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Virtual cardiac monolayers for 
electrical wave propagation
Nina Kudryashova1,2, Valeriya Tsvelaya2, Konstantin Agladze   2 & Alexander Panfilov1

The complex structure of cardiac tissue is considered to be one of the main determinants of an 
arrhythmogenic substrate. This study is aimed at developing the first mathematical model to describe 
the formation of cardiac tissue, using a joint in silico–in vitro approach. First, we performed experiments 
under various conditions to carefully characterise the morphology of cardiac tissue in a culture of 
neonatal rat ventricular cells. We considered two cell types, namely, cardiomyocytes and fibroblasts. 
Next, we proposed a mathematical model, based on the Glazier-Graner-Hogeweg model, which is 
widely used in tissue growth studies. The resultant tissue morphology was coupled to the detailed 
electrophysiological Korhonen-Majumder model for neonatal rat ventricular cardiomyocytes, in 
order to study wave propagation. The simulated waves had the same anisotropy ratio and wavefront 
complexity as those in the experiment. Thus, we conclude that our approach allows us to reproduce the 
morphological and physiological properties of cardiac tissue.

Electrical waves of excitation propagate through the heart and initiate cardiac contraction. Abnormalities 
in wave propagation may result in cardiac arrhythmia. According to a report published by the World Health 
Organisation1, cardiovascular diseases account for the highest number of deaths in the world, among which, 
around 40% occur suddenly and are caused by arrhythmias. Thus, understanding the principle of wave propaga-
tion is essential for decreasing cardiovascular mortality.

The electromechanical function of the heart is performed by excitable cells called cardiomyocytes (CMs), 
which are capable of generating an action potential and of mechanical contraction. In addition to CMs, cardiac 
tissue also contains other cells, the most abundant of these being fibroblasts (FBs). FBs are small inexcitable cells 
present in the heart in large numbers. Excess fibrous tissue, or fibrosis, can substantially affect wave propaga-
tion. In addition to FBs, there exist structural extracellular proteins (e.g. collagens), which form the extracellular 
matrix (ECM) and affect the CM phenotype2. The latter is essential for proper mechanical functioning of the 
heart3 and for uninterrupted electrical signal propagation4. The interaction between CMs, FBs, and extracel-
lular proteins results in the formation of a complex tissue texture. Such a texture changes substantially during 
most cardiac diseases, via a process called remodelling. Cardiac remodelling is considered to be one of the major 
determinants of arrhythmogenicity in cardiac tissue5, 6. However, gradual changes in tissue architecture that lead 
to remodelling are hidden from observation, and there exists no direct method to study it in patients7. Thus, an 
alternative approach to understand the principles of formation of normal and abnormal cardiac tissue, and the 
possibility to predict their changes during remodelling are of great interest.

The most logical way to approach this problem, is to represent knowledge about such processes in terms of a 
mathematical model of structural tissue formation. This model should be based on extensive experimental data, 
which can be used to explain the observed textures and to develop methods to control remodelling. Ideas related 
to the importance of such a model have been widely discussed in strategic papers on cardiac computer model-
ling8, 9. However, this approach has not yet been realised. On the other hand, tissue growth models are exten-
sively used in developmental biology. One of the most advanced approaches in this field is the large Potts model 
approach, or, in particular, the Glazier-Graner-Hogeweg (GGH) model10–12. Various processes of cell- and tissue 
morphogenesis, e.g, the process of root growth13, angiogenesis14, stem cell differentiation15, morphogenesis of 
Dictyostelium discoideum16, epidermal formation17 and vascular system development18, etc. have been described 
using this model.

The aim of this study is to introduce GGH models to the field of cardiac research and to develop a detailed tis-
sue formation model for cardiac tissue. We develop this model for a classical experimental model system–cardiac 
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cell culture19. Such cultures are widely used in stem cell-20–22 and regenerative medicine research, as they can be 
expected to reproduce architectural properties close to those of real cardiac tissue. In addition, cell cultures pro-
vide a valuable tool to study the mechanisms of cardiac arrhythmias, especially rotors23. We are mainly interested 
in cells cultured on nanofibrous substrates that resemble the ECM of the heart. If these nanofibres are aligned, 
the tissue obtains structural and functional anisotropy24, which is one of the main factors affecting wave propaga-
tion in the heart. This nanofibre-based experimental system is ideal for our purpose, because here, the electrical 
properties of the cardiac cultures are closely related to their morphology. Such a system can be directly monitored 
with optical recordings23 that facilitate validation of the model at each step of its development. Therefore, we have 
developed GGH models for this particular experimental model.

Our paper is organised as follows. In the first section of the Results, we describe the experimental model for 
cardiac tissue formation and specify the cell shape acquisition procedure. In the second section, we focus on the 
mathematical GGH-type model for cardiac tissue, provide validated coefficients for the model and demonstrate 
its capabilities. In the third section, we demonstrate wave propagation patterns in isotropic and anisotropic sam-
ples. Next, we discuss our results in relation to other cell-based discrete models and available experimental data, 
and possible future work in this direction. Finally, we provide a detailed description of the methods and algo-
rithms used in our study.

Taken together, we show that GGH models can quantitatively reproduce cardiac cell shapes, explain their 
elongation along a fibrous substrate and reproduce the experimental data. We conclude that it is a valuable tool 
for studying the connection between the morphology and function of cardiac tissue.

Results
Experimental study of cell shapes in cardiac tissue.  Simplified cases of cardiac morphogenesis.  In 
computational studies, we reproduced the experimental setting of neonatal rat cells cultured on a polymer nano-
fibrous scaffold. Cell cultures grown on such an artificial ECM, which imitates the ECM of the heart, effectively 
reproduce the anisotropy of cardiac tissue24. This engineered cardiac tissue has a complex structure resulting from 
cell–cell and cell–substrate interactions. During model development, we also considered simpler experimental 
situations that prevented cell–cell or cell–nanofibre interaction. To achieve this experimentally, we seeded the 
cells at a low density so that they could not touch one another. We also used a uniform scaffold without fibres, in 
which the cells spread equally in all directions.

As a result, we reproduced in an experiment, the following four different conditions: non-interacting cells with 
and without polymer nanofibres and monolayers with and without polymer nanofibres (see Fig. 1). Here, CMs 
and FBs are shown in different shades of yellow and blue, respectively. Finally, we developed a procedure for cell 
shape analysis, which we used to validate our mathematical model.

Identification of cell shapes in the experiment.  We stained cell cultures with DAPI (DNA, blue), phalloidin 
(F-actin, green) and monoclonal anti-α-actinin antibody (α-actinin, red). From the α-actinin image, we were 
able to discriminate CMs from FBs (see Fig. 2). We used F-actin staining images for cell shape acquisition, and 
DAPI, for cell counting. Details of the cell shape acquisition procedure and further analysis can be found in 
Section III B. After the procedure, we collected the database of cell shapes for each of the four conditions that we 
studied.

We developed a custom code (in Wolfram Mathematica) for cell shape analysis (for details, see the Methods 
section III B). Using this code, we tested many standard morphological parameters and found the most valuable 
ones for the validation of the mathematical model. These parameters are cell spreading area, elongation, convex 
coverage, real number of focal adhesions (“protrusions”) and number of pronounced convexes of the cell periph-
ery (“convexes”) for 2.5 μm resolution (for details, see Section III B).

Using this approach, we collected the data from 103 isolated cells on a uniform substrate, 77 isolated cells on 
fibres, 127 cells in the isotropic monolayer and 294 cells in monolayers on fibres.

Most of the cells were classified as CMs or FBs according to the level of α-actinin expression and actin 
cytoskeleton development. Some cells with controversial characteristics (for example, α-actinin positive, but 
without developed cytoskeleton) were rejected. All measured parameters and statistics for the classified cells are 
presented in Table 1. These parameters serve as an important dataset to verify and tune our model.

One interesting observation is that some CMs can be distinguished from FBs, on the sole basis of cell shape, 
even in the absence of staining. The most important parameter for types specification is the convex hull coverage, 
which is the ratio of cell spreading area to the area of its convex hull. CMs normally occupy around 80% of a 
convex hull, whereas FBs cover only 60%–70%, and have much deeper concaves. Figure 2 shows the distributions 
for the convex coverage of CMs and FBs. A substantial difference exists between the convex coverage of these two 
types of cells. Statistically, CMs and FBs have a considerably different median convex coverage (p-value <10−3, 
nCMs = 36, nFBs = 45) (see Fig. 2g). No CMs with convex coverage lower than 60%, and no FBs with convex cov-
erage higher than 90% were observed in experiment. Therefore, for 40% of FBs and for 30% of CMs, the cell type 
could be determined, relying only on the cell shape.

It is well known, that FBs have 15–30 times smaller volume than CMs25, 26. However, in cardiac monolayers 
(shown in Fig. 1) FBs occupy almost the same area as CMs. In our cell cultures, the height of the cells measured 
with the confocal microscope was approximately 1 μm for the FBs (everywhere, except for the nuclei), and 7 μm 
for the CMs. Therefore, the volumes of the cells in two-dimensional cell cultures are still similar to those in three 
dimensions. The resulting spreading area is almost the same due to difference in spreading.

We also found that the cell area changes depending on the conditions involved. Cells in monolayers tend to 
be smaller than those that are isolated from one another. This is caused by the lateral pressure from the cells in 
monolayers, constraining planar spreading and pushing of cells into the third dimension. To reproduce this effect 
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in our 2D study, we assigned different target areas to cells that were exposed to different conditions. The collected 
cell shape data were used for the development and validation of our model.

Mathematical model.  Mathematical model statements.  Our imaging studies clearly show that both CMs 
and FBs have a characteristic polygonal shape. Several studies explain the origin of such shapes as complex bio-
physical processes, which include formation–destruction of the attachments at the cell boundary, actin polym-
erisation and the subsequent migration of the cell body27. To describe such processes, we proposed the use of the 
large Potts model. More specifically, we used the GGH model10–12, as it is widely applied to reproduce correct cell 
shapes28, 29 and their dynamics30–32 in many morphogenetic processes. Our model proffers new rules for the for-
mation and retraction of adhesion sites. We introduced a Hamiltonian with elastic, adhesive and stretching forces, 
while taking into account the proper description of the interaction between different types of cells and cells with 
a nanofibrous scaffold. The details of our approach are given below and in the methods section.

Basic GGH model.  In GGH modelling (Glazier and Graner, 199210; Graner and Glazier, 199311, Hogeweg, 
199712), cells are represented as a cluster of subcells (see Fig. 3) in a regular lattice. Lattice representation allows 
researchers to efficiently reproduce shapes of the real cells and structures of real tissues. In a basic model, cells 
maintain their volume and interact with each other via type-specific adhesion which is expressed in terms of the 
total energy of the system. The strongest part of GGH models is that this energy can be extended with the extra 
terms to include new forces or fields. The main idea is that cell is allowed to change its shape to minimise the total 
energy. The process of energy minimization is performed in a way, that it describes not only the static morphol-
ogy of the cells but also their motility33.

Each cell is allowed to change its shape to minimize the prescribed energy. At each time step one of the sub-
cells in a lattice is selected. This subcell attempts to copy itself to a neighbouring position. If this change leads to 
the decrease of the total energy, it will be accepted. Otherwise, the copy attemts with smaller energy increase are 
accepted with a higher probability.

Figure 1.  Experimental cases considered in our study. The first column shows isolated cells seeded at a low 
density to avoid cell–cell interaction. The second column represents cells in the monolayer. The substrate was 
isotropic in the upper row, whereas in the second row, nanofibres were added. Cardiomyocytes are shown in 
yellow tints, whereas fibroblasts are shown in blue tints. This image was based on immunohistochemical data 
but was refined for illustrative purpose.
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This energy-based approach reproduces many static and dynamic cell properties including cells proliferation 
and migration. Moreover, new phenomena, such as, for example, chemotaxis, could be easily included in a model 
as a new term in the total energy. In our study, we extended the total energy with the term, that describes cell 
spreading.

The implementation of GGH is normally organised as follows. Index 0 indicates the medium, and positive 
indices designate individual cells. In our model, we consider two cell types. Thus, τ has three possible values: 0 
(medium), 1 (CM) or 2 (FB).

Cell formation is defined by the Hamiltonian of GGH, which has the following form:

∑ ∑δ σ σ λ= + = − + −τ τ τ σ τ
→σ σ σ σ→ → ( )( )H H H J v V1 ( , )
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Figure 2.  Algorithm for cell shape analysis in the experiments. Cardiac cells were observed experimentally 
with the use of immunohistochemical techniques. Panel (a) shows raw data on cells stained with DAPI (DNA, 
blue), phalloidin (F-actin, green) and monoclonal anti-α-actinin antibody (α-actinin, red). Sub-figures (b) and 
(c) show the processed data used for cell contour selection and cell type classification. In (b), the contrast of 
F-actin staining was enhanced for cell contour selection. In (c), three channels were merged to obtain better cell 
representation for classification (cardiomyocyte vs. fibroblast). Sub-figure (d) shows the cell images obtained 
after segmentation. The convex hull is shown as a blue line around each cell. These images were used to obtain 
parameters such as area, convex hull coverage and elongations. Cell images were then rasterised with two 
resolutions (1 μm and 2.5 μm), and skeleton transform was applied (f). The number of skeleton endpoints at a 
high resolution was considered as the number of protrusions. All the measured parameters are listed in (e). For 
details, see section III B. (g) Distribution of the convex coverage for two cell types. CM–cardiomyocyte (n = 36), 
FB–fibroblast (n = 45). The histogram shows that FBs cover a much smaller area within the convex hull than 
CMs. The cell shapes of the median samples in the experimental database are shown on the right.
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where i is summed over all lattice points or subcells, σi is the index assigned to the ith subcell and τσ is a type of cell 
with index σ. J is the adhesion energy between cells with indexes σi and σj of types τσi

 and τσj
, and δ is a Kronecker 

delta function. In the second term λ is the elasticity coefficient and τσ
V t

i
 is the target volume that the cell σi main-

tains. The balance between these two energies determines the curvature of the concave parts of the cell29. To 
simulate the convex parts (or the protrusions), this expression was further extended.

We describe cellular motility by using the iterative Markov chain Monte Carlo (MCMC) algorithm, which 
attempts to copy an index to a randomly selected lattice point →it  from a random neighbouring cell →is . We calcu-
late the change in Hamiltonian for this copy ∆H, and the new state is accepted with a probability:

=





∆ ≤
∆ >−∆p 1 if 0

e if 0
H

T




where T corresponds to motility of the cells. In each Monte-Carlo step (MCS) we perform N copy attempts, where 
N is the total number of subcells of the lattice.

The resulting dynamic cell movements mimic the motility and spreading of cells. Questions regarding the time 
course in the model are addressed in Glazier et al. review33.

Equations and parameters.  In our formulation of the GGH model, cell formation is defined by the following 
Hamiltonian:

Isolated cells Monolayer

CM FB CM FB

n = 36 n = 45 n = 67 n = 53

Area(·103μm2) 2.5 ± 1.0 2.1 ± 1.0 1.0 ± 0.4 0.9 ± 0.3

No fibres

Convex Coverage 84 ± 9% 66 ± 11% 79 ± 11% 70 ± 10%

Elongation 1.7 ± 0.8 1.7 ± 0.6 2.1 ± 0.8 2.0 ± 0.8

Protrusions (1 μm) 13.1±5.8 16.1 ± 5.7 7.6 ± 3.2 8.2 ± 3.3

Convexes (2.5 μm) 5.3±1.5 6.4 ± 2.4 3.3 ± 1.3 4.0 ± 1.3

n = 32 n = 40 n = 34 n = 27

On fibres

Area(·103μm2) 1.4 ± 0.8 1.3 ± 0.8 0.6 ± 0.2 0.6 ± 0.2

Convex Coverage 80 ± 9% 63 ± 12% 81 ± 9% 60 ± 13%

Elongation 3.0 ± 1.4 2.2 ± 1.4 3.2 ± 0.9 2.6 ± 1.0

Protrusions (1 μm) 6.8 ± 3.9 12.6 ± 6.0 4.6 ± 2.5 5.8 ± 2.3

Convexes (2.5 μm) 2.8 ± 1.6 4.8 ± 2.5 2.4 ± 1.2 3.1 ± 1.6

Table 1.  Cell shape characteristics measured in the experiment.

Figure 3.  Cells representation in GGH model. Cells of type A are shown in yellow and of type B–in blue. 
Media around the cells is shown in white and denoted in the model with zero index. Cells interact via adhesion 
with the surface energy J. This energy depends on the cell types involved (shown in different colours and with 
different indices).
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= + + +H H H H H (2)adhesive elastic protr nuclei

The first two terms in (2) comprise the minimal GGH model, in which, the cells only maintain the target 
volume and interact via adhesion. Hprotr in (2) is an important new term that we introduced in our model to 
describe the protrusion at the attachment sites. Protrusion is a very complex biomechanical process that involves 
attachment, actin polymerisation and biochemical regulation of tension and assembly/disassembly of the actin 
cytoskeleton. These adhesion sites protrude further and further from the cell body, expanding as much as possible 
up to a certain length until they suddenly break apart and retract. This sequence of events can be clearly seen in 
video 7 in Doyle et al.34. To describe this protrusion process, we assume that the adhesion site repels from the 
centre of the cell and that the cells can detach from the substrate with some penalty in energy (Pdetach).

We suppose that the cell has a limited number of adhesion sites with protrusive activity (Nprotr); all of these 
repel from the centre of mass (cm). For spreading on the isotropic substrate, we used the simplest possible poten-
tial field (Hprotr) to describe the expansion of the cell at the attachment sites.

∑ ∑
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 is the type-dependent constant regulating the amplitude of the protrusion force, and ρ σ

� � ��i( , cm )
i
 is the 

distance between the currently tested subcell i and the centre of mass of the cell. We have chosen the potential as 
ρ1/ , which results in an expansion force that is strong close to the cell, but that decreases with increase in distance 

from the cell. At some distance, it is balanced by the elasticity term. We found that this representation produces a 
polygonal form with concave-free arcs in between protrusions (see the discussion related to Fig. 4 later in the 
text).

Further modifications were needed for the cell–fibre interaction. The fibres in our model occupy some subcells 
of the mesh and have an assigned orientation. The cells produce internal forces by constructing actin stress fibres 
from a focal contact towards the cell body. The stronger the response from the scaffold, the more the produc-
tion of actin filaments, and the higher the total force applied by the cell to the substrate35, 36. Assuming that the 
polymer nanofibres produce a mechanical reaction force only in the direction along them, the energy term for 
cell–substrate interaction (3) becomes as follows:
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where for movements along the fibres, the projection of the force to the nanofibre is considered. Given that the 
cell builds up new actin filaments to counteract the tension along the nanofibre, the projection of the distance 
rcos(α) instead of the distance r itself was used (see Section III C for more details). σ

� � ���( )i , cm
i

 denotes the direction 
of the vector from the centre of mass σ

� ��cm
i
 to the currently examined subcell −i . The difference between this direc-

tion and fibre direction (α in the description above) is used for projection calculation.
To describe the interaction of the attachment sites with the nanofibre, we assume that movements from the 

isotropic substrate to the fibre require no energy change. In our experiments, we covered the isotropic and aniso-
tropic monolayers with the same fibronectin solution, so that integrins at the cell surface bound to the fibronectin 
the same way. Therefore, we conclude, that there is no difference in adhesive properties between the nanofibres 
and the isotropic substrate. However, for movements from the fibre back to the isotropic substrate, we apply the 
penalty Punleash. It is required because our experimental observations show that the cell builds up actin filaments 
during motion along the nanofibres. These filaments have to be aligned with the nanofibres. However, the motion 
from the fibre back to the isotropic surface is the motion aside from that in the actin filament direction that 
should be performed by a stress fibre not aligned with the nanofibre. Thus, such motion is energetically unfa-
vourable in terms of our model. As a result, cell elongation occurs because of actin strand reassembly, which is 
controlled by the direction-dependent mechanical reaction of the substrate. However, the same forces also create 
direction-dependent motility, which impose constraints on the monolayer from the sides because of the high 
motility along the fibres.

One more penalty term exists in our model:
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∑=H P
i

nuclei N

for the invasion of the media (index 0) or the other cell deep into the current cell. We assume that the cell nucleus 
and the surrounding area have a higher stiffness than the remaining cell body. This penalty term PN has a non-zero 
value for the extraneous subcells close to the nucleus.

Finally, three more rules for copy attempts in our model are not present in the energy equation. The copy is 
forbidden in three cases: if, as a result, a cell disappears; if the connectivity of the cell breaks; or if the protrusion 
spreads further than LMAX from the cm.

The resulting model is described in detail in section III C.

Model validation.  For each of the four conditions described above, we identified the best set of parameters that 
fit the experimental shape features. All the parameters for the model are listed in Table 2. The shape characteristics 
are compared with those in the experimental results in Fig. 5. One can see that most characteristics of the isolated 
cells almost precisely match the experimental data, except for a number of protrusion sites on the cell periphery. 
This number was slightly fewer in the simulations but was within the variability of the experimental measure-
ments. For the CMs in monolayers, both with or without fibres, there was also some divergence in elongation, 
which stays within the deviations in the experiments.

Although the average values in the model and in the experiment are in good agreement, there is a substantial 
difference in the variability of most of the shape parameters: the variability in the experiments exceeds that in the 

Figure 4.  Examples of simulations for four seeding conditions. Cardiomyocytes are shown in yellow tints, 
whereas fibroblasts are shown in blue tints. Here the proportions of the cells of each type were 50%. Black lines 
in (d) show the borders that constrain the anisotropic monolayer. In (c) and (d), grey horizontal lines show 
nanofibres.
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simulations. The main reason is the homogeneity of the cell population considered. However, in the experimental 
samples, even adjacent cells may have different basic parameters, such as exclusive volume and generation of pro-
trusion force. This discrepancy can be overcome by shifting beyond a single parameter set paradigm and applying 
the approach of experimentally calibrated populations of models; this approach is now under development in 
cardiac electrophysiology37, 38. However, in the first step, we decided not to include cell variability. Overall, we 
conclude that our model has a good correspondence with the properties of the average cell measured in the 
experiment.

The resulting computed shapes of the cells for each of the cases are shown in Fig. 4. Visually, the shapes also 
correspond well with the experimental data, apart from the agreement found in the statistical evaluation.

Wave propagation in isotropic and anisotropic samples with fibrosis.  Using the developed mor-
phological models, we further studied wave propagation in fibrotic tissue. Here, we aimed to reproduce such 
properties of the experimental tissue as velocity, anisotropy and wavefront complexity. We tested wave propaga-
tion in isotropic and anisotropic virtual tissue and compared the results with those of the optical mapping of the 
experimental cardiac monolayers.

Initially, we measured the concentration of FBs in the experimental sample by using immunohistochemical 
data. Next, this number was used for virtual tissue generation with our GGH model. Finally, for the wave prop-
agation simulations, we applied a monodomain ionic model of neonatal rat ventricular CM, developed by R. 
Majumder in 201639. This model is a modification of the Kohronen model with simplified calcium dynamics. 
We used the mesh generated by our GGH model for our electrophysiological simulations. Different coupling 
coefficients were assigned to propagation along the cell, end-to-end and side-to-side signal transmission between 
the cells. The difference between end-to-end and side-to-side connections was related to the non-uniform GJs 
and ionic channels distribution along the cell membrane. These coefficients were adjusted to fit the experimental 
velocities.

Figure 6 shows the activation maps for the experimental samples (left) and simulations (right). The yellow star 
indicates the place where the stimulations were applied, and the white arrow shows the nanofibre orientation. The 
arrival time is colour coded. One can see that both in the experiment and the simulation, the wavefronts have a 
similar shape complexity.

In isotropic tissue (without nanofibers) on the large scale, the velocity ratio was always 1 regardless of cell 
elongation and non-uniform channels distribution along the cell membrane. In the presence of nanofibres, we 
observed anisotropy. To measure the anisotropy more precisely, we prepared L-shaped experimental samples. 
These samples were covered with nanofibres aligned along one of the arms of the L. We stimulated the corner of 
the L-sample and measured the longitudinal and transversal velocities in the corresponding arms. This shape of 
the sample allowed us to avoid the effects of curvature on wavefront velocity. The measured velocity ratio for the 
anisotropic samples varied between 1.4 and 2.6 (in 8 samples, where 5 samples were made of the cells from one 
isolation). In Fig. 6 the sample with the highest anisotropy ratio is shown.

In the simulations with 35% of FBs, the velocity ratio stayed within a range between 1.5 and 2.7 depending 
on the parameters of the electrophysiological model. This range was determined by tissue morphology and was 
similar to the observed range of anisotropy ratios in experimental samples. Both in simulation and experiment, 
zig-zag propagation occurred along the transversal direction. This can be seen in the activation map: there are 
regions with the vertical wavefront direction, perpendicular to the overall propagation direction. The correspond-
ing video of wave propagation could be found in Supplementary Material. This zigzag propagation resulted in 
high anisotropy ratio.

Taken together, using our approach, we reproduced the proper anisotropy for the samples on nanofibres, as 
well as a similar wave complexity for the wavefronts both in isotropic and anisotropic cases. Therefore, we have 

Parameter Unit

No fibres On fibres

Isolated cells Monolayer Isolated cells Monolayer

CM FB CM FB CM FB CM FB

Temperature T 1.0 1.0 1.0 1.0

GN mm 47.48 26.81 51.03 5.09 238.22 9.62 461.36 233.76

Vt 103 μm2 2.11 1.39 0.88 0.79 1.34 0.93 0.6 0.35

λ mm−4 151.37 70.71 62.32 17.91 69.88 68.05 26.42 14.24

Pdetach

mm−1

9.89 12.3 30.93 11.22 16.16 15.2 155.62 53.21

JCell-MD 427.82 306.96 1013.93 445.77 474.19 305.8 937.13 560.27

JCell-Cell — — 798.73 473.28 — — 631.42 267.25

JCM-FB — 949.22 — 1152.05

Punleash — — — — 28.15 1.44 117.94 66.93

LMAX μm 66.64 76.7 81.41 73.62 42.31 48.72 62.37 65.05

Nprotr(fixed) 21 24 12 13 10 22 8 9

Sample dim. mm × mm 1.0 × 1.0 0.8 × 0.8 1.0 × 1.0 0.8 × 0.8

Simulation time MCS 900 2000 2000 3000

Number of cells 1 7 × 7 26 × 26 5 × 10 17 × 68

Table 2.  Parameters of the model.
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shown that our morphology-based model provides a detailed and accurate description of wave propagation and 
captures wavefront complexity.

Discussion
The morphology of cardiac tissue significantly influences its function. It is well known, for example, that with age-
ing, CMs become larger, and the number of FBs increases, filling the interstitial spaces between CM bundles. The 
conduction velocity then decreases, and the functional anisotropy increases40, resulting in a proarrhythmic sub-
strate. Thus, understanding the connection between these functional and morphological changes is important.

In this study, we developed a powerful tool to study the relation between morphology and electrical wave prop-
agation in cardiac monolayers. Using our approach, we demonstrated the possibility to accurately reproduce cell 
shapes under various conditions, functional anisotropy and complexity of the wavefronts. We collected a database 

Figure 5.  Comparison of the parameters in the experiment and the simulation. Yellow bars show experimental 
values, whereas the blue ones show computed values. The amount of cells studied in experiment and considered 
in this statistics are listed in Table 1, in simulations–in Table 2. Error bars indicate standard deviations.
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of cell shapes under different conditions: low density seeding, high density seeding, with and without nanofibres. 
We selected and measured the characteristic parameters for these shapes and found that FBs can be recognised in 
cardiac tissue by their shape alone. This is due to the fact that FBs tend to have regions of deeper concavity on the 
cell boundary than CMs. We proposed a model to describe these features and adjusted to fit experimental data. 
Our model is based on the GGH model10–12, which is widely used in tissue growth studies. After adjustments, our 
model could accurately reproduce cell shape parameters in four studied cases. Interestingly, the virtual cells on 
the isotropic substrate exhibited a slight elongation to the ratio of 1.7. Furthermore, our model does not include 
mechanisms for cell polarisation. Any observed polarisation was solely caused by the process of cell spreading at 
a discrete number of attachment sites.

We used the virtual cell culture generated with our model for electrophysiological simulations. A resulting 
wave propagation pattern accurately reproduced the experimentally observed behaviour for both isotropic and 
anisotropic cases. In the isotropic case, despite the high elongation of virtual cells, the resulting excitation prop-
agation was also isotropic as in the experiment due to the lack of preferential direction41–43. For the anisotropic 
monolayer, a correct range of anisotropy ratios and wavefront complexity were achieved. An overview on our 
study is presented in Figure S1 in Supplementary Material.

Our GGH-type model for cardiac tissue describes discrete biological cells. Several groups have already pro-
posed discrete models of different designs, which were mainly used to study the discontinuous nature of cardiac 
propagation. The first discrete model was proposed by Spach et al.44 and contained 33 adult coupled cells, repli-
cated directly from the experimental images. This model explained the fact that the maximum rate of rise of the 
transmembrane potential (Vmax) depends on the direction of propagation, which was previously found in the 

Figure 6.  Experimental results acquired with the optical mapping of isotropic and anisotropic samples 
compared to simulated ones. (a) Activation maps for the isotropic sample (upper image) and the anisotropic 
sample on nanofibers (lower image). The yellow star shows the place where stimulation with an electrode was 
applied. The white arrow shows the preferred direction of the fibres in the sample. Activation time is colour 
coded (0–300 ms). (b) Corresponding simulations of the wave propagation in samples with 30% and 35% FBs 
in isotropic and anisotropic samples, respectively. The same filters with the same kernel size were applied to the 
simulated data, as for the experimental data in column (a). Corresponding video files and extended version of 
this figure could be found in Supplementary Materials.

http://S1
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experiment45. Henriquez et al.46 demonstrated the role of cellular shape irregularities in a conduction block and 
in re-entry formation; they also introduced FBs to the model47 and studied how various coupling coefficients 
would affect wave propagation. In these studies, randomised cell forms were generated by a custom iterative 
growth algorithm48 that was adjusted to fit length and width distributions. Since cell shapes in their studies were 
irregular, they were triangulated and FEM algorithm for electrical simulations was applied (in 2D49 and 3D50). 
Other groups that encountered anisotropic and discontinuous effects also developed discretisation algorithms 
similar to Henriquez51, 52. From this perspective, we propose a discrete model of a new kind; it combines both 
realistic cell shapes of the Spach model and the scalability of the models of Jacquemet-Henriquez47, Lin-Keener52 
and Prudat-Kucera51.

FBs are ubiquitous in cardiac tissue and are indispensable in engineered cardiac cell cultures53. Thus, we also 
included FBs into our morphological model. With additional improvements in our model describing the spatial 
distribution of FBs in a culture, it would be possible to study the arrhythmogenicity of different types of fibrosis. 
Depending on the parameters, samples with patchy, diffuse or interstitial fibrosis could be generated. Such mod-
elling may provide some ideas on fibrosis development and possible ways of treatment.

Note that currently, our monolayer formation model is only at the first stage of development. However, various 
general scientific questions can already be addressed with it. For example, it can be applied to study the devel-
opment of iPS cell cultures in vitro or cell clusters in vivo, which is one of the hottest topics in cardiac stem cell 
research54. It can be used to study percolation phenomena in cardiac tissue, which is considered an important 
determinant of atrial fibrillation55. More generally, such a model can be applied to describe the dynamic remod-
elling of cardiac tissue after myocardial infarction or during the development of heart failure. Additionally, the 
electrophysiological model may be further improved. Using our virtual tissues, one can study various types of 
cell-to-cell communications. It may include study of the role of the non-uniform distribution of ionic channels 
in cell membranes and non-junctional cell-to-cell signal transmission. However, the further development of our 
approach is needed to achieve all these goals.

Firstly, additional research related to cell migration and dynamics is required. The current version of our 
model, adjusted to the experiment, exhibits low motility of the cells. However, migration is a very important part 
of tissue development that provides cell sorting and clustering. Cell clustering may then substantially change 
propagation safety and anisotropy. Switching the migration on in our model is possible by increasing motility by 
decreasing the penalty for detachment and target spreading areas. As the result of this change, cells would be able 
to migrate and sort, but not able to spread properly. Probably, these parameters should evolve during monolayer 
formation, allowing migration at the first stage and spreading at the second stage. However, additional time-lapse 
data regarding monolayer formation are required to develop a valid dynamic model for monolayer formation.

Next, the cell shapes in experimental cell cultures vary greatly according to our experimental data. Our model, 
however, reproduces only the average cell, but not the ensemble of cells with a wide parameter distribution. The 
dynamics of the real cells observed in the experiment may be unique for each cell. The parameters of our model 
should be modified in a way that each cell has its own target volume, protrusion dynamics, and other parameters. 
This approach creates a family of models and was already successfully implemented in cardiac electrophysiology. 
It describes experimentally observed AP variability38 and modulation56 and can be also extended to describe 
morphological variations between the cells in the tissue.

In this paper we apply discrete modelling approach to reproduce the complexity of the cardiac microstructure. 
Alternatively, the heterogeneous tissues could be described with the modern continuous models56–59. In these 
models, the continuous diffusion term is substituted by a fractional Laplacian57, 56 or porous-medium diffusion 
term58 to account for high heterogeneity of the tissue. Discrete and continuous approaches could efficiently com-
plement each other. For example, one could perform homogenisation for our discrete model and verify the result-
ing excitation patterns. The continuous model could be then used for large-scale 3D simulations of the real heart, 
still taking into account the discontinuous nature of the wave propagation in heterogeneous media.

Finally, the model can be extended to a third dimension to describe in vivo tissues. Doing so can allow us to 
reproduce the observed changes in the area of the isolated cells compared with the cells in cultures in terms of 
single parameter sets, and to generate proper cell elongation more easily. This is because in our model, cell exten-
sion was prevented by the pressure arising from the interaction of a given cell with its neighbouring cells. This 
effect will be absent in 3D because the cell would be able to move into the third dimension by increasing its height. 
Including real ECM60 in a model and studying its guiding role in cardiac tissue formation would also be possible.

Methods
Experimental samples preparation.  Neonatal cardiac cell isolation.  All studies conformed to the 
Guide for the Care and Use of Laboratory Animals, published by the United States National Institutes of Health 
(Publication No. 85-23, revised 1996) and approved by the Moscow Institute of Physics and Technology Life 
Science Center Provisional Animal Care and Research Procedures Committee, Protocol #A2-2012-09-02. In this 
study, we used enzymes adapted to the existing two-day protocol selection from Worthngton-Biochem. (http://
www.worthingtonbiochem.com/NCIS/default.html). Cardiac cells were isolated from the ventricles of rat pups 
(Rattus norvegicus, Sprague Dawley breed) with different ages (1–4 days). Then, the isolated cells were seeded on 
the specimens covered with fibronectin (0,16 mg/ml, Gibco, USA, 33016015) at different concentrations before 
they were cultivated in DMEM culture medium (Gibco, USA, 11960) with 5% of FBS (foetal bovine serum, Gibco, 
USA, 10100147). For the study of the shapes of the isolated cells, the cells were seeded at 5 · 103 cells/cm2. After 3 
days of cultivation, the samples were fixated. The monolayers of primary culture cells were seeded at 30 · 103 cells/
cm2, and after 3–5 days, the monolayers were confluent, performed coordinated contraction activity and, there-
fore, were used in morphometrical studies and optical mapping.

http://www.worthingtonbiochem.com/NCIS/default.html
http://www.worthingtonbiochem.com/NCIS/default.html
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Nanofibre preparation.  The polycaprolactone (PCL) solution was prepared by dissolving PCL powder 
(Sigma-Aldrich, USA, 440744) in hexafluoroisopropanol at concentrations of 10%–15%. The prepared solution 
was electrospun with Nanon-01 electrospinning setup (MECC CO., LTD), with the applied voltage between the 
syringe tip and the grounded collector in the range of 5 kV to 10 kV. It was loaded into the 3 ml syringe and ejected 
through the 20 gauge blunt tip needle at a flow rate of 0.1–1 ml/h with the use of a programmable syringe pump 
(Fusion 100, Chemyx Inc., Japan). Nanofibres were electrospun directly onto the surface of a 15 mm-diameter 
cover glass deposited on the grounded collector. The angular velocity was 1,000 rpm. After the electrospinning 
process was completed, the non-adhesive PCL nanofibrous substrates were coated with a solution of human 
plasma fibronectin (0.16 mg/ml in PBS, Gibco, USA, 33016015) to produce a cell adhesive matrix.

Note that only one fibre density was used in all experiments for both monolayer and isolated cell setups.

Immunohistochemical staining.  The cells were fixated with 5% PFA (paraformaldehyde powder, 95%, 
Sigma-Aldrich, USA, 158127-100 G), and nuclear staining was performed with DAPI (VECTASHIELD Mounting 
Medium with DAPI, Vector, USA, Cat. No. H-1200). In our work, we used anti-α-actinin (Sigma-Aldrich, USA, 
A7811)and alexa fluor 594 like Secondary Antibody (A-11020, Life Technologies) for CM-specific labelling, 
Alexa Fluor 488 phalloidin (Molecular Probes, USA, A12379) for F-actin non-specific staining and DAPI for 
labelling cell DNA. Pictures were taken with an inverted fluorescence microscope (Axio Imager with ApoTome 
optical sectioning module, Zeiss). Immunofluorescent staining of the CMs was performed with the use of sec-
ondary and primary antibodies according to a previously described protocol (http://www.abcam.com/protocols/
immunocytochemistry-immunofluorescence-protocol).

Optical mapping.  To monitor activity and record the excitation patterns, the 3- to 5-day-old monolayers were 
loaded with the Ca2+ -sensitive indicator Fluo-4-AM (Molecular Probes, USA, F14201). After staining, the 
medium was exchanged with Tyrode’s solution (Sigma-Aldrich Co., USA, T2145-10L) and kept at room temper-
ature during the observations. The excitation waves were monitored with a high-speed imaging setup (Olympus 
MVX-10 Macro-View fluorescent microscope equipped with high-speed Andor EM-CCD Camera 897-U at 68 
fps).

All videos were processed with ImageJ software. The experimental optical mapping signal was processed for 
noise reduction and better wavefronts representation. The Gaussian smoothing filter was applied with 250μm and 
300μm kernel size for isotropic and anisotropic samples respectively. The same processing with the same kernel 
size was applied to the simulated waves (see Fig. 6).

Velocity ratio measurements for anisotropic tissue.  The L-shaped samples were prepared for velocity ratio meas-
urements (see Fig. 6). The nanofibres were spinned parallel to one of the arms. The electrode was placed at the 
joint part, at the intersection of the middle lines of the arms. As a result, both arms were stimulated equally. The 
longitudinal and transversal velocities were measured for the plane wavefronts propagating along each of the 
arms.

Cell shape acquisition.  Neonatal rat cells were stained with DAPI (DNA, blue), phalloidin (F-actin, green) 
and monoclonal anti-α-actinin antibody (α-actinin, red). Phalloidin staining was also compared with the optical 
images to ensure that F-actin fibres highlight the edge of the cell (not shown). From the α-actinin image, CMs 
were discriminated from FBs (see Fig. 2). For the F-actinin images, the contrast was enhanced so that the whole 
cells were coloured. Then, for the isolated cells, we selected the filled area and manually included all the small 
inner parts that were not enriched with F-actin and, therefore, not selected automatically. For CMs in monolayers 
surrounded by FBs, the same technique with α-actinin staining was used. As a result, each CM was highlighted 
separately. In the other context in monolayers, we had to outline the cell shape manually. Following this proce-
dure, the database of cell shapes was collected for each of the four conditions that we studied (see Fig. 1). After 
the cell was selected, the contour was transferred to the vector form, and the obtained curve was then used in the 
shape analysis.

All processing was done with custom Wolfram Mathematica (WM) (http://www.wolfram.com/mathemat-
ica/?source=nav) code using a ComponentMeasurements[] tool. All possible parameters related to cell shape 
were checked. Those that are either necessary for the model or characteristic of one of the cell types were selected. 
Firstly, the total area and elongation were measured. Elongation here is the ratio between the largest and the small-
est diameter of the convex hull (“Caliper Elongation”). In WM, the elongation is defined as 1−w/l, where w is the 
width and l is the length. We changed this definition to l/w, which is more useful in our study. Next, the cell was 
surrounded with a convex hull with the use of the “Convex Vertices” parameter of ComponentMeasurements[] 
in WM. The proportion of the convex hull occupied by the cell appeared to be an important parameter and was 
substantially different for CMs and FBs. Therefore, the ratio of the cell area and the area of the convex hull was 
also included in the list of parameters.

Cardiac cells have a characteristic polygonal shape because they have a discrete number of adhesion sites that 
are essential for the spreading process. The number of these adhesion sites can be found through observation of 
the F-actin image. Actin filaments are concentrated in these mature adhesion sites pulling the cell body towards 
this point. From the images, we could count the number of adhesion sites manually. However, we also developed 
an automatic algorithm to determine the quantity of adhesion points. It is based on the fact that protrusive activ-
ity at the adhesion sites results in convexity formation. To count the convex regions, we rasterised cell contours 
with a resolution of 1.0μm per pixel and applied skeleton transform to it (using SkeletonTransform[] in WM). The 
raw experimental data had a different but higher resolution (of 0.10–0.42μm/px). Then, the central part of the 
skeleton transform was removed, and the number of tips was counted. This number of protrusions was compared 
with the number of adhesion sites, which were counted manually (for CMs = ±N 18 4CM

pr  (nCM = 36), for FBs 

http://www.abcam.com/protocols/immunocytochemistry-immunofluorescence-protocol
http://www.abcam.com/protocols/immunocytochemistry-immunofluorescence-protocol
http://www.wolfram.com/mathematica/?source=nav
http://www.wolfram.com/mathematica/?source=nav
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= ±N 21 5FB
pr  (nFB = 45)), and the algorithm gave similar results (for CMs = ±N 14 5CM

pr  (nCM = 36), for FBs 
= ±N 16 6FB

pr  (nFB = 45)).
However, the space resolution of our model was chosen to be lower (2.5 μm instead of 1.0 μm). Such a space 

step of 2–2.5 μm is standard in various GGH models for most eukaryotic cell simulations13, 14, 61 and electrophys-
iological studies in discrete cellular models51. For this resolution, some of the protrusions average out and are not 
pronounced enough to be detected with the skeleton transform algorithm. As a result, the number of convexes 
in our model turned out to be less than that in the experiment. However, some parts of the discrete border of the 
cell in the simulation may also be recognised as an additional protrusion. Despite the possible misinterpretation 
of the results of this algorithm, we suggest that it is appropriate for the comparison of the computed cell shapes 
with the experimental cell shapes. However, the algorithm in both cases should be applied to the images rescaled 
to the same resolution.

Statistics for convex coverage.  Data are expressed as mean ± standard deviation (SD). Analysing the parameters 
listed in Table 1, it was found that FBs have much deeper concaves than CMs, resulting in a less convex coverage 
(see Fig. 2). CMs normally occupy around 80% of the convex hull, whereas FBs occupy only 60–70% of it. The 
distributions of the convex coverage over the cell population were compared and Pearson’s chi-squared test was 
applied to determine whether the medians of these distributions are equal. The p-value for this hypothesis was 
<10−3 (nCMs = 36, nFBs = 45), which means that it is very unlikely that these distributions have the same median 
value. The outcome of other seeding conditions is analogous.

Data availability.  The data that support the findings of this study are available from the corresponding 
authors upon reasonable request.

Mathematical model.  Cell formation is defined by the Hamiltonian of the GGH model, which, in our 
model, is equal to the following:
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where i is summed over all lattice points or subcells, σi is the index in the ith subcell and τσ is a type of cell with 
index σ. In our model, we consider two cell types, so τ has three possible values: 0 (medium), 1 (CM) and 2 (FB). 
In the simplest GGH model, the cells are only maintaining the target volume and interacting via adhesion. The 
first term of the equation (5) is an adhesive energy term given by the following:
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where ‐JX Y  is the energy of interaction of the cell of type X with the cell of type Y. The value of ‐JMD MD is irrelevant 
because the whole medium is one subcell with one index zero, and Js are applied only on the sub-domain bound-
aries. Let us then assume that JMD-MD = 0. Five independent energies are left, and these determine the matrix J. Let 
us first discuss their relations.

Showing the connection between J and surface tension s is easy because it basically corresponds to the surface 
energy. For the cell medium, sCM = JCM-MD, and for the cell–cell surface, = −‐ ‐ ‐s J J/2C C C C C MD, where C may be 
either CM or FB. If <‐ ‐J J2C C C MD, then the cells will tend to clusterise, and in the opposite case, they will repulse 
one another. The relation between ‐JCM CM (or ‐JFB FB) and ‐JCM FB governs cell sorting and rearrangements11. If the 
energy for one of the cell types ( ‐JCM CM or ‐JFB FB) is substantially smaller than ‐JCM FB, then the cells of this type will 
condense into clusters. In this study, we use these energies as one of the many fitting parameters to adjust the 
model for cell shape reproduction. However, the rearrangements and clusterisation in cardiac tissue should be 
further studied in the future.

Generalised cells in the GGH model also have such parameters as volume σv i
 and centre of mass cm. The vol-

ume of the cell tends to converge to the target volume τσ
V t

i
, and λτσi

 characterises the cell elasticity around that 
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value. The target volumes and elasticity are different for various cell types so that both of them are dependent on 
type τσi

.
The next term in (5) describes the protrusion at the attachment sites. We assume that the cell has a limited 

number of adhesion sites with protrusive activity (Nprotr), and their dynamics in the absence of nanofibres are 
controlled by the potential ρ σ στσ

G / ( , cm( ))i ii
, where ρ σ σ( , cm( )i i  is the distance from the cm to a given subcell. We 

proposed the simplest possible potential field to describe the expansion of the cell at the attachment sites, and we 
added a corresponding term to the GGH model (see Equation (3) in Section I B).

The focal adhesion can be detached from the substrate with a penalty Pdetach. It is applied in an attempt to 
copy a subcell (with a focal adhesion or not) on the existing focal adhesion. If it is detached, then the number of 
adhesions of the cell to the substrate is reduced. The total number of focal adhesions for a cell should not exceed 
Nprotr. If it is less than Nprotr, then during the next successfull expansion of the cell border, a new focal adhesion 
will be established.

For the cell–fibre interaction, the term (3) was substituted with (4). This term takes into account the fact that 
the cell increases the applied force to the substrate only if there is a reaction force from the scaffold36. In the case 
of a nanofibre, this force is always aligned with it. In obtaining the corresponding energy term, the force 

αG r/( cos )2 was integrated with the displacement along the fibre αdr cos( ) (see Fig. 7(a)), resulting in energy term 
αG r/( cos ), which is responsible for the direction dependence. Here, α is an angle between the fibre orientation 

(φ fi
) and the direction from σcm

i
 to the current subcell i. The last term in (4) is a penalty applied for copying an 

adhesion site from the fibre to the non-fiber region. Copying from the non-fiber to the fibre subcell is performed 
without energy change (see Fig. 7(b)). If the Target subcell is occupied with another attachment site–the Pdetact is 
additionally applied, since the target attachment was destroyed. The justification for this term is given in Section 
I B.

Apart from the energy terms described with Equation (5), the cell shapes were also affected by two rules in the 
algorithm. Firstly, the copy attempts that break the connectivity of the cell were not considered and automatically 
rejected. Secondly, the protrusion was limited by a certain maximal length, which is specified in Table 2. Finally, 
if, as a result of a copy attempt, a cell disappears, then this action is also forbidden.

Finally, a penalty was added to protect the nuclei of the cell. The nuclei were assumed to be much stiffer than 
the cell body. Here, PN was set to 2.0 × Pdetach for all the cells that are closer to cm than to 7 μm.

Initial conditions.  The cells were seeded with the density specified in Table 2 for each case. The sample was 
divided into ×N Nx y areas, and within these areas, the square seed of the size V/10t  was placed in a random 
place within this area. There are no focal adhesions at the beginning, but during the first successful expansions of 
the cell border, focal adhesions are placed in newly added subcells. Their number is limited by Nprotr for each cell.

Parameter adjustment.  The parameters of the model were varied with the use of Monte Carlo algorithm to fit the 
experimental characteristics of the cell shapes. The best fit for the five selected parameters (area, convex coverage, 
elongation, number of convexes and protrusions) was found, and the corresponding parameters of the model are 
listed in Table 2.

Numerical implementation.  Our GGH model was implemented on the basis of the code published as a part of 
ref. 61 (Protocol S1). The code for adhesive and elastic energies was unchanged, but the function for protrusion 
energy was added.

The space step was 2.5 μm, and the mesh size was 320 × 320 pixels or 0.8 mm × 0.8 mm for monolayer simu-
lations, or 400 × 400 pixels or 1.0 mm × 1.0 mm for isolated cells (see Table 2). For electrophysiological studies, 
larger meshes (with the same 2.5 μm resolution) were generated.

The code was optimised to compute large meshes. Connectivity check was performed previously in a whole 
sample, and the program took O(n2) time, where n is the number of pixels in the sample. Each cell was sur-
rounded with a box and the connectivity was checked only within the box. Therefore, the connectivity check itself 
took O(m) instead of O(n), where m is the size of the box. The size of an average box is comparable to the size of 
a cell and does not change with a change in the sample size. Therefore, the whole GGH model now scales linearly 
(O(n)) with the sample size.

With this optimisation, it takes 3.5 hours on an Intel Core i7-3930K CPU to compute a 1 cm × 1 cm monolayer 
on fibres.

Electrophysiological model.  We used a monodomain ionic model of neonatal rat CM, developed by R. 
Majumder in 201639, which is a modification of the Kohronen model with simplified calcium dynamics. The 
transmembrane potential in this model was determined as follows:

∂
∂

= ∇ ∇ −
+V

t
D V I I

C
( ) ,

(6)m

ion stim

where V is the transmembrane potential, Cm is the membrane capacitance, and D is the coupling coefficient. 
Coefficient D depends on the space variable and differs substantially for cell–cell connections or propagation 
within a biological cell. Each subcell in the GGH model was used as a pixel for electrophysiological simulations.

The Iion is given by the sum of the following ionic currents:

= + + + + + + + + + + + .I I I I I I I I I I I I I (7)ion Na K to Kr Ks CaL NaCa NaK pCa pK bCa bNa1

The equations for these currents are listed in R. Majumder paper39.
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We implemented a non-uniform distribution of gap junctions (GJs) along the cell membrane, that was pre-
viously shown in experiments62, 63. We assumed that more connexins were transported to the attachment sites 
because the directions of the actin filaments and microtubules of the cell are correlated with one another64. 
Microtubules are pathways for the transportation of proteins making ionic channels from the centriole to the 
membrane65. Actin filaments, on the contrary, polymerise from the attachment site to the cell body. Therefore, 
we expect more proteins to be transported to the protrusion sites, leading to a non-uniform channel distribution.

As a result, stronger cell–cell connections were created if the protrusion of one cell touches the protrusion of 
the other cell. In this case, we used Dend-end (see Fig. 8). For all other connections, coefficient Dside-side was applied. 
This approach allowed us to obtain the functional anisotropy for a geometrically elongated cell without setting 
any preferred direction in the model. The coupling coefficients between CMs and FBs were equal to zero in this 
study.

Figure 7.  Schematic representation of cell spreading and cell–nanofibre interaction. (a) The cell shape was 
taken from the experimental database. All protrusions are marked with orange circles. Arrows show the 
direction of the resulting force driving the cell expansion at the attachment sites. If no guiding fibres exist, the 
cell spreads equidirectionally, and the forces are directed from the centre of mass of the cell (cm). If a nanofibre 
exists (at the bottom), and the cell is already attached to it, then the force is aligned with the fibre. (b) Energy 
terms, applied for different copy attemts of the attachment site to the non-attachment subcell, from the isotropic 
sibstrate to the fiber or in opposite direction.
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The exact value of Dend-end was adjusted to fit the longitudinal velocity. In Fig. 6, Dside-side = 0, Dend-end = 0.01Din 
in isotropic case, and 0.02Din in anisotropic sample. In simulations with Dside-side = Dend-end = Din the lowest possi-
ble anisotropy ratio was achieved.

GJ distribution.  Two types of connections are considered in our model: end-to-end and side-to-side connec-
tions. The end-to-end connection was established at the sites adjoined the attachment sites. We hypothesised that 
more GJs are distributed along the cytoskeleton. Therefore, we proposed one more GGH-like model for channel 
distribution. This model has two types of cells: more-GJ and less-GJ subcells. The Hamiltonian of the model 
comprises only two terms:

∑ ∑
ρ

= + = +σ σ
σ σ

σ−

� � ��� �
�

�� � ( )
H H H J G

i , cm
(8)
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i j

i j
i j
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i

( , )

where G = 25.0 is the spreading constant, and J is equal to 0 for the end-to-end connections between two different 
cells, JH = 2.0 for side-to-side connections and JB = 10.0 for the interactions of the contacts within one biological 
cell. σ is the index specifying the connection type (0: less GJ, 1: more GJ), and σ is the cell index, which was taken 
from the cell morphology simulation and remained constant during the channel distribution computations. This 
model induces the GJs to spread further from the cm (the higher is the G), preferably along the border (the higher 
is the JB) and preferably keeping the connection with more-GJ subcells of the other cells (JH). These parameters 
were adjusted to create a reasonable surrounding of the attachment sites. However, this model has no data for 
validation yet.

Finally, with the use of the resulting channel distribution from this simulation, coupling coefficients were 
assigned. The end-to-end coupling coefficient Dend-end was applied if, on both sides of the border, a subcell of a 
more-GJ type exists. For all other intercellular connections, Dside-side was used.

The conduction velocity highly depends on the five parameters (GN, JH, JB, Dend-end/Din, Dside-side/Din). If 
Dside-side ≪ Dend-end, the anisotropy mainly depends on channel distribution, and Dend-end regulates the longitudinal 
velocity. However, in our irregular discrete model, the velocity ratio was limited by the geometrical anisotropy. 
From this, we concluded that morphological studies provide essential constraints on the excitation propagation. 
The details of cell-to-cell signal transduction should be studied further.

Numerical implementation.  We used graphic processing units (GPUs) for the detailed ionic model integration. 
GPUs are very efficient for excitable media simulations with large sample sizes. The ionic model was already 
implemented in CUDA in our group39, 66, but the coupling term of the model was significantly changed in the 
current study.

The equation (6) was discretised and solved with the alternating direction (AD) implicit method. The hidden 
n + 1/2 time step was added to implement it. The currents were computed with the parameters from the previous 
time step n. The diffusion was first computed explicitly in one direction (taking time step n) and implicitly in the 
other direction during the 1/2 time step:
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Figure 8.  Algorithm for the coupling coefficient assignment. CMs are coloured in yellow, whereas FBs are 
coloured in blue. Dark red areas represent end–end type connections where the attachment sites in a GGH 
model are located. Between the red subcells of two different cells, the Dend coefficient was used. For all other 
connections between cells, the coupling coefficient was Dside. For connections within a cell, the coupling 
coefficient was Din, and >D D Din end side. No coupling occurred between CM and FB in our model.
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Afterwards, the directions were swapped, and the procedure was repeated. On each half-step and at each 
point, there are three potentials V taken at a future n + 1/2 time step. To find them, let us rewrite the equation (9) 
in the form =+AV bn n1/2 , where A is a constant matrix. This matrix is tridiagonal. Therefore, the tridiagonal 
solver from the cuSPARSE library was used to find Vn+1/2 from Vn. Vn+1 was found similarly from Vn+1/2 after 
direction exchange.

The reason why we use the AD method is that the space step in our model should be h = 2.5 μm, the same as 
that in the GGH model. The explicit algorithm is limited by the Courant number, which is equal to Dh/τ2 and 
should not exceed 1/2 for differential equations of parabolic type. Normally, in our computations for arrhythmia 
studies, h is equal to 250 μm66, which is comparable to the cell size, and the time step is 20 μs. If the space step is 
reduced to 2.5 μm, then the time step in the explicit model becomes 2 ns, and the computational time increases 
108 times. Therefore, the explicit method is not applicable to subcellular studies.

On the other hand, implicit or semi-implicit methods possess absolute stability, and larger time steps could 
be used. The approximation of the solution will be affected on the subcellular level, but because the important 
spatial harmonics of the solution are much bigger than the cell or subcell size, then the macroscopic solution of 
the wavefront propagation will be calculated correctly. We took h = 2.5 μm and the time step t = 1 ms; the highest 
coupling coefficient was D = 1 cm2/s.

The anisotropy was tested in the 4.96 mm × 4.96 mm samples (1984 × 1984 grid points). It was cut from a 
larger 5.0 mm × 5.0 mm mesh from the GGH model to reduce the margin size without the cells and to fit the GPU 
architecture better. The program runs on GPU most efficiently if the size of the sample is divisible by the block size 
(32 × 32 in our simulations). For the simulation of the 40 ms activity, it took 75 minutes on the GPU. For larger 
samples, the computation time scales as O(n2), where n is the total number of grid points.

Code availability.  The custom computer code is available from the corresponding authors upon reasonable 
request. The file with energy terms can be found in Supplementary Materials Dataset 5.
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