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Abstract

That shape is important for perception has been known for almost a thousand years (thanks to Alhazen in 1083) and has
been a subject of study ever since by scientists and phylosophers (such as Descartes, Helmholtz or the Gestalt
psychologists). Shapes are important object descriptors. If there was any remote doubt regarding the importance of shape,
recent experiments have shown that intermediate areas of primate visual cortex such as V2, V4 and TEO are involved in
analyzing shape features such as corners and curvatures. The primate brain appears to perform a wide variety of complex
tasks by means of simple operations. These operations are applied across several layers of neurons, representing
increasingly complex, abstract intermediate processing stages. Recently, new models have attempted to emulate the
human visual system. However, the role of intermediate representations in the visual cortex and their importance have not
been adequately studied in computational modeling. This paper proposes a model of shape-selective neurons whose
shape-selectivity is achieved through intermediate layers of visual representation not previously fully explored. We
hypothesize that hypercomplex - also known as endstopped - neurons play a critical role to achieve shape selectivity and
show how shape-selective neurons may be modeled by integrating endstopping and curvature computations. This model -
a representational and computational system for the detection of 2-dimensional object silhouettes that we term 2DSIL -
provides a highly accurate fit with neural data and replicates responses from neurons in area V4 with an average of 83%
accuracy. We successfully test a biologically plausible hypothesis on how to connect early representations based on Gabor
or Difference of Gaussian filters and later representations closer to object categories without the need of a learning phase as
in most recent models.
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Introduction

Since the foundation of modern neuroanatomy by Ramón y

Cajal, who gave a detailed description of the nerve cell

organization in the central and peripheral nervous system [1–4],

great progress has been achieved in understanding the human

brain. At the same time, computing power and technology have

provided more sophisticated tools to study the brain and its great

complexity. Computational neuroscience has appeared as an

important methodology for formalizing and testing new hypoth-

eses on how that complex system may perform certain operations.

Over the last decades, many models inspired by advances in the

anatomy of the visual cortex have been presented, the earliest from

the late 60 s and early 70 s [5–8]. A subsequent and very

influential model is Fukushima’s Neocognitron [9]. The Neocog-

nitron is a self-organizing neural network model that achieves

position invariance and later demonstrated to perform well on

digit recognition [10]. The network contains an input layer

followed by a cascade of S-cells (for simple cells) and C-cells

(complex cells). After unsupervised training thanks to a self-

organization process, one of the C-cells in the last layer will

respond selectively to the input pattern used in training. Later

models, based on Fukushima’s foundation, that included back-

propagation [11] were also successful at the task of handwriting

digit recognition [12,13].

Since then, there have been several relevant works. Visnet

[14] consists of a four layer network that achieves invariant

object recognition. The most crucial part of such a method is a

trace learning rule that is Hebbian based. To achieve translation

invariance, the network is trained with inputs at different

positions. Riesenhuber and Poggio’s [15–19] model consists of

five hierarchical levels of S and C neurons (following Fukush-

ima’s Neocognitron [9]) that are connected through linear

operations in one layer and non-linear (MAX) in the next (the

strongest units determine the response of the system). The first
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level receives input from the retina and is composed of simple

neuron receptive fields that analyze orientations. The next levels

account for more complex features (e.g. junctions). The last level

is composed of view-tuned neurons that achieve position and

scale invariance.

Amit [20,21] presents a parallel neural network for visual

selection. This network is trained to detect candidate locations

for object recognition. Objects are represented as composed of

features localized at different locations with respect to an object

centre. Simple features (edges and conjunctions) are detected in

lower levels, while higher levels carry out disjunctions over

regions. Suzuki and colleagues [22] construct a model of the

form pathway based on predictive coding [23,24]. Predictive

coding hypothesizes that feedback connections from high to

lower-order cortical areas carry predictions of lower-level neural

activities. Feedforward connections carry residual errors be-

tween predictions and the actual lower-level activities. In the

model, a fast coarse processing precedes and contrains more

detailed processing.

None of the models presented until now fully explore the

possible contributions of intermediate representations as they

are known in the brain. Common to most models is a first step

that performs some sort of edge-detection in a similar way to

some V1 neurons in the brain. Even though some of the

proposals may include hierarchies with intermediate represen-

tations (e.g. [19,25]), these representations do not include much

of the complexity now known to exist in the intermediate layers

of the visual cortex. The usual modeling of intermediate layers

to date is a simple composition of earlier features to

approximate shape without computing curvature or shape

directly. Here, we propose a more direct approach, one that

provides models of units that compute shape properties directly

using several novel neurally-based computations. Distinct from

the best of the previous approaches, we do not use simple

hierarchical composition of a common neural type but rather,

define new neural selectivities for each of several intermediate

visual computation layers.

Models up to now have been stagnant on the representation of

contours following Marr’s [26,27] primal sketch, that is, edge

combinations are used to represent shapes and objects. Models

have added layers of S and C cells following early systems [9] into

higher levels of the hierarchy, not considering that cells in those

higher levels perform quite different, more complex, operations.

There has been some progress on how hypercomplex cells, also

known as endstopped, may be defined [28–30], but except for the

work of [31–33] on figure-ground segregation, the role of

endstopping has been neglected. Here, following this past work,

we hypothesize that endstopped neurons play an important role in

encoding curvature and shape.

We present a biologically plausible model for shape represen-

tation, 2DSIL, where the focus is on 2D silhouettes. In the

following section we describe in detail each layer in the model.

Next we show the strongly positive results of testing the model

with stimuli used in previous single-cell recording studies followed

by a discussion regarding the characteristics of 2DSIL. In a

previous paper [34] we showed that even when this representa-

tion is used within a recognition system, it outperforms the

leading competing models. Material and methods are presented

at the end.

Results

In this section we explain how shape selectivity may be achieved

with a model that incorporates intermediate layers inspired by the

primate visual system. We demonstrate the performance of our

model by comparing computed responses with neurons from area

V4.

Incorporating endstopping and curvature in a model of
shape representation

Figure 1 presents a depiction of the proposed architecture,

which comprises simple, complex, endstopped, local curvature and

shape-selective cells that are described next in detail. In what

follows whenever a neuron is referred to as model neuron/cell it is

one developed for our theory. A neuron or cell referred to without

the model adjective is a biological one.

Model simple cells. Simple neurons of visual area V1 are

sensitive to bar and edge orientations as previous models also

stipulate. Common spatial response profiles to model simple

neurons in area V1 include Gabor filters [35] and Difference of

Gaussians. The latter provides a better fit to neuronal responses

[36] and accordingly gave better results in our case than the Gabor

filter formulation:
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where sy is the height and sx1
and sx2

are the width of each

Gaussian function. h is their orientation. The relation between

these parameters may be referred to as the aspect ratio AR~
sy

sx1

and the width ratio WR~
sx2

sx1

. Size of filters were 4sy. As with all

the model neurons within 2DSIL, these are defined at multiple

scales, each scale being band-pass for a range of receptive field

sizes, with the number of scales represented appropriate for the

modelling task. Values assigned to these parameters are exposed in

the methods section.

Cells in area V1 are heterogeneous, i.e. they are not all

uniform. In the realization of the model, four different groups of

simple cells were designed, varying sizes and values of width and

length. Model simple cells are organized into hypercolumns.

Within a hypercolumn, cells are organized at the same

orientation but are spatially displaced and combined into model

complex cells as described next (Figure 1), however there is no

input from left and right eye since binocular responses are not

considered in this study. Model simple cells are at different

orientations and scales.

Model complex cells. Complex cells have a sensitivity for

bars and orientations as well, but their receptive fields are larger

than the ones of simple neurons. Hubel and Wiesel [37–39]

suggested that complex cells may integrate the responses of simple

cells. In addition to this, [40] showed that complex cells may be

the result of the addition of simple cells along the axis

perpendicular to their orientation. Following these studies, in

our model, a complex cell is the weighted sum of 5 laterally

displaced model simple cells within a column. The model complex

cell response is given by [30]:

Endstopped and Curvature Computations for Shape
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RCX ~
Xn

i~1

ciw(Ri) ð2Þ

Ri is the response of the ith cell and ci is its weight. Model cells are

Gaussian weighted by position, with weight inversely proportional

to distance to the center. w is a rectification function, where any

value less than 0 is set to 0. Model simple cells combining into a

model complex cell are laterally displaced, their displacement

being proportional to the cell’s size as well as the height (sy) and

width (sx1
) of the Gaussian function. Displacement is in the

direction of the orientation perpendicular to the preferred one

(hz
p

2
, using the modulo function to keep values in the range 0:::p)

and are given by dx (displacement in x axis) and dy (displacement

in y axis) in the following equation:

dx~
size

2sysx1

sin(mod(hz
p

2
,p))

dy~
size

2sysx1

cos(mod(hz
p

2
,p))

ð3Þ

The construction of a model complex neuron is depicted in

Figure 2A. The orientation of its model simple neuronal

components in this case is for 900 (vertical), while the 5 model

simple cells are organized perpendicularly (spatially displaced but

Figure 1. Architecture of the representational and computational system for the detection of 2-dimensional object silhouettes
(2DSIL).
doi:10.1371/journal.pone.0042058.g001
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overlapping) to this preferred orientation, that is, 00. This results in

slightly less sensitivity for orientations since each model complex

cell integrates five model simple cells. A model complex neuron

yields a positive response for stimuli at more locations inside its

receptive field and their receptive fields are larger as well. These

characteristics follow [37–39] and up to this point our model

simple and complex cells follow [9] and share some similarities

with its followers as well [15,21,41].

Model endstopped cells. Endstopped - also known as

hypercomplex - neurons respond to contours, both real and

illusory [42]. A more recent study [43] has found that although V2

neurons are mainly selective for angles and corners, these neurons

also showed submaximal responses for bars. Model endstopped

cells result from the difference between a simple cell and two

displaced complex cells [44]. At this point, our model diverges

strongly away from formulations in the previous works cited

above. When simple and complex cells are combined at the same

orientation we can distinguish between degrees of curvature.

Through the use of model complex cells at different orientations

with respect to the simple cell, we can obtain the sign of the

curvature. These two model neuron types are explained next.

Model cells discriminant to the degree of

curvature. This model endstopped cell is the neural conver-

gence of a model simple neuron and two displaced model complex

neurons selective for the same orientation as follows (Figure 2B):

RESC~W½ccw(Rc){(cd1w(Rd1)zcd2w(Rd2))� ð4Þ

cc, cd1 and cd2 are the gains for the center and displaced cells. Rc,

Rd1 and Rd2 are the responses of the center and the two displaced

cells. w is a rectification function, where any value less than 0 is set

to 0. W is:

W~
1{e{R=r

1z1=Ce{R=r
ð5Þ

This sigmoidal function - whose parameter values are given in

the methods section - scales responses to highly intense stimuli.

Displaced cells are shifted 1/2 of their receptive field size in the

direction of their prefered orientation. The center simple cell has

an excitatory effect while the two complex cells (at the top and

bottom in Figure 2B) have an inhibitory effect, which are wider

than the center cell, following [45,46]. This design follows the

work of [28,30,47] and [44,45,48,49].

Thanks to this configuration of simple and complex cells, we

obtain a coarse estimation of curvature such that different

curvatures can be discriminated into classes. Figure 2C shows

how this type of cell can discriminate among different degrees of

curvature. The plot shows how arcs of different radius provide

different responses from this type of cell depending on the size of

the component simple and complex cells. The scales of the simple

and complex neurons that are combined in the configuration of

endstopped cells play an important role in this curvature

discrimination as it is shown in Figure 2C. Different neuronal

sizes provide a different response to different degress of curvature.

The model endstopped smallest neuron (Figure 2C blue plot,

simple cell size 40 pixels) is selective for very high curvatures, while

the largest model enstopped neuron (Figure 2C black plot, simple

cell size 120 pixels) was selective to very broad curvatures, in-

between scales (sizes of 80 and 100 pixels) provide preferred

responses to intermediate curvatures (red and green plots). Note

that this configuration also has maximal responses to bars of a

specified length (that of the simple cell at the center) as it is the case

of real endstopped cells as well. Also note that the choice of these

sizes, and even the number of sizes or scales in the model overall,

are at the discretion of the modeler so that the space of visual

contours addressed by the model are best fit by the scales

represented.

Model cells selective to the sign of curvature. Apart from

the degree of curvature, an additional contour characteristic that

V2 cells seem to encode is the sign of curvature [28,50]. Through

the local information available to endstopping we may compute

the sign of curvature. Here, in contrast to the curvature model

Figure 2. Endstopping. (A) Model complex cell. (B) Structure of model endstopped cell. (C) Response of the model endstopped cells to different
radius of curvatures. Simple cell sizes were 40 (blue color), 80 (red color), 100 (green color) and 120 pixels (black color). sy = (10,20,25,30). AR (aspect
ratio) = (1.15,2,3,4). WR (width ratio) = 2.5 for all cells. Gain c = (0.7,0.8,1,2). Responses were normalized for the range [0,1].
doi:10.1371/journal.pone.0042058.g002

Figure 3. Model endstopped cell selective for curvature sign.
doi:10.1371/journal.pone.0042058.g003
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cells, each displaced complex cell has a different orientation to the

simple cell, and the two model complex cells are oriented at

opposite signs (e.g. 450 and 1350 for the 00 model endstopped

neurons) (Figure 3). A hint regarding this concept was first

proposed by [30], which is extended here to all orientations and

used on curvatures.

For one sign of curvature, a curve excites the model simple

excitatory cell at the center but curves falling into the region of the

model complex inhibitory cells reduces the response of the model

endstopped cell. A similar curve of the opposite sign passes only

through the excitatory region (model simple cell), the curve having

no inhibition effect (or a very low inhibition) on the overall

response of the model endstopped cell since it is not, or is barely,

falling on the model complex cell receptive fields (Figure 3).

Two types of model sign cells are used. These different signs are

obtained by changing the order of the displaced subtracted

neurons.

Rz~w½ccw(Rc){(cd145
w(Rd145

)zcd2135
w(Rd2135

))�

R{~w½ccw(Rc){(cd1135
w(Rd1135

)zcd245
w(Rd245

))�
ð6Þ

where cc, cd1 and cd2 are the gains for the center and displaced

cells as before. Rc, Rd1 and Rd2 are the responses of center and

displaced cells. The difference here is that the displaced cells are at

different orientations of the preferred center simple cell, for the

positive sign model endstopped neuron, the displaced model

complex neuron d1 is at 450, while the model complex component

d2 is at 1350. For the negative sign model endstopped cell, the

order is the opposite. For best results, these model cells required

larger receptive field overlap than their degree of curvature

endstopped model cells counterpart (see methods).

Model local curvature cells. This type of cell is the result of

the combination of the responses from the two types of model

endstoped cells (degree and sign of curvature), e.g. a model

curvature cell that is selective for broad curvatures whose sign is

positive as opposed to a model cell also selective for broad

curvatures whose sign is negative. Through this neural conver-

gence of model endstopped cells discriminative to the degree of

curvature and the ones to the sign of curvature, we obtain twice

the number of curvature classes. For example, if we have four

types of model endstopped cells, through the use of the sign of

curvature of those cells we obtain eight curvature classes.

Rhi ,ri ,si
~RESCi

T
(Rzi

wR{i
)

Rhi ,ri ,sizn
~RESCi

T
(R{i

wRzi
)

ð7Þ

where Rh,r,s denotes the response of a neuron tuned to angle h,

curvature r and sign s. n is the number of model endstopped cell

types, RESCi
is the response of the model endstopped cell i and

Rz, R{ are the responses of the model sign selective endstopped

neurons. In the realization of our model i = {1, 2, 3, 4} and n = 4

(see Material and Methods). This equation is read like: If the value

of Rzi
is greater than R{i

, Rhi ,ri ,si
has the same value as the

model curvature endstopped cell, otherwise, Rhi ,ri ,sizn
contains

that value and Rhi ,ri ,si
is 0. For the case where the response from

endstopped cells is small, a high response from a model orientation

simple cell means the contour is a straight line, so its curvature is

set to 0. Rh,r,s is computed at each location.

Model shape cells. V4 cells are quite sensitive to shape and

less sensitive to spatial position [51]. Experiments in area V4 [52]

and TEO [53,54] of the macaque monkey seem to point to a

strategy of recognition of objects by parts. In the case of V4 and

TEO, those parts would be local curvatures [52,54–56]. The

response to a shape could correspond to the response of the local

curvatures of the object. In TEO, some components of local

curvatures excite the neuron, and others inhibit its response [54].

Neurons in areas V4 and TEO share similar characteristics

regarding shape analysis [54,56] and selectivity [57]. Although

similar, TEO neurons show a higher degree of complexity than V4

neurons [54]. Our model shape neurons mimic that curvature by

parts representation of shapes and silhouettes but are slightly more

complex than just the curvature|angular position coding

proposed by [56] for V4 neurons since they are not only selective

to curvatures at angular positions but also to the distance of the

curvature element to the center of the shape. This conveys more

information regarding the contour element. A shape would be

different if the curvature is far away from the shape center or near

the shape center even though its angular position is the same. We

thus make use of both components to better describe the position

of the curvature element than just one of them (angular position) as

proposed in [56].

Our model shape cells integrate the responses from a population

of model local curvature neurons to encode a shape. The proposed

response of a model’s shape neuron at location x is:

Rshape(x)~
P2n

i~1 ciRh,ri ,si
(x) Rh,ri ,si

~maxm
j~1(Rhj ,ri ,si

)

ci~
1

2p
e{(x{xi )

2

ð8Þ

where Rh,ri ,si
(x) denotes the response of a model local curvature

cell tuned to angle h, curvature r and sign s at location x, and ci is a

gaussian weight centered at xi (x and xi are in polar coordinates).

max selects the maximum reponse from the local curvature over all

angles, since the importance is on the responses to curvatures from

curvature neurons, not their orientation at this level of the

architecture. A model shape neuron will respond to a shape, and

depending on how close the stimulus is to its selectivity (controlled

through ci - see Materials and Methods), its response will be

stronger or weaker. Total response of a shape neuron is the

summation over all p locations:

Rshape~
Xp

i~1

Rshape(xi) ð9Þ

Response of a model shape neuron in curvature space
The model shape neuron of Figure 4A has a response

depending on how close the stimulus is to its curvature-by-parts

selectivity (Figure 4A). In the figure, the model neuron is selective

to a sharp curvature at the top left. This neuron would respond

maximally when that feature is present at that specific location, but

it would respond also to a broader curvature at that location with a

lower value and would have a small response to a very broad

curvature or a straight line.

Model shape neurons exhibit band-pass tuning for curvature

information. Their responses achieve a peak at a specific

curvature, then decay providing a decreasing response for

curvature values of increasing distance. No response is provided

for curvatures very far from the optimal. The model shape

neuron in this example is then selective for those model

endstopped neurons that respond strongly to sharp curvatures at

Endstopped and Curvature Computations for Shape
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that position. Since a model endstopped neuron with a high

response to a sharp curvature has also some response to a

slightly broader type of curvature, model shape neurons will not

provide a binary response but a range or responses depending

on the distance between curvatures in curvature space

(Figure 4B,C).

Figure 4. Shape-selective neuron. (A) Shape-selective neurons respond to different curvatures at different positions. The response is maximal
when those curvatures are present at their selective positions (red). If they are in nearby positions the neuron provides some response as well (orange
and yellow). (B) Shape-selective neuron tuning profile for location and curvature. (C) Shape neuron response to different stimuli, maximum response
is to the stimulus at the top (value 1).
doi:10.1371/journal.pone.0042058.g004

Endstopped and Curvature Computations for Shape
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Response of a model shape neuron based on curvature
locations

Features (curvatures) comprising the model shape neuron are

weighted with respect to a factor ci (Equation 8) depending on how

close the desired curvature is to the desired position (Figure 4A).

Continuing with the example of a neuron selective for a sharp

curvature at the top left, this model neuron will have a high

response to any stimuli that contain such sharp curvature at that

position, but some response will still be elicited in a nearby

position, e.g. a sharp curvature at the top mid-left, but no response

will be obtained for a sharp curvature present at far away positions

(e.g. the sharp curvature is at the bottom) (Figure 4B).

The curvatures that fall into the preferred cell’s positions are

considered in their full value (red in Figure 4A), but if they fall

close, they are weighted in a Gaussian manner depending on how

far from the preferred position they are (orange and yellow in

Figure 4A).This is encoded using polar coordinates [52], that is,

the radial distance to the center of the model shape neuron and its

angular position.

Representational adequacy. In the words of Pasupathy and

Connor [52]: The population code for shape has to accomodate the virtual

infinity of possible objects as well as the variability of a given object’s retinal

image. Our model shape neuron has the capability of representing

that virtual infinity of objects: If we consider that our stimuli are

within 400|400 pixel images, for the bin size selection used in the

experiments below (see Material and Methods) this gives a total of

1,800 possible curvature parts inside a model shape neuron

receptive field. In the case of only 8 curvature classes, when we

consider any possible combination of curvature/location, our

model can represent a maximum of 14,400 (approximately 10 to

the power of 86400) possible configurations of stimuli. In practice,

one might take into account Gestalt properties such as continuity,

proximity and others, and that number can be reduced to reflect

only realizable configurations. The point here is that this

representation is sufficiently rich to enable coding of a wide

variety of shapes and task knowledge or learning through

developmental experience will help determine the relevant subset

for a given task domain.

Comparison with biological neurons from area V4
Here we compare the performance of the model shape neurons

with neurons in area V4 of the macaque’s visual cortex from the

same study on which our shape cells are based. For most cells in

area V4 of the macaque, shapes evoking strongest responses are

characterized by a consistent type of boundary configuration at a

specific position within the stimulus [56]. We show that this

behavior is compatible with the model shape-selective neurons

constructed as explained previously.

Pasupathy and Connor [56] recorded the responses of 109

neurons to 366 different shapes. Each cell in the sample responded

to a variety of very different shapes. No cell displayed a response

pattern that could be characterized in terms of a single type of

global shape. However, for most cells the effective stimuli showed

some degree of shape consistency at one position. In other words,

these cells were tuned for boundary configuration in one part of

the shape.

In order to demonstrate the plausibility of our shape neurons

and the hypothesis that curvature and shape may be encoded

through endstopping, we study the behavior of the model shape

neurons by comparing their responses against real neuron

responses. We compared the responses from 75 - those cells

where the shape consistency was more clear (see Material and

Figure 5. Comparison to Figure 2 of [56]. Cells responses are on the left (� 2001 The American Physiological Society, reproduced with
permission) and their respective model responses are on right.
doi:10.1371/journal.pone.0042058.g005

Endstopped and Curvature Computations for Shape
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Methods) - out of the 109 neurons recorded by Pasupathy and

Connor’s group. Data from real neurons to achieve this set of

experiments was kindly provided by Dr. Anitha Pasupathy.

We first compared the responses from our shape-selective

neurons with the four examples from [56]. We start with Figure 2

from [56] (our Figure 5). Real V4 neuron responses are on the left

(stimuli within circles), our model shape neuron equivalent

responses are on the right (stimuli within squares). Each row on

both cases contains stimuli consisting of 2 shapes (one after the

other) rotated in steps of 450. This is the stimulus set used by [56].

Each stimulus is represented by a white icon drawn within a circle

(Pasupathy and Connor’s results) or within a square (model shape

neuron responses) representing the unit receptive field. The darker

the background behind the icon, the higher the response of the

neuron is to that shape, this applies both to Pasupathy and

Connor’s neuron recording and our model shape neuron.

For the cell in Figure 5, stimuli with a sharp convex angle at the

bottom left were particularly effective (e.g. stimuli 1 and 2 in the

middle column, bottom block; these stimuli are labeled with

superscript numbers). Stimuli with a medium convex curve evoked

moderate responses (e.g., stimuli 3 and 4). Thus this cell appears to

encode information about the bottom left boundary region,

responding well to sharp convexity at this location and poorly to

broad convexity or concavity. Based on the response of this cell to

the stimuli, this neuron was selective to a sharp convexity at the

bottom left and a concavity adjacent to it (at the bottom). A first

examination shows that the responses of the model’s shape

neurons are very similar to those of real cells. Our shape-selective

neurons respond strongly to a sharp convexity at the botton left

and a concavity at the bottom as well. If the curvature adjacent to

the sharp convexity at the bottom left is convex, real cell responses

are much weaker, our shape-selective neurons show also weaker

responses as well but not as weak as for real cells. This additional

weakness might be due to local inhibitory mechanisms (local

competition) which are not presently included in the model.

Another example provided by Pasupathy and Connor is on

Figure 4 of their article (Replicated in Figure 6, right). This cell

was sensitive to boundary configuration on the right side of the

object, responding best to concave curvature at that position. This

is exemplified by stimuli 1 and 2; stimulus 1, with a concavity at

the right, evoked a stronger response. Stimulus 2 is almost

identical, but with a convexity at the right, and it evoked no

response. The cell also appears to be tuned for sharper convexities

at the counter-clockwise-adjacent position and medium convexi-

ties at the clockwise-adjacent position. Pasupathy and Connor note

that this is shown by stimulus 3 providing a strong response, while

for stimulus 4, its response is weak (opposite combination: sharp

curvature clockwise and medium curvature counter-clockwise).

The results for the model in this case are almost equal for these

stimuli as well as the other cases mentioned in [56]: compare

shapes 5 and 6, and 7 and 8. As previously, there are some small

differences, the model providing stronger responses than the real

cells for a few stimuli.

Figure 7 shows the comparison between one of our model shape

neurons with the neuron corresponding to Figure 5 from [56].

This neuron was sensitive to a sharp convexity at the top right

flanked by a concavity on one side or the other. A first

examination shows that the responses of the model’s shape

neurons are very similar to those of real cells. As it is the case for

Figure 8 of that same article, that cell was selective for broad

convex curvature at the top. Their results are replicated here in

Figure 8.

We compared the responses of 75 of our model shape neurons

with 75 V4 cells. The comparison consisted in computing the

absolute difference between the normalized responses of each

model shape neuron and that of a real V4 neuron averaged over

the 366 stimuli:

difi~

P366
j~1

DRshapei,j
{Rrealcelli,j

D

366
; i~1:::75

ð10Þ

difi is the absolute difference between each model shape neuron’s

response and the response from the real neuron. Rshapei,j

corresponds to the response of the i-th model shape neuron to

the j-th stimulus and Rrealcelli,j
is the response of its real neuron

counterpart to the same stimulus. For each cell, mean and

standard deviation were computed and results will be provided

next as error percentages, that is, mean difference between our

model shape neurons and real cells.

The results for all the 75 cells considered in this study are shown

in Figure 9 for two conditions: model neuron responses using the

curvature parts with respect to the center of the neuron (blue bars)

and model shape neuron responses with respect the centroid of the

shape (green bars). Note that the stimuli from [56] are not always

at the receptive field center. We did not find a significant

difference between using curvature parts with respect to the center

of the model neurons or the centroid of the object.

For both cases we can see that there are only a few model shape

neurons with over 20% error, most of the differences between the

model and that of real cells fall in the range 10–20%. Average

error for all model shape neurons was 16.95% for the center of the

model neuron (stdev = 12.61) and almost the same when using the

centroid of the shape (error = 16.98%, stdev = 12.25). This shows

that even for such a large number of neurons the model performs

well and the difference between the response of the model shape-

selective neurons and that of real cells is small. In direct

comparison with the only other work to compare performance

to this dataset of neural responses, our method significantly

outperforms [25].

Discussion

We have presented a model of 2D shape representation - 2DSIL

- that follows the structure and behavior of the visual cortex.

Building on past conjectures that one of the functional roles of

endstopped cells may be to aid in shape analysis [28,47,55], we set

out to define a biologically plausible computational model of shape

representation. Here, we tested this hypothesis and have shown

how a hierarchy starting from basic simple neurons, that combine

into complex neurons and further endstopped neurons provide

local curvature neurons that are selective for shape stimuli.

The main element in this architecture is that of the model

shape-selective neuron, that represents curvature parts in a

curvature|position (radial and angular) domain. The possible

number of shapes that may be represented by our model shape

neurons is very large, considering the limited types of neurons at

each level of the architecture. Even though the primate visual

system and our model have the capability to represent a virtual

infinity of shapes, the way to handle the large but finite number of

shapes in our world may be achieved through learning, selecting

those configurations of curvatures relevant to recognize the shapes

around us based on our visual experiences. Since the represen-

tation has the capability to represent any shape, a new shape can

be easily incorporated into the system. The model supports a

recognition by parts strategy, in which the parts are curvature

values at different positions, as suggested also by Connor’s group

[54]. We have compared the response of our model shape neurons

with 75 real neurons from [56]. The results obtained by the model
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Figure 6. Comparison to Figure 4 of [56]. Cells responses are on the left (� 2001 The American Physiological Society, reproduced with
permission) and their respective model responses are on right.
doi:10.1371/journal.pone.0042058.g006

Figure 7. Comparison to Figure 5 of [56]. Cells responses are on the left (� 2001 The American Physiological Society, reproduced with
permission) and their respective model responses are on right.
doi:10.1371/journal.pone.0042058.g007
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are very similar to those of the neurons, and accomplished without

any learning or classifier method.

Our model local curvature neurons do not provide an exact

value of curvature but can discriminate among degrees of

curvature (e.g. 4 in Figure 2C). This was done using a starting

point where V1 is composed of neurons of different sizes. Through

the use of different neuronal sizes and the integration of model

simple neurons into model complex neurons we obtained model

endstopped neurons able to discriminate between degrees of

curvature, from very sharp to very broad (Figure 2C). It is

important to note as well that these neurons do not provide a

binary response for a given curve; model local curvature neurons

provide a band-pass curvature filtering, with the highest response

to the selective curvature and a decaying response that is inversely

proportional to the curvature distances in curvature space. The

response of model endstopped and curvature neurons over a range

of curvatures have a Gaussian shape (Figure 2C), as well as a

model shape neuron (Figure 4B). There is no maximum selection

from the responses from early areas, so, no information is lost

when ascending the hierarchy in a feedforward direction.

However, there is a max selection computation at the last stage

of the hierarchy, the shape cells, where it no longer affects further

decisions, in keeping with Marr’s Principle of Least Commitment

[27]. We consider that any attentive selection, filtering or bias [58–

61] in such a hierarchy would occur top-down and leave that for

future work. Interestingly, our model of sign endstopped neurons

could provide a foundation to deal with the border-ownership

problem. Sign endstopped neurons could represent opponent

channels [62], and this combined with feedback modulation

through a model of attention (e.g. [58]) would further support a

model such as the one presented by [33] on border ownership.

Figure 8. Comparison to Figure 8 of [56]. Cells responses are on the left (� 2001 The American Physiological Society, reproduced with
permission) and their respective model responses are on right.
doi:10.1371/journal.pone.0042058.g008

Figure 9. Difference between the model’s Shape-selective neurons and 75 real cells responses from area V4.
doi:10.1371/journal.pone.0042058.g009
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Our model may be considered as a major extension of the works

[9] and [28,30]. In a similar work, Serre, Cadieu and colleagues

construct a hierarchical representation with a first layer computing

oriented edge responses. This is followed by a maximum response

selection layer that feeds a pooling stage that groups spatial piece-

wise linear elements. This strategy - borrowed from Fukushima’s

NeoCognitron [9] - is repeated for each layer of the hierarchy.

Curved lines are thus approximated by linear pieces and there is

no direct computation of curvature of any form. Another related

model, based on excitatory connections is the one proposed by

Amit [20]. One important difference (among others) between our

model and these types of models is that we use inhibition for

curvature representation through endstopping instead of purely

excitatory components. Inhibitory flankers as proposed in our

model have been strongly supported by neurophysiological studies

[39,44–46,48,49] and since our goal is to test the computational

embodiment of these neurophysiological results, this necessarily

figures prominently in our model. It is an aspect that is considered

of great importance by neuroscientists [46], and surprisingly has

been neglected in models to date.

Given that it seems accepted that the visual system computes

increasingly abstract quantities as a signal ascends the visual

processing hierarchy, are those quantities computed by applying

the same computation and thus neural convergence alone suffices

to achieve abstraction, or, is it truly necessary to include more

sophisticated computations layer by layer? This is not easy to

answer in the general case. However, we can point to one

important instance that supports the latter position. In our

previous work where we look at motion processing [63], we found

that simple neural convergence did not suffice. We needed to

include a layer of neurons selective to the spatial derivative of

velocity, a much more complex construct. This is supported by

neurophysiology in monkey [64,65] and by our own fMRI human

studies [66]. Similarly, for shape representation, although our

approach is also based on a hierarchical set of computations, we

deploy different processes at each layer, not simply repetitions of

the same process. Those different processes are intended to reflect

the reality of the different neural computations in the visual cortex.

Our approach is distinct in that we perform a direct computation

of curvature and the sign of curvature. We develop that

computation using well documented neural computation types

that include not only oriented simple cells and complex cells (as the

pooling layer of others is intended to capture) but also endstopped

cells, curvature cells, and curvature sign cells. These naturally

provide a sufficient basis for the definition of shape cells, a basis

that not only mirrors neurophysiological reality of the visual cortex

better, but also provides a richer substrate for shape definition

than piecewise linear components. This is the first model of shape

representation (to the best of our knowledge) to include

aforementioned cells in intermediate layers departing from the

near universal previous use of Fukushima’s S and C types of cells.

The role of learning from examples also differs between our

work and those mentioned. Although a statistical learning

approach such as that employed by Serre, Cadieu and colleagues

for all of the layers of their processing hierarchy except for the first,

is valuable when there is no other option, we show that in the case

of the successive representations, namely those computed by

endstopped and curvature cells, there is now sufficient knowledge

to directly model these cells and to do so with a significantly high

degree of fidelity. Learning is not required if the appropriate

representations are selected in the first place.

Although this paper does not address object recognition directly,

it may provide important contributions to elements that may

advance the state-of-the-art. In a previous paper [34], we

connected the 2DSIL representation to a recognition system and

compared its performance in object recognition tasks with several

other systems including benchmark systems. Our system per-

formed well beating other systems in several categories while

maintaining comparable performance in others. Following previ-

ous authors such as Zucker and Marr, we advocate that deeper

understanding of visual processes in humans and non-human

primates can lead to important advancements in perceptual

theories and computational systems.

With the model introduced in this paper we follow the steps of

early theories of vision [9,26,67] and propose how to – following

the philosophy of those influential works – take modeling to a next

stage by incorporating new intermediate layer computations

hoping future works will continue building on these hierarchies

aimed at modeling the visual cortex.

Materials and Methods

We used the same stimuli created for [52,56]. In order to

construct the stimuli, a Matlab program was provided by Dr.

Anitha Pasupathy. The stimuli were constructed combining

convex and concave boundary elements to form closed shapes.

Boundary elements include sharp convex angles, and medium and

high convex and concave curvatures. The combination of these

boundary elements gave rise to 49 different stimuli. Stimuli were

composed of white edges against a black background, the inside

was black as well but it is shown in our figures (Figures 5, 6, 7, and

8) as white-filled for illustration purposes. For the experiment,

stimuli were those 49 shapes but rotated to 8 orientations (some

only 2 or 4 due to redundancies) in 450 increments to give a total of

366 different shapes. Stimuli are shown in Figures 5, 6, 7, and 8.

Experiments were run on Matlab in a Mac G5 PowerPC. The

input to the model is a gray-value image. Images used are

400|400 pixels, a shape would span 300|300 pixels and

correspond to the stimuli used in the aforementioned study. For

our experiments, we used 12 orientations (00, 150, 300, 450, 600,

750, 900, 1050, 1200, 1350, 1500, 1650) and 4 different sizes for

model simple cells, this gives a total of 48 types. Size of V1 model

simple neurons are 40, 60, 88 and 120 pixels, their corresponding

values for AR are 0.7, 1.4, 2.15 and 3 respectively, WR is 2.5 for

all model neurons.

For the integration into model endstopped neurons, the values

of gain c (Equation 4) for displaced neurons were from the smaller

to the larger cell: cd1 = cd2 = {1.5, 1.25, 1, 3}, cc = 1 for all centre

cells. For the chosen parameters, cells respond (90% of their

maximum value) to the following ranges of curvature radius: 6 to

11, 25 to 52, 48 to 77 and 140 to 301 pixels. Refer also to

Figure 2C for an example on how the selection of these parameters

(size, AR, WR and gain) affect neuronal curvature selectivity. The

parameters for the rectification function (Equation 5) were

C= 0.01 and r is the maximum response of the set of neurons

for a given scale divided by 8.5, a factor that provided a good

normalization approximation for this sigmoidal saturation func-

tion. The displacement values for model endstopped neurons

selective to degrees of curvature was 1/2 the size of the simple

neuron component along its preferred orientation. Displacements

for the model sign endstopped neurons were from smaller to

larger: 1/5 the size, 1/4 the size, 1/4 the size and 2/5 the size

along the orientations stated in Equation 6. The 4 types of model

endstopped neurons and the curvature direction selective neurons

lead to eight curvatures. In order to obtain the aforementioned

parameter values, a program designed to evaluate different

parameter values was created. The target of this program was to

obtain values that would provide neurons able to separate different
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degrees of curvature, providing a graph such as the one shown in

Figure 2C.

Neuron responses were provided by Dr. Anitha Pasupathy for

the comparison with model shape neuron responses. In their

influential study [56], the results from 109 neurons are reported

for 366 different stimuli. We compared with 75 out of those 109

neurons, the reason for this as well as the detailed process are

explained next. Due to the enormous range of shape representa-

tion of the model, we needed to select (or isolate in neurophysi-

ological terms) a subset of model shape neurons that would

correspond to their 109 subset of V4 biological counterparts

recorded in [56]. In order to do this, we created new stimulus

images and stored their model shape representation. The way

these stimuli were created was by superimposing the stimuli for

which the biological neuronal responses were on the 70%

maximum percentile (e.g. Figure 10A). This simple process would

give us an insight on the selectivity of the 109 biological neurons

and is similar to the way [56] analyzes the selectivity of 4 neurons

(Figures 2, 4, 5 and 8 on that work). That is, we consider the

stimuli that maximize the neuron responses to reach the

conclusion that a neuron is selective to some type of curvature

at a specified position, e.g. in Figure 10A it is clear that this

biological neuron is selective for a sharp curvature at the top-right,

flanked by a broad concavity that ends in a medium convexity on

the left side of the stimulus. Then, this image would be modified

such as to only keep the relevant curvatures. This is the stimulus

used to isolate our model shape neurons. This would also be the

stimulus for which the model shape neuron response is maximum.

We repeated this process for the 109 biological neurons, but 34

of them failed to provide any clear insight on their selectivity using

the present process (e.g. Figure 10D). On the other hand, the other

75 provided a very clear picture on their selectivities (Figure 10A–

C). We then stored the representation (Figure 4A) of each shape

model neuron for the stimuli created the way explained above.

The weights ci (Equation 8) are derived from the responses from

the eight curvature classes model neurons at their different

positions. Model shape neuron’s receptive fields were organized

into angular-radial bins (Figure 4A) of 10 pixels for radial values

and p/45 for angular values. A smaller bin size did not provide

significantly better results while having a much higher computa-

tional load.

For each one of the model shape neurons isolated this way, we

recorded responses for each of the 366 stimuli in [56]. Each

response is normalized in the 0–1 range using the maximum

response for the created stimulus as explained before as the

normalization factor. These normalized responses were compared

to their biological counterparts (responses already normalized) and

the absolute value of the difference was computed for each one of

the 366 stimuli. Figure 9 shows the results of these averaged values

with their corresponding standard deviations for each neuron.
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