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A residual‑based deep learning 
approach for ghost imaging
Tong Bian1,2, Yuxuan Yi2, Jiale Hu2, Yin Zhang3, Yide Wang2 & Lu Gao1*

Ghost imaging using deep learning (GIDL) is a kind of computational quantum imaging method 
devised to improve the imaging efficiency. However, among most proposals of GIDL so far, the same 
set of random patterns were used in both the training and test set, leading to a decrease of the 
generalization ability of networks. Thus, the GIDL technique can only reconstruct the profile of the 
image of the object, losing most of the details. Here we optimize the simulation algorithm of ghost 
imaging (GI) by introducing the concept of “batch” into the pre-processing stage. It can significantly 
reduce the data acquisition time and create reliable simulation data. The generalization ability of 
GIDL has been appreciably enhanced. Furthermore, we develop a residual-based framework for the GI 
system, namely the double residual U-Net (DRU-Net). The imaging quality of GI has been tripled in the 
evaluation of the structural similarity index by our proposed DRU-Net.

Ghost imaging (GI) is an unconventional imaging method compared with traditional optical imaging methods. It 
was first proposed as a quantum entangled phenomenon by making use of the entangled two-photon light source 
generated by the spontaneous parameter down-conversion (SPDC) process1. However, GI was demonstrated 
to be accomplished by classical incoherent light source soon later2. It led to controversy focus on whether the 
quantum entangled is necessary for the GI system. The GI system contains two distributed light beams, which 
are the test beam and the reference beam. In the test beam, the light illuminates the object directly and then be 
collected into a bucket measurement. In the reference beam, the light travels freely to a high-resolution detector 
without interacting with the object. The image can then be reconstructed through the correlation measurement 
between the two light beam signals3. In terms of computational ghost imaging (CGI), the reference beam becomes 
unnecessary as one can obtain the image by calculating the correlation between the test beam intensity and the 
knowledge of the random patterns displayed on the spatial light modulator (SLM)4–6.

CGI usually needs a large number of random patterns to avoid noise disturbance to achieve images of high 
resolution. This requirement leads to a long data acquisition time, which is the main issue preventing CGI from 
practical use. Improved correlation method such as normalized ghost imaging7 and differential ghost imaging8 
was later proposed to increase imaging efficiency. Notably, the Gerchberg–Saxton algorithm and compressive 
sensing ghost imaging (CSGI) regard GI as an optimization problem. In9, the Gerchberg-Saxton-like technique 
takes the integral property of Fourier transform into full consideration to provide a different perspective of image 
reconstruction of GI. CSGI can reduce measurement times and boost imaging quality10–14.

Recently, deep learning (DL) has achieved widespread use in various fields, such as image denoising, image 
inpainting, natural language processing, to name a few15. DL has also made a comprehensive application in 
computational imaging16 such as digital holography17, lensless imaging18, imaging through scattering media and 
turbid media19–21, optical encryption22,23 and ghost imaging24–28. The term of ghost imaging using deep learning 
(GIDL) was first proposed by Lyu et al.24. Their research shows that GIDL can accomplish the reconstruction 
of binary images of high quality, even with significantly less sampling rate β = N/M , where N represents the 
number of measurements, and M stands for the number of pixels of the image. GIDL generally pairs up thousands 
of GI images as inputs and their corresponding images of the object as targets to train the deep neural network 
(DNN). Here we use the term “GI image” to represent the image reconstructed by traditional ghost imaging. 
GIDL can reconstruct objects from severely disrupted images in which the object can hardly be recognized. 
In the evaluation of the peak signal to noise ratio (PSNR), structural similarity (SSIM) index, and root mean 
squared error (RMSE), GIDL shows excellent results25,26,28. Also, GIDL needs far less processing time than non-
deep-learning-based methods25. Previous research demonstrates that deep-learning-based solvers for general 
computational imaging can be trained by simulation data to make it more practical28.

OPEN

1School of Science, China University of Geosciences, Beijing 100083, China. 2School of Information Engineering, 
China University of Geosciences, Beijing 100083, China. 3School of Remote Sensing and Information Engineering, 
Wuhan University, Wuhan 430072, China. *email: gaolu@cugb.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-69187-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12149  | https://doi.org/10.1038/s41598-020-69187-5

www.nature.com/scientificreports/

GIDL usually takes a large number of images of the object as ground-truth, and then they are multiplied with a 
series of random patterns to create corresponding GI images as the network inputs. However, among most GIDLs 
proposed so far, the same set of specific random patterns is used unchangingly in both the training and test set. 
This drawback may lead to unsatisfactory performance in practical applications with weakened generalization 
ability29. Here we optimize the simulation algorithm of GI with batch processing of different random patterns 
to create datasets similar to real physical condition. We apply this optimized simulation algorithm in DNNs for 
the GI scenario, and the generalization ability of existing GIDL is enhanced obviously. In order to improve the 
imaging quality of GIDL, we make DNN learn the residual image but not the image of the object. We divide the 
residual of GI into two and further develop a double residual (DR) framework by learning two different kinds 
of residual images. Through combining the DR framework with the U-Net, we propose a new GIDL, namely the 
double residual U-Net (DRU-Net). The image quality has been significantly improved with the triple SSIM index.

Simulation
Optimized simulation algorithm with batch processing.  The configuration for CGI is shown in 
Fig. 1. Here we simulate it on the computer. A series of random patterns is created and multiplied with the image 
of the object. It is then summed up as a single pixel to accomplish the bucket measurement. Images can be recon-
structed by the correlation between the bucket measurement point intensity in the test beam and the random 
patterns in the reference beam. The bucket measurement function is given by

where �·� denotes the average of the multiple measurements.
The pseudothermal light random patterns are generated through the simulation to train the network28. In the 

plain serial simulation algorithm, images are processed one by one to achieve the corresponding images of GI. 
And creating a different set of random patterns for each image will lead to huge input/output (I/O) overhead. 
Since DL usually needs datasets of thousands of images, it will take tens of hours to generate them with the plain 
serial simulation algorithm. In previous research, a general method is to make use of the same set of random 
patterns to generate datasets?. It can reduce both the random pattern generating time and I/O overhead at the 
cost of the reliability of data and network’s generalization ability. Here we optimize the simulation with batch 
processing to create more reliable data with different sets of random patterns. We introduce the concept of batch 
in stochastic gradient descent (SGD)30 into the pre-processing stage to make full use of the Compute Unified 
Device Architecture (CUDA). Images are divided into batches and then combined in the same batch into a 
3-dimensional (3D) array. Each 3D array will be taken as the smallest operation unit and a different set of ran-
dom patterns are created for the specific 3D array. Thus, images in the same batch share the same set of random 
patterns, whereas different sets of random patterns are used among batches. The GI images are achieved from 
the dot product of the 3D object distributions and their corresponding random patterns. By setting batch size 
as 256, 512 or even larger number, our optimized simulation algorithm significantly reduces the I/O overhead. 
We then normalized the GI simulation data according to the formula as

In this way, the generalization ability of GIDL has been improved. Our optimized algorithm can deal with 
grayscale image as well as binary images. Both the plain serial simulation algorithm and optimized simulation 
algorithm are implemented by PyTorch, which is a useful python machine learning library. It has been optimized 
for matrix, hence most of the matrix calculation time can be saved. For the training set of 128× 128 pixels images, 
it takes almost 28 h to process them with the plain serial simulation algorithm but only 23 minutes with our 
optimized simulation algorithm by the laptop. The calculation efficiency is increased by 70 times.

Proposed double residual learning method.  In existing GIDLs, images of the object are reconstructed 
end-to-end from GI images. This process can be expressed as
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Figure 1.   Schematic illustration of the CGI setup.
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where O stands for the output of the network, and F{·} represents the network that maps the GI image to the 
corresponding image of the object. This specific training process is given by

where � is the set of network parameters, L(·) is the loss function used to measure the distance between the 
network outputs and their corresponding images of the object, and the superscript i denotes the ith in-out pair. 
Here we have i = 1 . . .K , enumerating the total K in-out pairs. The last term, W(θ) , means the regularization of 
parameters in case of overfitting29,31.

In recent years, we have witnessed the widespread applications of residual learning in many image processing 
fields32,33. Inspired by the DnCNN34,35, we make DNN learn the residual image but not the image of the object. 
When applied in GIDL, the residual, denoted as Res, can be written as

DnCNN is a deep residual network able to handle several general image denoising tasks, including Gaussian 
denoising, SISR and JPEG image deblockin34,35. It can yield better results than other state-of-the-art methods. 
Using R to denote the DnCNN, the training process can be formulated as

In this way, we can express the reconstructed image as

The residual mapping is usually easier to optimize than the original mapping as the residual image has small 
enough pixel values compared to those of the object’s image33,34. To the extreme, if the identity mapping is opti-
mal, it would be easier for the network to push the residuals to zero than fit the identity mapping. However, GI is 
an exception as its residual is of too high value making it hard to learn. In GI images, such as shown in Fig. 2b, the 
correlation measurement leads to the blurred image with the averaged pixel value. It turns out that the residual 
between Fig. 2a,b is in the range of − 209 to 145. The interval length exceeds the upper limit of the grayscale. 
It means that the residual is much more complex than the image of the object. Thus residual learning does not 
appear adaptive to GI. Here we produce two different kinds of residuals, namely the up-residual (up-Res) and 
down-residual (down-Res), to reduce the range of the pixel value to make it consistent with the classical nature 
of residual learning. The learning process becomes easier by dividing the residual into two parts. Figure 2c,d 
show the up-Res and down-Res images, respectively.

The main body of the DR framework consists of two CNNs. We refer to our proposed network as double 
residual U-Net (DRU-Net). The U-Net is a deep CNN with a U-shaped structure, where the max-pooling layers 
and the up-sampling layers are symmetrical to each other36. It was initially designed for image segmentation, 
but it can also be used in image denoising problem and ghost imaging26. Its variant ResUNet-a has also achieved 
significant improvement in remotely sensed data37. As schematically outlined in Fig. 3, one CNN is trained with 
up-Res images, and the other is trained with down-Res images. The DRU-Net reflects the statistical property of 
GI and makes the residual of GI easy enough to learn. After training, our network obtains much better results 
than both the U-Net and DnCNN. The DRU-Net not only reconstructs high-quality images with an amount of 
details restored but also shows strong generalization ability on the test set.

The DRU-Net is made up of the up-CNN and down-CNN, which intends to learn the up-Res images and 
down-Res images, respectively. Here we define the up-Res and down-Res as follows

We replace the negative pixel values by zeros to make it more adaptive to convolution operation. We feed those 
highly corrupted GI images to networks as inputs and use the two residuals as targets separately. In this case, 
the training process can be written as

(3)O(x, y) = F{TGI (x, y)},

(4)F = argmin
θ∈�

K
∑

i=1

L(Ti(x, y), Fθ {T
i
GI (x, y)})+W(θ),

(5)Res(x, y) = T(x, y)− TGI (x, y),

(6)R = argmin
θ∈�

K
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i
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(7)O(x, y) = TGI (x, y)+ R{TGI (x, y)}.

(8)Resup =

{
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where Rup denotes the up-CNN, and Rdown denotes the down-CNN. We also convert the floating-point number 
into an integer so that we can save the residuals as images without explicit loss of information. Now the recon-
structed image can be expressed here as

The MSRA10K dataset38 was used as the image of the object to train all three GIDLs in our study. We use the 
models of the U-Net and DnCNN in previous research26,34,35. We selected 5120 images and resized them into 
128× 128 pixels. After that, we divided them into batches and obtained corresponding GI images with the 
optimized simulation algorithm. According to Eqs. (8) and  (9), we calculated the up-Res and down-Res image 
paired up with corresponding GI images to train the DRU-Net. During the training period, Adam optimizer39 
was adopted to minimize the mean square error (MSE). The batch size of the training set was 16. The learning 
rate was set to 0.00002, and we had the weight decay equal to 0.0003. We used PyTorch 1.3.1 and a laptop with 
an NVIDIA GTX 1080M graphic card to train our network.

(11)Rdown = argmin
θ∈�down

K
∑

i=1

L(Residown(x, y),Rdownθ {T
i
GI (x, y)}),

(12)O(x, y) = TGI (x, y)+ Rup{TGI (x, y)} − Rdown{TGI (x, y)}.

Figure 2.   A comparison between image of the object and GI simulation. The image of the object is shown in 
(a), while the corresponding GI image is shown in (b), the up-Res image is shown in (c) and the down-Res 
image is shown in (d).
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Results
Figure 4 shows a comparison between the results of different GIDLs. The first column shows the four images of 
the object that are not included in the training set, while the second column shows the images reconstructed by 
GI simulation, the third shows the results produced by the DnCNN, the fourth shows the results of the U-Net 
and the fifth shows the results obtained by the DRU-Net.

As clearly shown in Fig. 4, both the U-Net and DRU-Net improve the quality of imaging significantly. The 
DnCNN performs not well, which is owing to the residual complexity of GI. It is obvious that our proposed 
DRU-Net achieves much better performance than other methods. In the image of Cat and Yii, more facial details 
are restored with the DRU-Net compared to the U-Net. In the image of Torre di Pisa, the gray value of DRU-
Net is almost close to the image of the object, while the gray value of the U-Net is higher than the image of the 
object thus its dark background appears quite bright. As to the image of Rose, the image reconstructed using the 
DRU-Net is almost the same as the image of the object.

The DnCNN, U-Net and DRU-Net parameters for GI are shown in Table 1. The DRU-Net achieves the high-
est score under the measurement of both the PSNR and SSIM index and the lowest of the RMSE. The DnCNN 
performs poorly compared to the other two GIDLs. In the image of Yii, the RMSE of the DnCNN is higher than 
GI, which proves that the residual of GI is different from other image processing.

The SSIM index can evaluate image quality more accurately than the PSNR26,40–42. The average SSIM index of 
GI, DnCNN, U-Net, and DRU-Net are 0.183, 0.328, 0.482, and 0.555 respectively. The SSIM index of the image 
has been tripled with our proposed DRU-Net.

Discussion
To further examine the robustness and generalization ability of the DRU-Net, we let them reconstruct images 
with different sampling rates, as β = 24.4%, 61%, 122%, 183% . The results are shown in Fig. 5. Here we mainly 
focus on the U-Net and DRU-Net, dismissing the results of DnCNN because it performs relatively weak com-
pared with the other two networks. The first row shows the reconstructed images of GI; the second row shows 
that of the U-Net, and the third shows the results of the DRU-Net.

The quality of the reconstructed image continues to grow as the sampling rate increases. If β equals to 24.4% , 
the reconstructed image of the road sign with the U-Net or DRU-Net are either highly blurred. When β equals 
61% , the profile of the object becomes clearer. However, the characters still cannot be reconstructed. When β 
reaches as high as 183% , the word “STOP” can be recognized clearly. In the reconstructed images with the DRU-
Net, more details of the water were restored than the image with U-Net. Nevertheless, the DRU-Net still cannot 
accomplish a very high-quality image since its PSNR is only 15.21dB. The noise in the process of GI has severely 
corrupted the image, which causes significant information loss. Since now, most GIDLs make use of supervised 
learning, and the GI process is taken as a denoising problem. In our future project, we plan to carry out the 

Figure 3.   Detailed schematic illustration of the DRU-Net. The image of the object is multiplied with a series of, 
say M, random patterns. After that, we can get a real-valued 2-dimensional matrix whose size is the same as the 
image of the object. We then normalize the data and feed them to the DRU-Net. The DRU-Net consists of two 
networks, which are the up-CNN and down-CNN. The up-CNN has to reconstruct the up-Res image, and the 
down-CNN aims to learn the down-Res image.
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unsupervised learning methods, such as inpainting algorithm43–45 to “guess” the lost part of the object instead 
of learning since the significant information loss can hardly be viewed as denoising problem.

In summary, we propose the concept of batch in the pre-processing stage and optimize the simulation algo-
rithm of GI. This allows more reliable simulation data with different sets of random patterns to be acquired 
within less time. The generalization ability of GIDL has been enhanced with the optimized simulation algorithm. 

Figure 4.   A comparison between the results of GI, DnCNN, U-Net and DRU-Net.

Table 1.   PSNRs, SSIMs, and RMSEs for GI, DnCNN, U-Net, and DRU-Net. Higher PSNR and SSIM and 
lower RMSE present the higher quality image.

Images Cat Yii Torre di Pisa Rose

PSNR

GI 9.463 9.549 12.011 10.228

DnCNN 15.565 14.262 16.601 18.764

U-Net 22.007 16.087 21.827 20.072

DRU-Net 22.409 17.165 22.702 26.544

SSIM

GI 0.179 0.204 0.200 0.172

DnCNN 0.239 0.338 0.312 0.340

U-Net 0.535 0.411 0.564 0.482

DRU-Net 0.584 0.460 0.606 0.684

RMSE

GI 10.564 10.453 10.508 10.746

DnCNN 10.167 10.679 10.205 9.702

U-Net 8.843 9.620 8.828 8.767

DRU-Net 8.668 9.432 8.767 6.783
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However, we plan to involve the experimental research in our following study. Through careful analysis of the 
statistical property of GI, we further simplified the residual by dividing it into up-Res and down-Res images to 
form a new GIDL framework, namely the DR. Also, detailed comparisons of performances between the DnCNN, 
U-Net, and DRU-Net were discussed. DRU-Net showed much better reconstruction compared to the existing 
GIDLs. It has tripled the imaging quality of GI in the evaluation of the SSIM index.
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