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Dengue fever is a notable vector-borne viral disease, currently becoming the most dreaded worldwide health 
problem in terms of the number of people affected. A data set of confirmed dengue incidences collected in the 
province of West Java has allowed us to explore dengue’s temporal trends and spatial distributions to obtain 
more obvious insights into its spatial-temporal evolution. We utilized the Richards model to estimate the growth 
rate and detect the peak (or turning point) of the dengue infection wave by identifying the temporal progression 
at each location. Using spatial analysis of geo-referenced data from a local perspective, we investigated the 
changes in the spatial clusters of dengue cases and detected hot spots and cold spots in each weekly cycle. 
We found that the trend of confirmed dengue incidences significantly increases from January to March. More 
than two-third (70.4%) of the regions in West Java had their dengue infection turning point ranging from the 
first week of January to the second week of March. This trend clearly coincides with the peak of precipitation 
level during the rainy season. Further, the spatial analysis identified the hot spots distributed across central, 
northern, northeastern, and southeastern regions in West Java. The densely populated areas were likewise seen 
to be associated with the high-risk areas of dengue exposure. Recognizing the peak of epidemic and geographical 
distribution of dengue cases might provide important insights that may help local authorities optimize their 
dengue prevention and intervention programs.
1. Introduction

Dengue fever is regarded as the most rapidly spreading disease and 
has become a significant health issue in tropical and sub-tropical coun-

tries [1, 2, 3]. It is one of the most prevalent arthropod-borne illnesses 
caused by virus infection with any of the four serotypes [4]. The pri-

mary vector of virus transmission is the Aedes mosquito, with humans 
and primates as their natural host. Dengue cases have affected more 
than 100 countries globally with a 30-fold increase in the past five 
decades [5, 6]. Tens of millions of dengue cases are reported, and tens 
of thousands of fatality cases occur annually [7]. It is estimated that 
about two-thirds of the human population reside in areas infested with 
dengue vectors [8]. The high prevalence, the limitations of vaccines, 
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and the lack of particular treatment have lead dengue fever to become 
a public health threat, causing widespread concern [9].

Nowadays, the Asia and Pacific regions are the highest-risk geo-

graphical areas for dengue infection in which virus transmission easily 
expands [10]. Located in this area, Indonesia has over 100,000 reported 
dengue cases each year and has become one of the riskiest areas of 
dengue exposure [11]. Tropical climate conditions support mosquito 
growth so the transmission cycle between hosts and vectors is likely 
to continue with increasing intensity. The seasonal variation between 
the rainy and dry seasons is associated with the annual variety of 
dengue incidences [12]. Breeding site expansion during the rainy sea-

son determines the abundance of the vector population. Subsequently, 
it increases the risk of virus transmission, whereas the lack of egg-laying 
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space during drought periods favors the reduction of mosquito popula-

tion size [13].

The province of West Java is located in the central-southern region 
of Indonesia, adjacent to the capital city of Jakarta. With a popula-

tion of approximately 50 million, in which more than three-fourths are 
concentrated in urban and semi-urban areas, dengue has become a no-

table infectious disease in West Java. Transmission in such a large and 
densely populated area has significant spatial heterogeneity, where in-

fections spread inside as well as towards surrounding locations with 
less population caused by the intense flow of people [14]. Sustainable 
dengue transmission requires a minimum population size of approxi-

mately 10,000-1,000,000 [15], and dengue epidemics in Southeast Asia 
are related to cities with populations over 10,000 [16]. The densely 
populated areas where most economic activities happen are distributed 
in the central, northwestern, and northeastern regions of West Java. 
Environmental degradation and rapid urbanization, which might be led 
by economic development, could have simplified virus importation and 
vector expansion, which in turn may have encouraged the temporal and 
spatial distribution of dengue cases.

Some research has been conducted to explain the traveling wave 
type pattern of dengue incidences around the world. Akter et al. [17] 
have identified that newly affected areas appear to have been expanding 
in Queensland over recent years, which signifies potentially increasing 
risk for unaffected areas in and around hot spot areas, Cairns. Churakov 
et al. [18] have shown that human mobility is a significant contributor 
to spatial patterns of dengue in Brazil. In its specific case, the travel-

ing wave starts in the western states, then travels eastward and finally 
reaches the northeast at the end of a typical dengue season. Finally, 
the large scale of human suffering caused by virus infection becomes a 
challenge within the process of identifying risk factors and pinpointing 
high-risk areas.

At present, since there are no effective treatment options for dengue 
fever, prevention is the best effort to protect the population from the 
infection risk. The method to prevent and control dengue virus trans-

mission is limited to suppressing the mosquito population through some 
preventive measures, including reducing mosquito access to egg-laying 
sites such as inside and outside water-filled containers as well as us-

ing larvicides and adulticides to eradicate mosquitoes. In order to im-

plement preventive actions effectively, the capability to recognize the 
geographical distribution and heterogeneity of dengue case patterns ac-

curately and detect potential regions in which virus exposure may be 
responsible for intense infection will provide essential insights that sup-

port local health authorities in determining high-risk areas and secure 
human population. This research aims to evaluate the temporal trend 
and spatial clustering of dengue incidences in West Java and provide 
a more obvious description of the spatial-temporal evolution of dengue 
cases, which could hopefully optimize dengue prevention and interven-

tion management by public health workers and the local government.

2. Material and methods

2.1. Study site

The province of West Java is located at 104◦48′E to 108◦48′E and 
5◦50′S to 7◦50′S and covers a total area of 35,378 square kilometers. 
West Java features a tropical climate with a high annual average pre-

cipitation of approximately 2,000-4,000 mm. The average temperature 
expands from 9 ◦C in the highlands to 34 ◦C at the coast. West Java 
is the most populous province in Indonesia, with a total population 
reaching about 49.94 million people in 2020, or 18.48% of the total 
population in Indonesia. Currently, 18 districts and 9 cities are under 
the jurisdiction of West Java. Based on the geographical location, dis-

tricts and cities in West Java can be classified into six regions as shown 
in Fig. 1b, i.e., the northwestern region: Bodebek, the northern region: 
Purwasuka, the northeastern region: Ciayumajakuning, the southeast-

ern region: East Priangan, the central region: Central Priangan, and the 
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southwestern region: West Priangan. The district of Pangandaran has 
the lowest population density with 398 people per square kilometers, 
whereas the highest population density is in the city of Cimahi with 
15,798 people per square kilometer. A tremendous amount of the pop-

ulation is concentrated in urban and semi-urban areas that are the cen-

ter of modern economic activities in the central (including Bandung), 
northwestern (including Bogor, Bekasi, and Depok), and northeastern 
(including Cirebon) regions. In West Java, the more densely populated 
areas are more economically progressed and have a more dynamic hu-

man population.

2.2. Dengue incidence data

Dengue is a disease commonly found throughout the year in West 
Java, particularly because the environmental condition supports the 
dengue vector’s existence. As part of the dengue management effort, 
several mosquito control activities such as residual and chemical in-

secticide spraying are administered by the Dengue Response Team 
from district/city health offices in the outbreak regions. The number 
of dengue cases usually starts to increase in October, upon the arrival 
of the rainy season, and it decreases in May-June, at the end of the rainy 
season. The raw dengue data used in the present study are the weekly 
hospitalized dengue indigenous incidences reported in West Java. Since 
we were unable to obtain the complete dengue data in a year (52 weeks) 
due to the lack of data availability, we only used a 40-week data period 
starting from the first week of October 2019 to the first week of July 
2020, which affected 13,169 individuals.

Due to the importance of reported dengue cases as the notifiable dis-

ease in West Java, dengue data is permanently recorded systematically 
and continuously by the West Java Health Office (Dinas Kesehatan). 
Dengue data is anonymized to protect the confidentiality and privacy 
of the patient. Within 24 hours of diagnosis, the doctors are required to 
report all lab-confirmed or clinically diagnosed cases. Fig. 1a shows the 
weekly confirmed dengue cases in West Java, and Fig. 1b shows that 
high dengue incidence rates are distributed in the central, northern, 
northeastern, and southeastern regions of West Java.

2.3. Mathematical model

To examine temporal trends, the data of weekly reported dengue 
cases were fitted to the Richards model. In Fig. 1a, the weekly dengue 
cases in West Java show a single wave and since the dengue epidemic 
in Indonesia usually starts in the early rainy season (late year) and ends 
in the early dry season (mid-next year) [19, 20, 21], we assumed that 
the fitting process would be generating an exactly single wave of cases 
for all cities and districts in West Java. The form of the Richards model 
[22, 23] is shown as the following equation:

𝐶(𝑡) =𝐾

[
1 + 𝑒−𝑟𝜇

(
𝑡−𝑡𝑖

)]−1∕𝜇
(1)

𝐶(𝑡) denotes the cumulative number of weekly dengue incidences, with 
𝑡 = 0 being the initial week of dengue wave observation. Parameter 𝐾
and 𝑟 are the total numbers of dengue incidences and the cumulative 
case number’s growth rate per capita over this wave, respectively. Fur-

ther, 𝜇 signifies the cumulative curve’s deviational exponent, and 𝑡𝑖 is 
the point of inflection on the 𝑥-axis, which indicates when the timing of 
a downturn or upturn in the growth rate of the cumulative number of 
dengue cases occurs. In the fitting result of dengue data, the inflection 
point can be interpreted as the turning point of dengue infection wave 
that shows when the West Java infection peak occurs.

The Richards model, shown in Eq. (1), is a widely used growth 
model which describes many phenomena’s temporal growth, such as 
the cumulative case number of infectious disease [22]. However, unlike 
the more well-known host-vector compartmental model, the Richards 
model does not depict the actual process of disease infection. The model 
has two-fold usefulness in the modeling of infectious disease. First, to 
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Fig. 1. Summary of dengue incidence data recorded by the West Java Health Office: (a) weekly dengue incidence and weekly precipitation, and (b) dengue incidence 
rate in all districts and cities.
estimate the cumulative case number’s growth rate, often associated 
with the outbreak’s basic reproduction number; and second, to iden-

tify the temporal progression of the infection wave in order to detect 
the peak (or turning point) of the epidemic [23]. Due to the lack of 
more detailed human and mosquito data, this study focuses on investi-

gating the outbreak’s temporal and spatial progression. A recent study 
confirms that the Richards model can accurately estimate the epidemic 
peak with better confidence intervals coverage than three commonly 
used phenomenological models: exponential, logistic, and delayed lo-

gistic [24]. The Richards model is more appropriately applied in data 
fitting for the reported dengue data with minor errors during observa-

tion compared to previous models [25, 26, 27]. Using standard MATLAB 
(R2017a) software with a nonlinear least squares (NLS) approximation 
subroutine [28], we obtain two model parameters of dengue epidemi-
3

ological importance, 𝑟 and 𝑡𝑖, by fitting the cumulative dengue case 
number in West Java to the Richards model.

2.4. Spatial association analysis

To perform a spatial association analysis, we first determine the 
overall spatial clusters of dengue cases in each weekly cycle by calcu-

lating Moran’s Index. The calculation of Moran’s Index value [29, 30] 
is given by:

𝐼 =
𝑛
∑

𝑖

∑
𝑗 𝑤𝑖𝑗

(
𝑧𝑖 − 𝑧

)(
𝑧𝑗 − 𝑧

)
∑

𝑖

∑
𝑗 𝑤𝑖𝑗

∑
𝑖

(
𝑧𝑖 − 𝑧

)2 (2)

where 𝑤𝑖𝑗 = 1, if region 𝑖 and region 𝑗 are adjacent, otherwise, 𝑤𝑖𝑗 = 0.
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Fig. 2. Definition of five spatial risk classifications. Areas with high index scores are shaded in red, whereas areas with low index scores are shown as blue.
Moran’s Index values obtained from Eq. (2) indicate the existence of 
spatial clusters. The values of 𝐼 usually range from −1 to +1. The index 
value 𝐼 = −1∕ (𝑛− 1) is the expectation of 𝑛 randomly distributed spa-

tial units [31]. High values of Moran’s Index and significantly above 𝐼
indicate positive spatial autocorrelation and a greater amount of clus-

tering [32]. The index values close to 𝐼 signify probable randomness 
in the spatial distributions of data. Otherwise, the index values signifi-

cantly lower than 𝐼 represent negative spatial autocorrelation, and the 
spatial pattern of data can be more spread than a random pattern.

After determining the possibility of spatial clustering existence of 
dengue cases, we further used 𝐺∗-statistics to examine the clusters at the 
local level and provide perceptions into the spatial side of the dengue 
transmission [33, 34]. The calculations of 𝐺∗-statistics are presented as 
follows:

𝐺∗
𝑖
=

∑
𝑗 𝑤𝑖𝑗𝑧𝑗 −𝑊𝑖𝑧 (𝑖)

𝑠 (𝑖)
√[

𝑛 ⋅𝑆𝑖 −𝑊 2
𝑖

]
∕ (𝑛− 1)

(3)

for all 𝑗. The symmetric matrix 
[
𝑤𝑖𝑗

]
denotes adjacency between point 

𝑖 and point 𝑗. We have 𝑊𝑖 =
∑

𝑗 𝑤𝑖𝑗 and 𝑆𝑖 =
∑

𝑗 𝑤
2
𝑖𝑗

for all 𝑗. Moreover, 
𝑧 and 𝑠 denote mean and variance, respectively.

𝑧(𝑖) =
∑

𝑗 𝑧𝑗

𝑛− 1
𝑠2(𝑖) =

∑
𝑗 𝑧

2
𝑗

𝑛
−
[
𝑧(𝑖)

]2

In this study, we calculated the 𝑍𝐺∗ score for each week using the 
weekly reported dengue cases as the observed variable, started from 
the beginning of the outbreak in all districts and cities. Using Eq. (3), 
the value of 𝑍𝐺∗ can be calculated as:

𝑍𝐺∗
𝑖
=

𝐺∗
𝑖
−𝐸(𝐺∗

𝑖
)√

𝑉 (𝐺∗
𝑖
)

(4)

where 𝐸 and 𝑉 are given by:

𝐸(𝐺∗
𝑖
) =

𝑊𝑖

𝑛
𝑉 (𝐺∗

𝑖
) =

𝑊𝑖

(
𝑛−𝑊𝑖

)
(𝑛)2 (𝑛− 1)

⋅
[
𝑠(𝑖)
𝑧(𝑖)

]2

The statistic presented in Eq. (4) evaluates the degree of spatial co-

patterning of geo-referenced data based on both feature values and 
feature locations simultaneously from a “local” perspective, allowing 
the identification of hot spots and cold spots. A high 𝑍𝐺∗ score indi-

cates a hot spot or area with high dengue infection. By contrast, a cold 
spot refers to a region with a low 𝑍𝐺∗ score, indicating a low number 
of reported dengue cases.

Using 𝑍𝐺∗ scores, we classified all districts and cities in West Java 
into the five epidemiologically distinct risk classifications, from the low-

est to the highest, as shown in Fig. 2.

1. Level 1 (low): the target area was considered to be at ‘low risk’ if 
both the target area and all its surrounding neighbors had low 𝑍𝐺∗

scores.

2. Level 2 (mild): the target area was considered to be at ‘mild risk’ if 
the target area had low score but some of its neighbors had sporadic 
high 𝑍𝐺∗ scores.
4

3. Level 3 (moderate): the target area was considered to be at ‘mod-

erate risk’ and potentially posed some risks to its neighbors when 
the target area had high score whereas all its surrounding neigh-

bors had low 𝑍𝐺∗ scores.

4. Level 4 (high): the target area was considered to be at ‘high risk’ 
when either it had low score but all its neighbors had high scores 
or it had high score and some of its surrounding neighbors also had 
sporadic high 𝑍𝐺∗ scores.

5. Level 5 (extreme): the target area was considered to be at ‘extreme 
risk’ when both the target area and all its surrounding neighbors 
had high 𝑍𝐺∗ scores.

3. Results

Among the 49.94 million people living in West Java, 13,169 indi-

viduals were reported to be infected by the dengue virus within a select 
40 weeks, starting from the first week of October 2019 to the first week 
of July 2020. Fig. 1a shows that most of the cases (nearly 55%) can 
be found between the first week of January 2020 and the first week of 
April 2020. The dengue wave peak, which indicates the highest num-

ber of dengue cases, occurred in the fourth week of January 2020 (652 
cases) and the second week of March 2020 (660 cases).

Fig. 1b shows the density of reported dengue cases for each city 
and district in West Java. There are 14 cities/districts (>50%) having a 
dengue density greater than 25 cases per 100,000 people. The potential 
dengue exposure regions were distributed and primarily found in the 
central, northern, and eastern regions. The highest dengue case den-

sity was reported in the city of Banjar with 144.57 cases confirmed per 
100,000 residents, whereas the district of Sukabumi became the region 
with the lowest density at 3.12. In contrast, the districts and cities in 
the western region, including Bodebek and West Priangan, can be con-

sidered as the safe zone with a density of less than 25 cases per 100,000 
population.

3.1. Temporal trend of dengue cases

The weekly data of total confirmed dengue cases for each district 
and city in West Java were fitted to the Richards model to acquire 
the model parameters. As can be seen in Fig. 3, the output of the 
Richards model was well fitted with the dengue data. Table 1 shows 
the estimated value for each parameter with a 95% confidence interval 
obtained by 200 bootstrap realization. During these 40 weeks, a total 
of 13,530 dengue cases were reported, with more than 1,000 cases oc-

curring in the district of Bogor, the district of Cirebon, and the city 
of Bandung. The growth rate parameter, 𝑟, ranges from 0.0838 in the 
city of Cirebon up to 0.6774 in the city of Banjar, whereas generally, 
the growth rate of dengue in West Java is 0.2095. The range of turn-

ing points indicating the timing of upturn or downturn in the rate of 
dengue cumulative case increase is from week-4 (last week of October) 
to week-38 (mid-week of June). The earliest turning point occurs in the 
district of Cianjur, whereas the city of Cirebon has the latest turning 
point of dengue cases, close to the end of the observation time.

Based on the obtained parameter shown in Table 1, the growth 
rate 𝑟 seems to be associated with the turning point parameter 𝑡𝑖. The 
Pearson correlation test shows the value of correlation 𝜌 = −0.569 with 
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Table 1. Summary for estimated parameters by fitting weekly reported dengue data to the Richards 
model.

Region Case number 𝐾 Growth rate 𝑟 (95% CI) Deviation 𝜇 (95% CI) Turning week

Northwestern: Bodebek

Depok city 281 0.4343(0.4329,0.4357) 2.5773(2.5725,2.5821) 14

Bogor 1,440 0.2368(0.2364,0.2371) 1.3865(1.3855,1.3875) 17

Bekasi 472 0.2206(0.2209,0.2212) 1.8537(1.8511,1.8563) 21

Bogor city 116 0.2549(0.2546,0.2553) 0.6780(0.6771,0.6789) 22

Bekasi city 474 0.1611(0.1610,0.1612) 0.8347(0.8326,0.8368) 31

Northern: Purwasuka

Subang 547 0.3493(0.3487,0.3499) 2.7770(2.7747,2.7793) 8

Purwakarta 668 0.2201(0.2198,0.2204) 0.8026(0.8016,0.8036) 21

Karawang 288 0.1527(0.1525,0.1529) 1.0906(1.0896,1.0916) 22

Northeastern: Ciayumajakuning

Indramayu 349 0.1954(0.1952,0.1956) 1.4059(1.4049,1.4069) 16

Kuningan 296 0.2224(0.2220,0.2227) 1.3990(1.3978,1.4002) 17

Majalengka 595 0.1754(0.1752,0.1756) 1.9111(1.9075,1.9147) 24

Cirebon 1,157 0.1331(0.1329,0.1333) 0.8550(0.8541,0.8559) 26

Cirebon city 184 0.0838(0.0834,0.0842) 0.5694(0.5522,0.5866) 38

Southeastern: East Priangan

Pangandaran 136 0.1646(0.1637,0.1654) 1.1135(1.1108,1.1163) 9

Banjar city 265 0.6774(0.6749,0.6798) 3.3388(3.3314,3.3462) 15

Ciamis 890 0.4136(0.4120,0.4153) 2.2184(2.2136,2.2232) 17

Tasikmalaya city 118 0.1914(0.1907,0.1921) 1.1500(1.1477,1.1523) 20

Garut 923 0.1630(0.1628,0.1632) 1.1152(1.1143,1.1161) 21

Tasikmalaya 410 0.1191(0.1189,0.1193) 0.7750(0.7706,0.7794) 27

Central: Central Priangan

Sumedang 566 0.4698(0.4681,0.4714) 2.5965(2.5912,2.6019) 14

Bandung 552 0.3319(0.3312,0.3326) 2.0426(2.0403,2.0450) 15

West Bandung 690 0.2109(0.2107,0.2111) 0.7754(0.7748,0.7760) 18

Bandung city 1,370 0.1520(0.1519,0.1521) 0.7924(0.7911,0.7936) 23

Cimahi city 200 0.1164(0.1163,0.1165) 0.4547(0.4541,0.4554) 23

Southwestern: West Priangan

Cianjur 522 0.3048(0.3039,0.3058) 2.8587(2.8531,2.8642) 4

Sukabumi city 44 0.4032(0.4010,0.4054) 2.1699(2.1635,2.1764) 13

Sukabumi 77 0.1813(0.1810,0.1817) 0.5068(0.5055,0.5081) 18

West Java 13,530 0.2095(0.2092,0.2098) 1.4217(1.4202,1.4231) 18
statistically significant p-value < 0.05, which indicates a strong down-

hill relationship between these two parameters. A negative correlation 
coefficient designates a reverse association which describes the extent 
to which the two variables move in opposite directions. A low value 
of the growth rate parameter, 𝑟, signifies that the increase of dengue 
incidences needs a longer period. Subsequently, the turning point of 
the dengue wave may possibly occur later. In contrast, a high value 
of parameter 𝑟 denotes the peak of the dengue incidence wave that 
occurs earlier in the region. The city of Cirebon (𝑟 = 0.0838, 𝑡𝑖 = 38), 
the city of Bekasi (𝑟 = 0.1611, 𝑡𝑖 = 31), and the district of Tasikmalaya 
(𝑟 = 0.1191, 𝑡𝑖 = 27) are some examples of the region in West Java which 
have low values of growth rate and high turning point parameters.

The dengue wave’s turning point in West Java occurred in week-

18 which is the last week of January 2020. Since generally, dengue 
incidences in tropical countries such as Indonesia increase during the 
rainy period associated with growth in mosquito population, turning 
point parameter 𝑡𝑖 can be considered as the peak of dengue cases or the 
downturn of cumulative case growth rate. There are 14 districts and 5 
cities (70.4%) in West Java, which had their turning points ranging from 
week-14 (first week of January) to week-24 (second week of March). 
This turning point range can be associated with the wettest period in 
West Java in which average annual rainfall mainly occurs.

The late turning point means dengue cases are still able to occur in 
the next few weeks, whereas the early turning point indicates the low 
number of dengue cases at the end of the cycle of a one year period. 
Using the set of estimated parameters, predictions for some districts are 
performed to generate an ensemble of the epidemic curve. We simulated 
the 12-weeks Richards model ahead of forecasts of new weekly cases to 
obtain a complete curve in one cycle. Fig. 4 shows the prediction 12-

week ahead of dengue fever new cases in some region in West Java. 
5

The estimated final epidemic size in West Java is 𝐾 = 13,530, whereas 
the current reported cases during the 40-week period are 13,169. It 
means that more than 350 new cases may possibly occur in the next 12 
weeks from July to October 2020. Although weekly dengue data was 
only available until the first week of July 2020, we used the monthly 
data recorded by the West Java Health Office from July to September 
(equivalent to 12 weeks) for validation. The total number of dengue 
cases in West Java reported in these three months was 514, slightly 
above the predicted result. We also compared the result of prediction 
and the actual data for the same period in the four regions shown in 
Fig. 4: the city of Bandung, the district of Majalengka, the city of Bekasi, 
and the city of Cirebon. Three of these regions showed decent prediction 
results. West Java Health Office reported 180 new cases in Majalengka, 
36 new cases in the city of Cirebon, and 76 new cases in the city of 
Bekasi. At the same time, the predictions in these regions yielded 194, 
51, and 96 dengue cases, respectively. The city of Bandung showed a 
more inaccurate prediction, where the Richards model forecasted 124 
new cases and the real data was 209.

3.2. Spatial clustering of dengue cases

In Fig. 5, Moran’s Index values, while signifying the presence of 
spatial clustering, varied considerably during the observation weeks 
studied. In general, a positively significant Moran’s Index coefficient 
of density data was observed during week 1 until week 40, and its 
values were higher than the Moran’s Index coefficient of raw dengue 
data. It can be considered that density data has a lower degree of ran-

domness and shows the existence of clusters spatially of dengue cases 
in West Java. We investigated spatial clustering at a local level using 
density data of dengue cases for further spatial analysis. The value of 
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Fig. 3. Fitting result of weekly reported dengue data (red circle) to Richards model (blue line) in some districts of West Java. The district of Bogor and the city of 
Bandung have the highest case numbers of dengue. The district of Sumedang and the city of Banjar have the highest growth rate parameter. The district of Cianjur 
has the earliest turning point and the city of Cirebon has the latest turning point.

Fig. 4. Forecasting 12-week ahead of dengue fever new cases in some region in West Java.
6
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Fig. 5. Moran’s Index value of weekly raw data and density data of dengue cases in West Java.
𝐼 fluctuated throughout the observation time, with the highest index 
evaluated in week-39 (𝐼 = 0.4458) and the lowest index evaluated in 
week-9 (𝐼 = 0.1003).

During the study period, the 𝐺∗-statistics analysis revealed hot spots 
distributed across five regions except for the northwestern region of 
West Java. Fig. 6 depicts the spatiotemporal turnover of high-risk ar-

eas of dengue incidence. As can be seen, dengue was notably prevalent 
in northern (Purwakarta and Subang), southeastern (city of Banjar, 
Ciamis, Pangandaran and Tasikmalaya) and central (city of Bandung, 
city of Cimahi, Bandung, West Bandung and Sumedang) regions dur-

ing the first 20 weeks of the study period. In the next 20 weeks, the 
southeastern regions remained as hot spots, and all of the regions in 
northeastern regions, including the city of Cirebon, Cirebon, Kuningan, 
Majalengka, and Indramayu, were identified as new hot spots. The cen-

tral and northern regions became cold spots, albeit previously being 
identified as hot.

Hornsby [35] identified four distinct patterns of spatial diffusion. 
The growth of spatial phenomenon, which simultaneously widens in 
every direction, is called expansion diffusion. The direct connection 
with the adjacent region, not necessarily in all directions at once, is 
required in the pattern of contagious diffusion. A relocation diffusion 
describes the dispersing process by shifting to a new region where a 
new dispersing pattern is possibly different. The diffusion pattern of the 
phenomenon through a hierarchy of locations, such as urban hierarchy, 
is called hierarchical diffusion. Furthermore, any or all of these patterns 
may simultaneously occur. The existence of distinct diffusion patterns 
of dengue incidences is indicated by the dynamic spread of hot spots 
among weekly cycles from our mapping. The pattern in the central re-

gion during week 1-2 cycle and the southeastern region during week 
27-28 indicates correspondence to expansion diffusion. The pattern in 
the southeastern region on week 1-3 and central region on week 9-11 
can be identified as contagious diffusion. In contrast, the cycle during 
week 9-10 shows very close properties to relocation diffusion in the 
northeastern region (Kuningan district). The cycle during weeks 39-40, 
on the other hand, shows diffusion from the southeastern region toward 
the northeast region.

Table 2 shows the average number of districts or cities for each level 
in risk classification during ten weeks. Hot spots defined in Fig. 2 are 
regions with high 𝑍𝐺∗ scores (>0.5 Std.Dev) and are presented in Fig. 6

as areas with yellow-to-red color. Cold spots refer to the regions with 
low 𝑍𝐺∗ scores (<0.5 Std.Dev) that are shown in Fig. 6 as areas shaded 
in white-to-blue. All regions are classified according to their own status 
as a hot spot/cold spot and the status of all the surrounding neighbors. 
The northwestern and southwestern regions can be considered as safe 
zones of dengue infection because all of its districts and cities were clas-

sified on a low-mild risk level during the 40-week study period. At least 
one district in the northern region included a high level in the first 20 
weeks, but this region showed a low-mild level in the next 20 weeks. 
7

The number of high-risk districts or cities in the northeastern region ap-

peared to increase in the last 20 weeks, with 4 districts/cities identified 
as high-extreme levels in week-31 until week-40. The southeastern re-

gion of West Java was the most prevalent region since at least one of 
its districts/cities was classified in high-extreme level throughout ob-

servation time. The high-risk districts or cities in central regions were 
predominantly found during week-1 until week-20, while surprisingly, 
they became low-mild during week-31 until week-40.

4. Discussion

Dengue fever is one of the common acute and notable infectious dis-

eases in West Java. Dengue cases are reported each year and widely 
distributed in all districts and cities. This research study examined the 
recent record of dengue virus infection and specifically analyzed the 
temporal trends of cumulative dengue cases for each region. Further-

more, we investigated the spatial pattern of dengue incidences and 
identified the potential areas of high infection across the West Java 
throughout 40-week period.

The trend of confirmed dengue cases significantly increased in West 
Java from January to March. More than two-thirds of West Java regions 
had their dengue wave turning point, indicating peaking dengue cases, 
ranging from the first week of January to the second week of March. 
This trend clearly coincided with the peak of precipitation level during 
the rainy season. This result is consistent with other tropical countries’ 
findings, which reported that most dengue infections occurred during 
the rainy period. Many researchers confirmed that dengue cases were 
higher during the rainy period compared to the drought period, signi-

fying that precipitation has a significant role in the transmission of the 
dengue virus. In Southeast Asian regions, Cheong et al. [36] and Sumi 
et al. [37] indicated that dengue fever cases during a week were re-

lated to the precipitation over the previous 26–28 days in Malaysia and 
6–7 weeks in the Philippines. Shil [38] identified that northern states 
in India experience more dengue cases due to high annual rainfall, and 
Morales et al. [39] confirmed the strong association between rainfall 
and increase of dengue cases two months later in another South Asian 
country, Bangladesh. Further, Simard et al. [40] reported that precip-

itation could maximize the occurrence of larval development sites in 
both natural and artificial containers in Cameroon, Central Africa. In 
American tropical countries, a 10-millimeter increase in precipitation 
was related to an increase in dengue incidence of 6.0% in Brazil [41], 
4.1% in Curacao [42], and 2.1% in Mexico [43] in the following month. 
However, some studies showed no such relationship between dengue in-

cidence and precipitation in other regions. Goto et al. [44] reported that 
the rainfall does not significantly influence dengue cases in Sri Lanka, 
while Thammapalo et al. [45] showed a similar result in some provinces 
in Thailand.

The influence of precipitation on dengue fever risk is confounded by 
the interactions with human behavior (e.g., water storage) and social-
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Fig. 6. Hot spot analysis of dengue incidences in West Java. Hot spots are shown as yellow-to-red color (𝑍𝐺∗ > 0.5 Std.Dev) and cold spots are shown as white-to-blue 
color (𝑍𝐺∗ < 0.5 Std.Dev). Dengue cases evaluated by 𝐺∗ -statistics are denoted for each weekly cycle as a function of dengue incidence rates.
ecological conditions (e.g., housing condition) affecting mosquito abun-

dance. It is generally understood that precipitation is one of the climate 
factors that strongly influences vector ecology and subsequent dengue 
infection. The increase of precipitation creates and maintains an im-

portant breeding site of the mosquito life cycle for the aquatic stages 
[46]. Not surprisingly, the abundance of adult mosquito populations 
and increased mosquito egg collections coincide with the rainy period. 
Water-holding containers inside and around homes, common in urban 
and semi-urban environments, are the most critical pupae habitat to 
8

complete their development and produce adult mosquitoes [47]. Fe-

male mosquitoes lay their eggs on the side of water containers provided 
by nature (e.g., tree holes and bamboo tubes) or human-made contain-

ers (e.g., beverages bottles and water tanks), and the eggs will hatch 
into larvae after rain. Indeed, Aedes eggs can withstand dry conditions 
for several months on the inner part of the container walls and hatch im-

mediately after being submerged in water [48]. The larvae evolve into 
pupae and then transform into adults within a few days under favorable 
environmental conditions. Furthermore, precipitation also influences 
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Table 2. The average of the number of regions for each level of risk classification during ten-week 
periods.

Region Period Level 1 Level 2 Level 3 Level 4 Level 5

Northwestern: Bodebek

2 districts, 3 cities

Week 01 - Week 10 4.7 0.3 0.0 0.0 0.0

Week 11 - Week 20 5.0 0.0 0.0 0.0 0.0

Week 21 - Week 30 5.0 0.0 0.0 0.0 0.0

Week 31 - Week 40 5.0 0.0 0.0 0.0 0.0

Northern: Purwasuka

3 districts

Week 01 - Week 10 0.7 1.2 0.0 1.1 0.0

Week 11 - Week 20 1.0 0.9 0.0 1.1 0.0

Week 21 - Week 30 2.5 0.4 0.1 0.0 0.0

Week 31 - Week 40 2.4 0.6 0.0 0.0 0.0

Northeastern: Ciayumajakuning

4 districts, 1 city

Week 01 - Week 10 2.1 1.9 0.5 0.3 0.2

Week 11 - Week 20 2.7 2.0 0.2 0.1 0.0

Week 21 - Week 30 1.9 1.7 0.0 0.7 0.7

Week 31 - Week 40 0.1 0.7 0.1 2.5 1.6

Southeastern: East Priangan

4 districts, 2 cities

Week 01 - Week 10 1.2 2.3 0.4 1.8 0.3

Week 11 - Week 20 1.7 2.2 0.8 0.9 0.4

Week 21 - Week 30 1.1 2.2 0.1 1.5 1.1

Week 31 - Week 40 1.2 1.8 0.3 1.9 0.8

Central: Central Priangan

3 districts, 2 cities

Week 01 - Week 10 0.2 2.7 0.1 1.6 0.4

Week 11 - Week 20 1.5 1.1 0.0 1.4 1.0

Week 21 - Week 30 4.6 0.4 0.0 0.0 0.0

Week 31 - Week 40 3.9 1.1 0.0 0.0 0.0

Southwestern: West Priangan

2 districts, 1 city

Week 01 - Week 10 2.1 0.8 0.0 0.1 0.0

Week 11 - Week 20 2.3 0.7 0.0 0.0 0.0

Week 21 - Week 30 3.0 0.0 0.0 0.0 0.0

Week 31 - Week 40 2.8 0.2 0.0 0.0 0.0
dengue vector distributions. The mosquito ranges expand during the 
rainy season (generally wetter) and decrease during the drought pe-

riod (generally drier). However, a high intensity of rainfall may result 
in flooding, which flushes outbreeding sites and eradicates the larvae, 
thus reducing the mosquito population, which could limit the risk of 
dengue spread.

Through multiple mechanisms influenced by natural and human 
factors, dengue fever can transmit and spread from the origin of an 
outbreak into and outside of the areas limited by the flight range of 
dengue vectors. The spatial distribution analysis enables the visualiza-

tion of regions with high reported dengue cases and the geographical 
pattern exploration over the study period. This study showed the exis-

tence of dengue case spatial clustering based on Moran’s Index value of 
density dengue data. Furthermore, we identified that northern, central, 
and southeastern regions of West Java were the high-risk areas during 
the first 20 weeks of observation time. In contrast, the high-risk areas 
were pinpointed in southeastern and northeastern regions throughout 
the next 20 weeks.

In our study, the high-risk dengue infection areas were distributed 
in areas with low-to-high population densities but mostly living in a 
densely populated area. Pangandaran and Ciamis in the southeast as 
well as Kuningan in the northeast were examples of districts with low 
resident densities, less than 1,000 per square kilometers, that identified 
as hot spots with high reported dengue infection cases. This finding cor-

roborates the study in Thailand, which found that dengue fever is more 
prevalent in rural than in urban and semi-urban areas [49]. Further-

more, this study also found that most of the regions in the central, north-

eastern, and northern areas of West Java, considered as hot spots, were 
districts/cities with dense human populations. Bandung city (14,970 
p/km2), Cimahi city (15,798 p/km2) and Bandung (2,167 p/km2) in the 
central region, Cirebon city (8,627 p/km2) and Cirebon (2,244 p/km2) 
in the northeastern region, and Purwakarta (1,177 p/km2) in the north-

ern region reported a high number of dengue incidences.

Numerous studies found a strong correlation between the high-risk 
areas of dengue infection and densely urbanized areas. Environmen-

tal and social features of these areas are likewise seen to affect the 
number of dengue incidences. High population densities enable rapid 
urbanization and intensive human mobility that might support virus dis-

tribution and increase the possibility of contact between dengue vectors 
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and humans [50]. Due to the lack of decent water infrastructure, con-

gested human settlements can offer favorable breeding opportunities 
for mosquitoes using a wide range of natural and artificial water-filled 
containers for egg-laying [51]. Environmental degradation, urban land 
expansion, and poor sanitary conditions facilitate the favorable con-

ditions of the parasite infection, which may assist in a higher risk of 
dengue outbreaks in this region. Besides, water-storing habits for do-

mestic use inside the house due to the lack of water supply, especially 
throughout the drought period, escalate the chance of mosquito ovipo-

sition and house-to-house mosquito dispersion, which causes the excess 
of the dengue viruses [52]. However, the cold spots of dengue infection 
were identified in the northwestern region, including Bekasi, Bogor, and 
Depok, notwithstanding this being one of the densely populated areas 
in West Java. A similar finding was reported by Sirisena et al. [53] in Sri 
Lanka that dengue vector distribution seems to be limited by the high 
altitude. Unlike in Sri Lanka, the specific factors underlying this condi-

tion in West Java are unclear, but it looks to be influenced by dengue 
prevention and control by respective local health authorities.

This study has some limitations. Most large-scale observational stud-

ies have general methodological issues, e.g., confounding, bias, and 
inaccuracy. Confounding factors at the individual-level (e.g., behav-

ior, nutrition status, immunity), household-level (e.g., vector control, 
water storage habits, socioeconomic), or environmental condition for 
each district and city were not included in this research. One source of 
bias may be due to unreported cases since we used passive surveillance 
dengue data, which may possibly underestimate the actual dengue cases 
in some regions, especially in rural regions. Further, inaccuracy may ap-

pear as the consequence of the lack of detailed dengue data. In addition, 
the other limitation is that the Richards model in this study was only 
used for one cycle (year), so it has predictive capabilities limited in that 
cycle and is unable to be applied for the prediction of dengue cases in 
the next cycle (year).

5. Conclusion

In summary, this paper demonstrates the temporal trend and spatial 
clustering of dengue cases in West Java. Dengue infection is commonly 
reported in this region, and the trend of dengue cases is likely to escalate 
significantly during the rainy season. The high-risk areas are detected in 
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not only urban and semi-urban areas distributed in the central, north-

eastern, and northern regions but also rural areas in the southeastern 
region. These findings might be due to recent changes of social, ecolog-

ical, and demographic factors, for example, human behavioral change, 
movement of population, water tank installation, as well as environ-

mental changes such as climate change and urbanization in West Java. 
Socio-demographic and ecological factors provide natural habitats for 
mosquitoes, and increased travel and transport increase the chance of 
dengue virus importation. Therefore, all health professionals need to be 
aware of dengue risk, particularly in dengue endemic areas, to mini-

mize the dengue burden and protect the population. It is necessary to 
implement mosquito control measures in the high-risk areas to prevent 
the vector abundance. Local health offices should take early preventive 
measures, conduct enhanced surveillance, and prioritize resource allo-

cation in the high-risk areas to reduce the risk of epidemics. Additional 
implications of the study include future investigations in identifying 
risk factors and effective interventions in the high-risk areas for dengue 
management.
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