
BRIEF COMMUNICATION

Immunological Predictors of
Dimethyl Fumarate-Induced

Lymphopenia

Martin Diebold, MD ,1,2†

Edoardo Galli, MD, PhD ,1,3†

Andreas Kopf, PhD,4,5,6†

Nicholas Sanderson, PhD,1

Ilaria Callegari, MD,1

Florian Ingelfinger, PhD,2,7

Nicol�as Gonzalo Núñez, PhD,2

Pascal Benkert, PhD,1,8

Ludwig Kappos, MD,1

Jens Kuhle, MD, PhD ,1

Burkhard Becher, PhD,3†

Manfred Claassen, PhD,9† and
Tobias Derfuss, MD1†

Treatment with dimethyl fumarate (DMF) leads to
lymphopenia and infectious complications in a subset of
patients with multiple sclerosis (MS). Here, we aimed to
reveal immune markers of DMF-associated lymphopenia.
This prospective observational study longitudinally
assessed 31 individuals with MS by single-cell mass cyto-
metry before and after 12 and 48 weeks of DMF therapy.
Employing a neural network-based representation learn-
ing approach, we identified a CCR4-expressing T helper
cell population negatively associated with relevant
lymphopenia. CCR4-expressing T helper cells represent a
candidate prognostic biomarker for the development of
relevant lymphopenia in patients undergoing DMF
treatment.
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Dimethyl fumarate (DMF) is an oral immunomodula-
tory compound approved as first-line treatment for

relapsing–remitting multiple sclerosis (MS).1–4 Unlike more
targeted disease-modifying treatments like monoclonal anti-
bodies, DMF affects various leukocyte populations including
T cells,5–8 B cells,9,10 and myeloid cells.6,11 Lymphopenia is
the most important safety concern of this treatment.
Patients with relevant lymphopenia, specifically at lympho-
cyte counts < 700/μl, experience an increased risk of devel-
oping progressive multifocal leukoencephalopathy (PML)
caused by a reactivation of the JC polyomavirus (JCV).12, 13

To assess this risk under therapy, serial lymphocyte counts
and age are used in clinical routine. The early identification
of patients at risk of developing lymphopenia is therefore of
crucial relevance to guide clinicians in their therapy choice.

Here, we developed a deep immunophenotyping
approach based on high-dimensional mass cytometry in
conjunction with a weakly supervised machine learning
algorithm14 to identify predictive markers of lymphopenia
in peripheral blood.

Materials and Methods
Study Design
We prospectively collected blood samples from a clinically well-
characterized cohort of 31 MS patients intending to start DMF
treatment (for baseline characteristics, see Table S1). Peripheral
blood mononuclear cells (PBMCs) from these patients were sam-
pled at baseline, and 3 and 12 months after initiation of DMF
therapy (T1, T2, and T3, respectively). Participants were
grouped by their lowest lymphocyte counts during 12-month
follow-up into 2 groups: patients with (n = 10) and without
(n = 21) lymphopenia (lymphocyte counts < 700/μl; for study
design, see Fig 1A). The study was approved by the Ethics Com-
mittee for Northwest and Central Switzerland.
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Sample Processing and Cryopreservation
Blood samples were characterized by automated flow cytometry
at the time point of collection for main leukocyte and lympho-
cyte populations (including CD3/CD4, CD3/CD8, CD19, and
CD56 cells). PBMCs were collected as previously described and
cryopreserved in liquid nitrogen.6 Short-term reactivation and
stimulation of cryopreserved PBMCs were performed as
described recently.15

Mass Cytometry
PBMCs were analyzed by a standardized mass cytometry proc-
otol with live cell barcoding for a panel of 36 markers, con-
taining lineage/activation markers, chemokine receptors, and
intracellular cytokines. After standardized preprocessing, data
were subjected to algorithm-based high-dimensional analysis as
described recently.15

Statistical Analysis
Unless otherwise specified, results indicate 2-tailed t tests with
Benjamini–Hochberg correction for multiple testing performed
using R or Prism (GraphPad Software, San Diego, CA). Probability
values of <0.05 were considered significant. Pearson correlation
coefficients (r) were derived from the z statistic of the Mann–Whit-
ney–Wilcoxon test. For mass cytometry data, preprocessed datasets
were randomly downsampled to 300,000 cells per donor. Samples
were clustered with FlowSOM and annotated according to their

protein-expression patterns. Uniform Manifold Approximation and
Projection (UMAP) visualization used a reduced dataset of 10,000
randomly selected cells per patient (plotted using ggplot2).
CellCNN14 is a weakly supervised machine learning model used to
detect and define phenotype-associated (here, lymphopenia-associ-
ated) rare cell subpopulations. The algorithm was trained to iden-
tify rare cell populations that explain the difference between
phenotypes. We implemented the algorithm in a longitudinal
design including all time points in a single model. To this end,
time residuals T3-T1 and T3-T2 were correlated with relevant
lymphopenia, using a 3-fold cross-validation. For more technical
details on CellCNN, we refer to Arvaniti and Claassen.14

Results
We assessed a cohort of 31 DMF-treated individuals with
MS, of whom 10 developed relevant lymphopenia with
lymphocyte counts < 700/μl during the follow-up period
(see Fig 1; for clinical characteristics, Table S1). First, we
characterized the effect of DMF therapy on the general
composition of PBMCs. We used the unsupervised repre-
sentation learning algorithm FlowSOM16 to delineate the
major immune populations and map their relationships in
a UMAP representation. We found a strong effect of
DMF treatment on the T cell compartment, with a signif-
icant reduction in the frequency of CD8, CD4, and γδ T

FIGURE 1: Mass cytometric analysis of the immune profile of dimethyl fumarate (DMF)-treated patients. Peripheral blood
mononuclear cells (PBMCs) of DMF-treated patients were longitudinally collected and analyzed through mass cytometry.
(A) Schematic description of the analyzed cohort. Lymphopenia has been defined by <700 lymphocytes/μl in laboratory testing.
(B) Neural network-guided definition of immune cell lineages. Mean population expression levels of all markers used for Uniform
Manifold Approximation and Projection (UMAP) visualization and FlowSOM clustering. (C) The Uniform Manifold Approximation
and Projection algorithm (1,000 cells, randomly selected from each individual patient at 3 different time points [n = 93]) was
used to depict different populations therein. FlowSOM-based immune cell populations are overlaid as a color dimension.
(D) Frequencies of immune cell lineages in peripheral leukocytes of multiple sclerosis patients developing lymphopenia (n = 10)
and not developing lymphopenia (n = 21) with DMF therapy.
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cells (Table S2). This effect was more pronounced in
patients developing lymphopenia. Conversely, relative
myeloid and B cell frequencies were only minimally
affected in nonlymphopenic individuals, whereas they
increased in most patients with relevant lymphopenia.
Overall, the immune pattern under treatment revealed an
underrepresentation of T cells in lymphopenic patients.

To determine whether lymphopenia could be
predicted based on the homeostatic immune profile of
patients before DMF therapy, we implemented the

supervised representation-learning algorithm CellCNN14 to
identify cellular features able to stratify patients developing
lymphopenia through the longitudinal assessment of feature
changes from baseline to the 3- and 12-month time points.
With this approach, the highest predictive accuracy of
73.96% was achieved for an effector memory T helper cell
phenotype (Fig 2). The decrease in this lymphopenia-
associated population was significant at all 3 time points
including baseline in individuals with lymphopenia, indicat-
ing a predisposition rather than a specific treatment effect

FIGURE 2: CellCNN identifies a cellular signature predicting lymphopenia development. (A) CellCNN-selected signature cells
(colored) are overlaid on a UMAP visualization of the major immune cell lineages from all samples. (B) Relative frequencies of the
CellCNN-identified population at 3 different time points stratified by clinical groups. (C). Frequency of selected cell types within
the lymphopenia-associated population (LAP) at T1 in the conventional panel. The color code is identical with Figure 1C.
(D) Expression patterns of the 5 key discriminant markers between the LAP and the reference cell population for the stimulated
panel. Distance between patterns for each marker is quantified by Kolmogorov–Smirnov (KS) test. (E) Heatmap depicting the
mean expression level of clustering markers used to define different memory subsets in T helper cells. T helper cells from all
donors and from all 3 time points were used. (F) Frequency of different T helper memory clusters within CellCNN-selected
signature cells. Each time point is represented. (G) Mean population expression levels of analyzed parameters in T helper
compartment and in the lymphopenia-associated cell signature. PBMC = peripheral blood mononuclear cell; Tcm = T central
memory; Tem = T effector memory; TEMRA = terminal effector.
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of DMF. This cell cluster was constituted almost exclusively
of CD4+ T cells with an effector memory phenotype. Phe-
notypically, this population is characterized by high expres-
sion of CCR4, CD25, CD103, and IL10.

To test the strength of our findings, we compared
this newly identified biomarker with other known immu-
nological and clinical lymphopenia-associated parameters
in a multivariate regression analysis. We confirmed previ-
ous findings that older age and female sex influence the
risk of developing lymphopenia. In this model, however,
only the frequency of CellCNN-identified effector mem-
ory T helper cell phenotype reached an independent sig-
nificance level (Fig 3). In conclusion, these results suggest
that—independently from age and overall lymphocyte
counts—CCR4- and IL10-expressing CD4 cells act as a
predictor of relevant lymphopenia under DMF treatment.

Discussion
Treatment-associated lymphopenia and its infectious compli-
cation PML constitute a major concern in DMF-treated

patients. So far, we lack reliable biomarkers to predict this
potentially life-threatening condition. Employing high-
dimensional immune profiling and a machine learning algo-
rithm enabled us to assess circulating immune cells in
unprecedented detail. This analysis of the mass-cytometric
dataset not only confirmed the fundamental rearrangement
of most subsets of both T cells5–8, 17 and B cells,9, 10

described in the existing literature, but identified an immune
cell signature predictive of lymphopenia.

This population is largely composed of effector
memory T helper cells sharing conventional regulatory T
cell features such as the production of the cytokine IL10,
and high expression of CD25 and CD103, as well as che-
mokine receptor CCR4. In contrast to putatively disease-
propagating effector memory T cell clusters (identified by
assessment of different treatment approaches19 or cross-
sectional comparison of diseases15), the population
described here is characterized by relatively low expression
of VLA4, IL17a, GM-CSF, and CXCR4.15,18,19

Because pathogenic T helper cells are known to be
drastically decreased by DMF treatment,15 we hypothesize

FIGURE 3: CellCNN-identified signature predicts lymphopenia development in dimethyl fumarate (DMF)-treated patients.
(A) Regression modeling of main predictors of lymphopenia and (B) graphical representation of normalized estimates. Probability
values are based on 2-tailed Mann–Whitney–Wilcoxon tests between multiple sclerosis patients developing lymphopenia (n = 10)
and not developing lymphopenia (n = 21) with DMF therapy. *p < 0.05. EDSS = Expanded Disability Status Scale; M = male.
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that the residual mature T cell pool is decisive for the for-
mation of relevant lymphopenia. Our newly described
lymphopenia-associated population can be interpreted as a
refined indicator of this residual T cell pool and may allow
estimation of the individual capacity for T cell reduction
before treatment start.

The central role of memory T helper cells in the
pathophysiology of PML20 draws further attention to
this potential indicator population. Low levels and slow
increase of central-memory and effector memory T
helper cells were described as an immunological core
feature of fatal PML under DMF treatment.20 Avoiding
cell loss in this immune cell compartment—where not
therapeutically necessary—therefore appears to be a
desirable goal for prevention of opportunistic infections.
As previously reported, higher age and lower lympho-
cyte counts at baseline are already clinically established
for risk stratification of relevant lymphopenia and PML
occurrence,12 but the relevance of the composition of
the T cell compartment has not yet been analyzed. The
predictive effector memory population described may
help to substantially refine this approach in two aspects.
First, it represents an additional, independent, and sig-
nificant tool only loosely correlated with patient age
and the overall lymphocyte counts. Furthermore, the
here-described T helper cell population—in conjunc-
tion with pathogenic T cells in MS—could play a rele-
vant role in the immunological control of latent JCV.
Although these observations require corroboration in
larger cohorts, the data available suggest that screening
of effector memory T helper cells—with high CCR4
and IL10 expression—before start of DMF therapy may
offer a prospective risk stratification tool.
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