to surgical access: the

cochleostomy group and the round window implant group.

Patients in the round window implant group had a lower risk

of postoperative vertigo (5.5%) than those in the cochleostomy

group (8.8%). Several other studies have shown the round

window approach was more beneficial to the protection of

vestibular function (15). However, the results of different studies

on the surgical approach are currently mixed, and more relevant

studies are still needed.

Symptoms of vestibular hypofunction in
children

Visual abnormalities, torticollis, clumsiness, recurrent

vomiting, episodic spontaneous bouts of dizziness, vegetative

lethargy, otalgia, headache, ataxia, lack of postural control,

delay in gross motor skills, or learning or reading impairments

all common symptoms of vertigo in children (16). In the

pediatric population, vertigo and imbalance are frequently

underestimated or ignored. Firstly, Children have difficulty

expressing abnormal sensations of vertigo, dizziness, or

imbalance, adding a layer of complexity to the diagnosis.

Secondly, the differential is complicated and distinct from

adult vertigo, making it difficult to diagnose. Thirdly, children

can usually adapt very quickly and compensate for the lack of

vestibular loss, probably as a result of their neuroplasticity and

the stability of other sensory input systems, resulting in a short

and insignificant duration of symptoms (17).

Besides, in the majority of studies, self-perceived symptoms

of vertigo often differ from objective test results. One reason

is that most studies have used only one or a few methods

of vestibular function detection, making it difficult to analyze

the full complexity of the vestibular apparatus as no single

vestibular function examination can provide a complete

assessment of vestibular function. Another explanation is

that while objective testing shows vestibular impairment,

central compensation may reduce vertigo symptoms, or that

vestibular organ damage is too mild to be detected. In

addition, it has also been suggested that psychological factors

such as anxiety and depression may be responsible for the

disagreement (18).

Consequently, children’s vertiginous complaints are

often overlooked, erroneously diagnosed as clumsiness,

or attributed to behavioral disorders (16). A complete

history, standardized questionnaires, routine physical

examination, imaging, and even more advanced tests

are all required for the diagnosis of pediatric vestibular

disorders (19).

Factors influencing postoperative
changes in vestibular function

The following factors may be associated with the

development of postoperative vertigo: (1) gender; (2) age;

(3) surgical side selection; (4) electrical stimulation; (5) inner

ear malformation; (6) structural factors

Gender

Data on the relationship between gender and auditory

vestibular disorders remain inconclusive. Clinical data suggest

that gender may be a potential causative factor in auditory

vestibular disorders. Anatomical differences in the inner ear

exist between males and females, and physiological and/or

hormonal influences between the sexes can produce different

clinical findings on audiological and vestibular tests. Besides,

Meniere’s disease, BPPV, and other vestibular disorders are

considered to be related to estrogen levels (20).
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Age

Age diversity may cause differences in the results of various

vestibular tests.

A meta-analysis showed that only 1.7% of children with CI

had postoperative vertigo, compared with 31.3% of patients in

the adult CI population (1). The reason for this may be that the

child’s vestibular function is more compensatory, or the child

may not be able to represent their symptoms. The immaturity of

central inhibitory vestibulo-ocular reflex regulation, cerebellar

control, central vestibular adaptation, and visual-vestibular

interactions may explain the much greater levels of rotational

gain in children compared to adult normative data (21, 22).

For cVEMP, when pediatric data were compared to adult

standards, it was discovered that children had significantly

shorter P1 and N1 latencies and larger interpeak amplitudes

(23) which could be explained by structural differences (24,

25). Besides, it was reported that N1 latency was significantly

positively correlated with age, whereas the threshold parameter

was significantly negatively correlated (5). While according to

Picciotti et al. (26), no age trends were observed for latency

parameters. Kelsch et al. (23) also covered a significant N1

latency extension. These differences may be partly related to

differences in test protocols and the equipment used.

Toward the rotatory test, different studies have reached

opposite conclusions. Charpiot et al. (27) reported decreasing

gain values with increasing age. However, Maes et al. (5) showed

no discernible age trends were remarkable for the rotatory test.

There are conflicting findings regarding whether the

increase in vHIT in children varies with age. Lower gain values

have been observed in children under the age of three, with a

quick increase in vHIT gain up to the age of six, and then a

slower increase up to the age of sixteen. In addition, with age, the

variability of vHIT gain decreases (28). From the age of sixteen,

vHIT increase appears to remain stable until the eighth or ninth

decade, when it begins to fall (29–31).

The effect of age on vestibular function is inconclusive and

still needs further study.

Bilateral and contralateral cochlear implant

As the use of bilateral implants grows, it will be critical to

understanding the effects of bilateral CI surgery on the vestibular

system, which will be beneficial to both the CI team and the

patient. Guan et al. (32) believes no remarkable differences in the

abnormality rate between children with first- and second-sided

CI implantation 1 month after CI, demonstrating that the effects

of unilateral and bilateral sequential CI on vestibular function

are similar. The VEMP, on the other hand, revealed that children

implanted with a second-side CI had a higher rate of anomalies

than children implanted with a first-side CI. This might be

explained by the ceiling effect, as these children’s vestibular

functions had already been harmed by the initial CI. In the

case of vHIT, no statistically significant difference in abnormality

rates existed before and after implantation, which was in line

with earlier findings (33). According to Abouzayd et al. (34)

no significant differences in aberrant rates after CI were found

between first-side CI-implanted adults and children, or between

first- and second-side CI-implanted children, implying that

vestibular function abnormalities caused by CI surgery may

be independent of age at CI and CI access (unilateral or

sequential bilateral).

There were no significant variations in DHI and PVSQ

ratings between adults and children pre-and post-implantation

for unilateral CI, according to the vertigo questionnaire (32).

PVSQ scores in children with bilateral CI were significantly

higher on day 3 after implantation but significantly lower on

day 30, indicating that these changes could be due to initial

postoperative response to anesthesia or a middle/inner ear

injury (32).

Das et al. (35) reported that bilateral cochlear implantation

may offer extra benefits for vestibular function and is safe,

with little risk when compared to unilateral implantation.

Meanwhile, Dhondt et al. (36) suggested that CI had

modest effects on vestibular function in children. As a

result, the various benefits of bilateral implantation at

the same time may outweigh the risk of postoperative

vestibular impairment. In some situations, sequential

bilateral implantation may be required since the impact

on vestibular function can be influenced by a range of

circumstances, including surgical manipulation, inner ear

deformity, and so on. When deciding whether to conduct

simultaneous or sequential bilateral CI, consider factors such as

vestibular function.

To completely assess the hazards of bilateral cochlear

implantation on the vestibular system, more research with long-

term follow-up is needed.

Electrical stimulation

Parkes et al. (37) found that cochlear current stimulation

can produce vestibular potentials in patients, suggesting that

cochlear currents can spread from the cochlea to the vestibule

(37). Gnanasegaram et al. (38) reported that about half of

the children with CI who had vestibular deficits had spatial

disorientation, but that this perceptual deficit was corrected

by the current from the cochlear switch-on, possibly because

(1) the current stimulation increased vestibular nerve activity

and (2) the center could use the electrical stimulation from

the cochlea as a supplement to vestibular stimulation. Electrical

stimulation of the CI device has been demonstrated to affect

VEMP responses in several studies (39).

Furthermore, Xu et al. (40) hypothesized that electrical

stimulation of the CI could influence both ipsilateral and

contralateral responses. When the device is turned on, electrode

stimulation may alter the central vestibule to account for

changes in contralateral cVEMP amplitude. Others speculated

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.938751
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deng et al. 10.3389/fneur.2022.938751

on the possibility of hyperexcitability as a result of electrical

stimulation (41).

Research on the effects of electrical stimulation on vestibular

function is insufficient and needs more attention.

Inner ear malformation

Congenital inner ear malformation (IEM) is a group of

diseases that cause structural abnormalities in the inner ear due

to developmental disorders at different stages of embryonic life.

It is one of the common causes of congenital sensorineural

deafness, with a group incidence rate of 1/2,000 to 1/6,000

(42). According to Jensen (43), 20% of children with congenital

sensorineural hearing loss (SNHL) will have an inner ear

defect. Among the malformation of bone labyrinth in the inner

ear, the large vestibular aqueduct syndrome (LVAS), common

cavity deformity (CCD), and Mondini malformation are more

common (42). IEM was initially considered a contraindication

to CI, but now CI has helped many IEM patients improve

their hearing.

Large vestibular aqueduct syndrome

Sensorineural deafness is a symptom of large vestibular

aqueduct syndrome, a congenital abnormality of the inner ear.

Wang et al. (44) looked at vestibular function in kids with LVAS

and kids with normal CT performance. They discovered that

in children with normal CT, the overall VEMP abnormality

rate increased significantly from pre to post ci, however in

children with LVAS, there was no significant change in the

overall VEMP abnormality rate. The findings imply that the

effects of CI on otolith function differ between children with

LVAS and those with normal CT. The pressure created during

electrode insertion in children with LVAS can be discharged

or released into the endolymph fluid via the larger vestibular

aqueduct with less injury. Zhou et al. (45) evaluated vestibular

function in LVAS patients, and the results of VEMPs suggested

hyperactive vestibular function while the Caloric Irrigation

suggested hypoactive vestibular function, the inconsistency

needs to be evaluated comprehensively.

Common cavity deformity

Common cavity deformity (CCD) accounts for 25% of IEM

cases (46). “A cystic cavity resembling the cochlea and vestibule,

but without demonstrating any differentiation into cochlea and

vestibule,” is how the CCD is defined (47). With this pathology,

the patient may have normal, narrow, or wide internal auditory

canals (IAC). According to McElveen et al. (48), patients with

CCD rely on their visual and somatosensory systems rather

than much vestibular input. Therefore, despite the fact that the

entrance site corresponds to the lateral semicircular canal, it

is unlikely that patients will have vertigo or dizziness after CI.

Due to deformed inner ear architecture, the facial nerve typically

follows an abnormal path in CCD, and the round window may

not be apparent (49). The most likely cause of postoperative

nystagmus is direct stimulation of the vestibular branch and

after 3 months, this phenomenon exhibited adaptability. Three-

dimensional TSE MRI is essential in the demonstration of

cochlear and vestibular divisions of cochleovestibular nerve (49).

Mondini malformation

Mondini’s dysplasis (MD), is brought on by a developmental

stop in the seventh week of pregnancy. Currently, it is

categorized as incomplete partition type 2 (IP-2) and is

distinguished by 1.5 turns of cochlea with a normal basal turn,

cystic apex caused by merged middle and apical turns, enlarged

vestibular aqueduct, and dilated vestibule (50–52).

Patients with MD have been found to experience

degenerative alterations in their vestibular system and

have underdeveloped vestibular sensory organs and an enlarged

vestibular aqueduct is one of the inner ear anomalies connected

to Mondini dysplasia that is most typical (53). In Kaya’s study

(54), 44% of patients with MD had aplastic semicircular canals

and the loss of spiral ganglion cells was either severe or mild in

the temporal bone samples with semicircular canal anomalies.

The loss of vestibular type I and type II hair cells they observed

in the MD group was statistically significant in all semicircular

canals. This fact should be taken into account when evaluating

cochlear implants.

Structural factors

Vestibular dysfunction is often present in children with

deafness, and the literature reports a prevalence of 20–70%

(55, 56). Alexandra (57) believes that the degree of vestibular

function impairment is related to the degree of hearing loss.

Wolter et al. (58) found that children with unilateral deafness

also develop balance deficits, hypothesizing that the “auditory

preference syndrome” caused by unilateral deafness and the

lack of symmetrical auditory stimulation in the brain may be

responsible for the balance deficits.

Evaluation of vestibular function in
children

There are fewer studies on the assessment of vestibular

function in children, mainly because children have difficulty

describing vertigo symptoms and cooperating with vestibular

function tests. It is necessary and important to have an

appropriate assessment of vestibular function in children.

Pediatric vestibular function
questionnaire

Vertigo and vestibular dysfunction in children can cause

several symptoms. Furthermore, youngsters may not be able to
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fully express their symptoms. As a result, clinicians can use an

appropriate questionnaire to measure the degree and impact of

dizziness or vestibular loss (59). There are limited studies using

questionnaires for pediatric populations, even though there

are many questionnaires used to assess vestibular symptoms

in adults.

Pavlou et al. (59) designed the PVSQ to accurately assess

the severity of vestibular symptoms in children with vestibular

symptoms. The test has “excellent accuracy” in distinguishing

the presence or absence of abnormal levels of dizziness and/or

instability. In 95% of children, the optimal cut-off score correctly

identified abnormal levels of vestibular symptoms and accurately

reported them in 85% of healthy children. The PVSQ provides

the physician with a preliminary understanding of whether the

child has symptoms related to vestibular hypofunction, and is

also essential for screening children for vestibular function.

Motor development and balance

Initial understanding of motor development can be obtained

by knowing when the child lifts his head, sits crawls, and

walks, as well as some motor development schedules. The

balance test portion of the Bruininks-Oseretsky Test of Motor

Proficiency Second Edition (BOT-2) is a generally used balance

assessment method.

Adequate attention should be given to the child’s motor

development and balance.

Vestibular function test

Assessment of vestibular function includes otolithic and

semicircular canal function.

Otolithic function

Otolith organs include the saccule and utricle. VEMPs can

reflect the functional status of the saccule and utricle. The

evaluation of the results includes threshold, wave amplitude,

latency, etc. VEMPs are muscle responses elicited by sound,

electric current, or bone-conducted vibration stimulation of the

vestibular end organs.

The cVEMP recorded from the sternocleidomastoidmuscles

and the oVEMP recorded from extraocular muscles have both

been characterized. To put it another way, cVEMP is a test

for saccular (inferior vestibular nerve) otolith functions, while

oVEMP is for utricular (superior vestibular nerve) otolith

functions (60). The vestibular nerve assessment approach

cVEMP is now the most widely utilized to examine the effects

of CI on vestibular function in children. This could be related to

cVEMP’s simpler fit and the fact that, because of its proximity

to the CI insertion site, the balloon is thought to be the

most vulnerable to surgical effects. Furthermore, VEMPs are

straightforward to assess and work with for younger children.

When assessing extremely young children, particularly

newborns under the age of 6 months, cVEMP is especially

significant because the VOR is naturally faulty in these

youngsters. The cVEMP can be examined in a child’s supine

posture (<15 months) or in a child’s sitting upright position

to generate cervical muscle activation through head suspension

or continuous rotation. Owing to the many procedural biases

that can arise in VEMP recordings, there is a danger of

erroneous pathological findings (not due to a lack of response

due to vestibular insufficiency). Therefore, Verrecchia et al. (6)

consider the absence of VEMP responses as true vestibular

insufficiency in at least three consecutive trials.

When peripheral vestibular nerve involvement

is suspected, VEMP testing of the vestibule in

children is advised. In newborns, cVEMP testing is

possible. However, oVEMP pathway does not mature

until 3 years of age and reaches amplitudes and

latencies similar to those of adults. Janky et al. (61)

recommend that all children at age 3 should complete

oVEMP testing.

Semicircular canal function

Video head impulse test

The vestibulo-ocular reflex (VOR) arising from the three

semicircular canals is measured using the video Head Impulse

Test (vHIT). As a result, vHIT also evaluates both branches of

the vestibular nerve; posterior canal vHIT is an assessment of

the inferior portion of the vestibular nerve and anterior and

horizontal canal vHITs are assessments of the superior portion

of the vestibular nerve (61). The vHIT (together with VEMPs)

is a relatively recent assessment approach that provides a quick,

objective vestibular exam ideal for youngsters. As a result, it’s

ideal for a follow-up evaluation in the pediatric population (6).

The vHIT is the optimum approach for testing canal function,

according to Verrecchia et al. (6).

Lower gain values have been observed in children under the

age of three, with a quick increase in vHIT gain up to the age of

six, and then a slower increase up to the age of sixteen. When

defining standard values for children, age-related changes in

vHIT gain should be taken into account, as should the possibility

of corrective sweep when vHIT is regarded abnormal.

VHIT has several advantages. Firstly, it can independently

assess the functional status of the six semicircular canals.

Secondly, it is the only test that can assess the function of

the anterior and posterior semicircular canals. Thirdly, during

high-frequency stimulation, it can respond to the function

of the semicircular canals. Furthermore, regardless of the

condition of the middle ear, including the existence of pressure

equalization tubes, perforations, or a mastoid cavity, vHIT can

be performed (61).
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However, due to visual fixation and VOR development in

children under 6 months of age, false-positive results may be

obtained during evaluation (6). This factor should be taken into

account when performing vHIT on children.

Caloric irrigation

Caloric irrigation uses a temperature gradient to test the

horizontal semicircular canal and the inferior branch of the

vestibular nerve. The mini ice-water caloric test (mIWC) is

an altered version of an ice-water caloric method that was

previously proposed.

The time spent in cold water was reduced by 10 s,

yet there was enough of a temperature gradient (water

temperature ≤10◦C) to guarantee optimal vestibular activation.

In comparison to other ways previously tested, this method

significantly increased the child’s cooperation (62, 63). Only

when caloric nystagmus was absent on two test repetitions was

it thought to be indicative of vestibular insufficiency.

Caloric irrigation offers low-frequency information about

the superior branch of the vestibular nerve and the horizontal

semicircular canals that are particular to the ear.

By 6 to 12 months, the caloric response in newborns is

assumed to be mature, and the likelihood of having a normal

response improves as children gain weight. The magnitude of

slow-phase velocities in response to caloric stimulation declines

with age in children aged 2–10 (64).

However, this test can cause dizziness and nausea, so it is

often difficult for children to tolerate. Due to a certain fear of

the child during the examination and discomfort, the degree of

cooperation is poor.

Rotary chair

Rotary chair is a midfrequency (0.01–0.64Hz) assessment

of the horizontal canal and superior branch of the vestibular

nerve. Cushing et al. (56) concluded that the swivel chair test is

the test of choice for suspecting vestibular damage in children

because that can be used at any age and is easy to match.

Reduction in VOR gain is the best predictor of kinesthetic

imbalance. Rotary chair testing is commonly used to assess

overall vestibular reactivity and is particularly useful in detecting

bilateral vestibular loss and determining the severity of bilateral

vestibular loss. It should be noted that middle ear effusion can

affect the swivel chair reaction, therefore, it is recommended to

use the swivel chair test for tympanometry (65).

Noteworthy, because these tests examine diverse structures

of the vestibular system, there may be some disagreement

between otolaryngologic and otolithic testing. This divergence

may be because the test partially damaged inner ear organs

with different levels of function at different test sites. Therefore,

the otolith/ear canal inconsistency is interpreted as a reduced

vestibular function rather than full vestibular dysfunction (6).

Besides, the divergence between vHIT and mIWC also occurs

when subjects have inner ear malformations.

In conclusion, caloric testing is frequently not an option for

examining vestibular function in youngsters due to tolerance

or time constraints. The swivel chair test is considered the

gold standard for diagnosis in patients with bilateral vestibular

injuries (66). The chair test and vHIT results, on the other hand,

may not be consistent.

In patients with severe bilateral vestibular loss, Judge et al.

(66) discovered higher agreement between rotary chair and

vHIT. While vHIT showed a pattern consistent with unilateral

vestibular loss in 25% of individuals with bilateral vestibular loss,

rotary chair showed a pattern consistent with bilateral vestibular

loss. The degree of vestibular loss might vary in youngsters,

where vHIT and rotary chair are the keymeasures. It is suggested

that vHIT is a sufficient first-level evaluation. Rotary chair test is

not required if the vHIT findings are abnormal. If rotary chair

test is normal, it can aid in the detection of additional signs of

vestibular loss.

Mild vestibular loss has no effect on vHIT or rotary

chair. vHIT and rotary chair abnormalities are often not

present until caloric weakness surpasses 40–45% in the case

of unilateral weakness. Caloric testing can be used to rule out

moderate, unilateral vestibular loss when vestibular involvement

is indicated and the swivel chair and/or vHIT are normal (67).

Recommended strategies

Pre-operative

Surgeons need to take a detailed history and complete

imaging studies. The feasibility of performing bilateral

and contralateral CI is fully evaluated preoperatively,

and vestibular function must be taken into account as an

important consideration.

Vestibular screen

A large-scale, safe and affordable vestibular test for newborns

and infants is worth consideration as well as an early vestibular

assessment in terms of cochlear implantation (CI). Documented

vestibular failure may lead to the diagnosis of SNHL with

vestibular failure in the clinical setting, where up to 35% of

patients with congenital SNHL (sensorineural hearing loss) do

not have a precise diagnosis. This is especially common in

disorders such as inner ear abnormalities (61).

For all children experiencing dizziness, a vestibular

evaluation is suggested. Furthermore, because of the high

prevalence of vestibular loss in children with SNHL, the

vestibular loss should be considered when hearing loss is

suspected. Clinicians can utilize a vestibular screen to see if a

kid has vestibular impairment and if more testing is needed.

The modified clinical test of sensory integration on balance,

the bedside head thrust test, the Emory clinical vestibular chair

test, the dynamic visual acuity test, single-leg stance, tandem

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2022.938751
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deng et al. 10.3389/fneur.2022.938751

standing, age of gross motor attainment, and severity of hearing

loss have all been recommended as screening measures for

children with hearing loss (61). Besides, the excellent feasibility

of VEMP coupled with the newborn hearing screen programwas

proven by Verrecchia et al. (68). VEMP measurements could be

completed in the majority of examined ears (86%) and in up to

97% of recordings with pre-stimulus EMG within the reference

in the second step of hearing screening or after the clinical

ABR. Furthermore, more than three-quarters of the trials yielded

a clearly visible VEMP response, with the percentage rising

to 91.5 percent when the test was performed under optimum

clinical conditions.

Screen tests should be economical, simple to administer,

benign, and cover populations with a high prevalence of the

target condition, in addition to being diagnostic in nature (69).

VEMP was recently included as a secondary vestibular nerve

examination for all neonates with SNHL found in a hearing

screen program in a large multicenter nationwide study (70).

For all children who are evaluated following the first phase of

the hearing test, it is advised that VEMP be incorporated into

the hearing screen program (68).

In addition, parental worries about the degree of gross

motor delay, sitting and walking delays, and hearing loss in

children with hearing loss are markers of vestibular loss. These

characteristics can be very useful in determining whether a child

has bilateral vestibular loss. As a result, these indicators should

be incorporated into screening tools for children with hearing

loss (71).

To establish the diagnostic accuracy of VEMP as a sort of

vestibular screen in children, more research is needed.

Vestibular prediction

The high prevalence of vestibular damage is linked to specific

etiologies of hearing loss; for example, in some etiologies,

such as meningitis, vestibular damage occurs in practically

all patients, whereas other etiologies have varied effects on

vestibular function (56).

Because of the enormous impact of vestibular loss on big

muscle motor development and other outcomes, as well as the

benefits of early management, it is critical to detect children with

vestibular loss as soon as possible.

In early childhood, vestibular nerve injury is linked to the

severity of hearing loss and motor impairments. Vestibular

loss is thought to affect 30–74% of infants with severe hearing

loss (72). According to reports, 50% of youngsters who are

candidates for cochlear implants (CI) suffer from vestibular loss

(56, 73).

In children with CI, vestibular damage is associated with an

increased risk of falls and CI device failure (74). Hearing loss

is more severe in children with bilateral vestibular impairment

compared to children with normal or unilateral vestibular

impairment (75).

Janky et al. (71) show that in a younger group, particular

characteristics can predict vestibular loss. Vestibular loss was

predicted by age to sit, age to walk, bilateral PTA, and parental

worries about gross motor developmental delay. These four

indicators may assist evaluate whether or not a kid with

hearing loss need vestibular testing. According to ROC analysis,

employing a threshold of 7.25 months for age-to-sit and 14.5

months for age-to-walk for detecting vestibular loss provides

reasonable sensitivity and specificity (71). According to ROC

analysis, employing a bilateral PTA cutoff of 40 dB has excellent

sensitivity (80%) and a bilateral PTA cutoff of 66 dB has

excellent specificity (91%). These indicators aremore sensitive in

detecting children who have suffered bilateral vestibular damage.

A vestibular test should be undertaken for children who have

a hearing loss of more than 66 dB, particularly those who sit

later than 7.25 months or walk later than 14.5 months, or whose

parents have concerns about gross motor development (71).

Vestibular function test

Patients with severe dizziness disorder are at risk for social

isolation, anxiety, depression, falls, and injury, hence identifying

these patients with vestibular hypofunction before surgery is

crucial (18). By knowing the side of vestibular insufficiency,

preoperative vestibular assessment can play a role in minimizing

the risk indications for CI, considering the potential vestibular

impairment effect of CI (76), CI can be reconsidered when

only the functional vestibular side is suggested. If unavoidable,

parents can be informed about the possible risk of motor

proficiency sequelae and reminded them the possibility of early

adaptive intervention.

Intra-operative

Appropriate surgical manipulation can reduce vestibular

damage. The optimal surgical route for cochleostomy has been

explored to minimize damage to the inner ear structures and the

round window approach is recommended. Studies have shown

that the anterior inferior/inferior way to cochleostomy, where

the hole is drilled from below toward the round window annulus

and gradually advanced toward the lower surface of the cavity,

causes the least damage to the cochlea (77–79).

Inner ear damage induced by electrode insertion is linked

to the size and shape of the CI electrodes utilized, in addition

to the surgeon’s surgical approach. Inner ear injury is more

common with large-diameter and straight electrodes than with

thin and curved electrodes. The use of “soft surgery” techniques

in cochlear implantation is also considered to be beneficial

in preserving residual hearing and balance function. Coordes

et al. (80) proposes that ensuring that the electrode is fixed

in the tympanic step reduces the incidence of postoperative

vertigo. Slow insertion of electrodes and intraoperative topical
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application of corticosteroids may have a protective effect on

vestibular function (81). While the depth of electrode insertion

does not affect the postoperative vestibular function test (82).

Undeniably, the insertion of CI electrodes requires even more

attention in the case of anomalous or abnormal anatomy (7).

Exolymphatic fluid leakage can cause vertigo symptoms,

and conical electrodes may prevent fistula-related symptoms,

while Dania (83) believes that restabilization of electrodes may

alleviate postoperative vertigo.

Post-operative

Many factors affect vestibular function after CI

surgery. With increasing attention to changes in vestibular

function after CI surgery, more and more treatments have

been proposed.

Vestibular rehabilitation

Postoperative vestibular function rehabilitation is plastic and

can be improved through training or corresponding treatment.

Vestibular function can be improved through training or

treatment, but it is difficult to fully recover. Saki et al. (84)

studied 21 patients with vertigo and balance disorders after

CI surgery, who underwent vestibular rehabilitation. The DHI

and VAS were performed at weeks 1, 2, and 4, with the

results that the DHI and VAS scores at weeks 2 and 4 were

significantly better than those of the control group, indicating

that vestibular rehabilitation had a positive effect on the

vestibular symptoms of the patients receiving CI. Magdalena

et al. (85) performed preoperative and postoperative vestibular

function examinations in 55 CI patients with low-frequency

residual hearing, and all of them underwent postoperative

electroacoustic stimulation (EAS). The results showed an

injury rate of 15.79% for the saccule, 19.04% for the utricle,

and a decrease of 15.79% for the horizontal semicircular

canals response, which is an average decrease of about 20%

compared to the injury rate of the previous study. Compared

to the previous study, concluded that EAS treatment was

effective in improving vestibular function in patients with

residual hearing.

Vestibular implant

The vestibular implant (VI) is comparable to a cochlear

implant in that it captures motion rather than sound using a

gyroscope (86). After that, the motion data is sent to a processor,

which turns it into an electrical signal. Electrodes are then

inserted near the ampullar branches of the vestibular nerve

to transmit these electrical signals and stimulate the vestibular

nerves (86). Motion information is transmitted to the brain in

this way (87).

The Geneva-Maastricht group was the first to implant a

completely working VI into a human, indicating that VI is

feasible in humans (87). First, an electrically evoked vestibulo-

ocular reflex could be elicited in the plane of the stimulated

canal, and vestibular function could be partially restored in

both low and high frequencies of movement (88, 89). Second,

the brain can adjust to baseline inputs while continuing to

respond to the implant’s motor-induced conditioning (87).

Third, the electrically evoked VOR had properties that were

similar to those of natural VOR (90). Fourth, vestibulo-ocular

and vestibulospinal reflexes can be elicited and recorded using

vestibular evoked myogenic potentials and postural alterations,

respectively (91).

Fifth, the VI’s input perception varies: it’s not always the

sense of vertigo or spinning, but it can also be other sensations

like sound or pressure (87). Sixth, residual natural vestibular

information can be overcome by VI information when the

brain performs non-linearly. In the case of fluctuating vestibular

function, this could open the way for the VI to be used as a

“vestibular pacemaker” (92, 93).

VI is a new treatment that uses direct cerebral nerve

stimulation to treat bilateral vestibular lesions and other

underlying vestibular illnesses.

Even though numerous hurdles remain in the development

of the device and its implantation technology, the study reveals

the feasibility and value of VI in improving clinical outcomes for

individuals with certain vestibular illnesses who have failed to

respond to standard treatments (86).

Future trials should validate this approach in a larger

patient population.

Testing time

Different research on the impact of cochlear implant surgery

on vestibular function varies widely from study to study

and may depend on the lack of a standardized postoperative

testing time.

Currently, there is no definite conclusion on the time of

vestibular function evaluation after cochlear implantation. In

some studies on vestibular function changes after cochlear

implantation, the time of vestibular function evaluation varies

from 1 month to 12 months after surgery (18, 94–96). Long-

term follow-up is available to observe the long-term effects

of cochlear implantation on vestibular function in children.

It is generally believed that the results of vestibular function

assessment can be attributed to the surgical procedure at 6–

8 weeks after surgery, before the initial CI device activation,

and therefore before the child has experienced electrical

stimulation. Other studies have shown that vestibular function

of patients deteriorates 3–6 months after cochlear implantation

and tends to be stable about 14 months after implantation (18).

Therefore, vestibular function evaluation can be conducted at

different postoperative time points. At our center, vestibular
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function was studied at 1 day preoperatively and 1,6,12

months postoperatively.

Conclusion

Although clinical researchers are now becoming aware of

the importance of preserving vestibular function, vestibular

function testing on children is still a relatively new area. Even

though most children exhibit large and rapidly compensating

sensory deficits, vestibular dysfunction cannot be ignored.

When possible, screening of all patients requiring vestibular

neurological examination is necessary, as is postoperative

evaluation. Intraoperative thin and curved electrodes, “soft

surgery” technique and round window placement may reduce

vestibular dysfunction, but this remains to be proven.

In addition, vestibulo-cochlear implantation with artificial

electrical stimulation of the vestibule through external electrodes

similar to CI is a new technique to be explored for the treatment

of patients with severe and very severe sensorineural deafness

with persistent vestibular function. More research is needed

to better guide the clinical application of CI and to provide

optimal outcomes for CI implantation patients with optimal

implantation and rehabilitation outcomes.
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