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Abstract 

Background:  Prostate cancer (PCa) is the leading male neoplasm in South Africa with an age-standardised incidence 
rate of 68.0 per 100,000 population in 2018. The Gleason score (GS) is the strongest predictive factor for PCa treatment 
and is embedded within semi-structured prostate biopsy narrative reports. The manual extraction of the GS is labour-
intensive. The objective of our study was to explore the use of text mining techniques to automate the extraction of 
the GS from irregularly reported text-intensive patient reports.

Methods:  We used the associated Systematized Nomenclature of Medicine clinical terms morphology and topogra-
phy codes to identify prostate biopsies with a PCa diagnosis for men aged > 30 years between 2006 and 2016 in the 
Gauteng Province, South Africa. We developed a text mining algorithm to extract the GS from 1000 biopsy reports 
with a PCa diagnosis from the National Health Laboratory Service database and validated the algorithm using 1000 
biopsies from the private sector. The logical steps for the algorithm were data acquisition, pre-processing, feature 
extraction, feature value representation, feature selection, information extraction, classification, and discovered knowl-
edge. We evaluated the algorithm using precision, recall and F-score. The GS was manually coded by two experts for 
both datasets. The top five GS were reported, with the remaining scores categorised as “Other” for both datasets. The 
percentage of biopsies with a high-risk GS (≥ 8) was also reported.

Results:  The first output reported an F-score of 0.99 that improved to 1.00 after the algorithm was amended (the 
GS reported in clinical history was ignored). For the validation dataset, an F-score of 0.99 was reported. The most 
commonly reported GS were 5 + 4 = 9 (17.6%), 3 + 3 = 6 (17.5%), 4 + 3 = 7 (16.4%), 3 + 4 = 7 (14.7%) and 4 + 4 = 8 
(14.2%). For the validation dataset, the most commonly reported GS were: (i) 3 + 3 = 6 (37.7%), (ii) 3 + 4 = 7 (19.4%), 
(iii) 4 + 3 = 7 (14.9%), (iv) 4 + 4 = 8 (10.0%) and (v) 4 + 5 = 9 (7.4%). A high-risk GS was reported for 31.8% compared to 
17.4% for the validation dataset.
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Background
Globally, prostate cancer (PCa) is an important non-com-
municable disease (NCD) due to both population growth 
and a concomitant increase in life expectancy [1, 2]. It is 
the leading male neoplasm in South Africa with an age-
standardised incidence rate (ASIR) of 68.0 per 100,000 
population in 2018 [3].

Local treatment guidelines indicate that men with PCa 
are assigned to risk categories using the prostate specific 
antigen (PSA) result, Gleason score (GS) and clinical 
stage [4, 5]. The GS is based on the predominant his-
tological pattern noted across all prostate biopsy sam-
ples submitted for anatomical pathology (AP) review, 
with a score of 1 reflecting the presence of normal cells 
and incremental mutational (grade) malignant change 
reflected in a score of 2 to 5. Within the scoring system, 
the first GS reflects the predominant cell pattern whereas 
the second Gleason grading is determined by the second 
most predominant pattern. For example, a GS of 3/5 (pri-
mary or major) and 4/5 (secondary or minor) equates 
to a total score of 3 + 4 = 7. Local guidelines categorise 
PCa risk using the GS as follows; (i) GS ≤ 6: low-risk, (ii) 
GS = 7: intermediate-risk and (iii) GS ≥ 8: high-risk [4, 5]. 
Patients with a high-risk GS have a poorer prognosis with 
an increased risk of metastatic progression and death [6]. 
For these patients, the PCa mortality risk is 60 to 87% 
compared to between 42 and 70% for an intermediate-
risk GS [6].

Across the National Health Laboratory Service 
(NHLS), a laboratory information system (LIS) is used 
to record, manage, and store patient laboratory reports 
and related demographic health data [7, 8]. This LIS 
documents all processes within the laboratory workflow 
including sample registration, test order generation, 

tracking orders and reporting results [7, 8]. For AP 
reporting, the assigned pathologist voice-records the 
biopsy narrative report for electronic capture by data 
typists. These narrative AP reports are not standardised 
and are pathologist dependent in terms of patient his-
tory, pathological tumour/biopsy description and lan-
guage used. As a result, these are irregularly reported 
text-intensive patient reports. Table  1 provides an 
example of a semi-structured narrative biopsy report 
that includes the headings clinical history, macroscopy 
and pathological diagnosis (highlighted in bold).

The GS is reported as embedded text within semi-
structured narrative biopsy reports in alpha, numeric as 
well as alphanumeric formats. As a result, the GS score 
could be captured in a variety of patterns based on the 
local AP practices. For example, a GS of 4 + 4 = 8 may 
be captured as: (i) 4 + 4 = 8, (ii) 8 (4 + 4), (iii) 4;4 and 
(iv) major 4, minor 4.

Spacic et  al. have reported that the linear structure 
of the GS makes it amenable to modelling using regu-
lar expressions [9]. In contrast, various cancer spe-
cific vocabularies and classification systems as well as 
ontologies have been used with text mining to extract 
structured information from narrative biopsy reports 
[9]. These vocabularies and ontologies work well with 
coding systems such as International Classification of 
Diseases for Oncology (ICD-O-3), Systemized Nomen-
clature of Medicine (SNOMED) Clinical Terms (CT) 
and International Classification of Diseases Tenth 
Revision (ICD-10) for example [9]. Such vocabularies 
and ontologies do not exist for the GS. As a result, the 
manual coding of the GS is time-consuming resulting 
in a paucity of local data describing late presentation in 
South Africa.

Conclusions:  We demonstrated reliable extraction of information about GS from narrative text-based patient reports 
using an in-house developed text mining algorithm. A secondary outcome was that late presentation could be 
assessed.

Keywords:  Prostate cancer, Gleason score, Late presentation, Text mining, Algorithm, Public health

Table 1  Example of the semi-structured narrative prostate biopsy report

The narrative biopsy report included the headings clinical history, macroscopy and pathological diagnosis

PSA: prostate specific antigen MM: millimetre P63: Protein 63 CK5/6: Cytokeratin 5/6

Category Biopsy report

Biopsy report EPISODE NUMBER: ABC1234 CLINICAL HISTORY: A 67 YEAR OLD MALE PATIENT WITH A PSA OF 7.9 UG/L. PROSTATE BIOPSIES HAVE 
BEEN DONE. MACROSCOPY: SIXTEEN CORES OF TISSUE, THE LONGEST MEASURING 15MM AND THE SHORTEST MEASURING 7MM. 
PATHOLOGICAL DIAGNOSIS: PROSTATE CORE BIOPSIES SHOWING THE FOLLOWING FEATURES: AN INVASIVE PROSTATIC ADENOCAR-
CINOMA. TWO CORES ARE INVOLVED AND < 5% OF THE TISSUE. GLEASON 4, 3. PERINEURAL AND LYMPHOVACULAR INVASION ARE NOT 
IDENTIFIED. IMMUNOHISTOCHEMISTRY: IN THE PRESENCE OF ADEQUATE POSITIVE CONTROLS, IMMUNOHISTOCHEMICAL STAINS HAVE 
BEEN DONE AND THE FOLLOWING RESULTS OBTAINED: P63 AND CK5/6: BASAL CELLS ARE NOT DEMONSTRATED IN THE ATYPICAL 
GLANDS
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Globally, artificial intelligence (AI) has been used to 
automate decision making through mimicking human 
cognitive function by using mathematical, statistical, 
logical, and computer programming approaches [10, 
11]. The AI model can be trained using existing data 
and applied to new data to automate decisions [11]. AI 
can also be applied to semi-structured healthcare data 
using techniques such as natural language process-
ing (NLP) [10]. This is achieved by employing compu-
tational techniques to extract semantic meaning from 
text [12, 13]. In essence, these NLP procedures convert 
text to machine-readable structured data [10]. This 
includes computational approaches such as tokeni-
sation that help to identify words and punctuations 
within a sentence [13]. In summary, NLP can be used 
to extract clinical information from unstructured data 
to supplement and enrich structured medical data [10].

There is a need to develop automated algorithms 
that can extract the GS from narrative prostate biopsy 
reports. The objective of our study was to explore the 
use of text mining techniques to extract the predictive 
GS from narrative prostate biopsy reports.

Methods
All methods were carried out in accordance with relevant 
guidelines and regulations of the Human Research Eth-
ics Committee (Medical) at the University of the Witwa-
tersrand (Faculty of Health Sciences).

Experimental design
We did not perform any experiments since the algorithm 
was not trained or optimised through various iterations. 
The only experiment that was conducted is described in 
the methods sections below.

Text mining algorithm development
We used the Python Spyder integrated development 
environment (IDE) for the development of the text min-
ing algorithm because of its robustness in advanced edit-
ing, debugging, profiling, data exploration and interactive 
execution [14, 15]. An IDE is software that is used to 
build and develop applications. The Python code for this 
algorithm has been uploaded on GitHub (https://​github.​
com/​Victo​rO2/​text-​mining-​gleas​on-​score). The following 
Python modules were imported: (i) os, (ii) pandas, (iii) 

Fig. 1  Diagram describing the logical processes used to analyse the raw narrative prostate biopsy report to generate the discovered knowledge. 
The steps were as follows: (i) data acquisition (ii) pre-processing and (iii) feature extraction, (iv) feature value representation, (v) feature selection, (vi) 
information extraction (vii) classification and (viii) discovered knowledge

https://github.com/VictorO2/text-mining-gleason-score
https://github.com/VictorO2/text-mining-gleason-score
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time, (iv) matplotlib, (v) seaborn, (vi) WordCloud and, 
(vii) Natural Language Toolkit (NLTK). We followed the 
text mining pipeline as depicted in the flowchart below 
(Fig.  1). The logical steps for the text mining algorithm 
were as follows: (i) data acquisition (ii) pre-processing, 
(iii) feature extraction, (iv) feature value representation, 
(v) feature selection, (vi) information extraction, (vii) 
classification, and (viii) discovered knowledge.

Data acquisition
We extracted all prostate biopsies performed for men 
aged ≥ 30 years between 1 January 2006 and 31 Decem-
ber 2016 that were referred to the NHLS for pathology 
evaluation in the Gauteng province, South Africa. Two 
data sets were extracted from the national laboratory 
data repository that houses LIS collated patient labora-
tory reports. The narrative prostate biopsy reports are 
captured as free-text in the LIS and stored in the national 
laboratory data repository. The Systematised Nomencla-
ture of Medicine (SNOMED) clinical terms (CT) dataset 
was used to develop lookup tables to identify biopsies 
with an adenocarcinoma histological finding (n = 8201) 
[16]. Once the biopsies with PCa were identified (adeno-
carcinoma histological findings with a reported GS), we 
extracted a random sample of 1000 biopsies using Micro-
soft Excel (Redmond, Washington, USA) [17]. We chose a 
random sample as we did not want to select biopsies that 
were reported in a similar fashion from one laboratory.

To evaluate the text mining algorithm, we also ran-
domly extracted 1000 prostate biopsy narrative reports 
with a PCa diagnosis that were submitted from pri-
vate sector laboratories to the National Cancer Registry 
(NCR) (referred to as the validation dataset). These nar-
rative reports are generated by various private sector 
pathology practices and could be used to validate the 
algorithm. We received only the narrative biopsy reports.

For both datasets, the GS were manually coded by two 
experts. Manual coding was required as the GS is not 
extracted by the NCR and is embedded within the narra-
tive report. Following this, a random sample of 369 biop-
sies were independently verified to validate the manual 
coding.

Pre‑processing
We used pre-processing to ensure that the narrative 
biopsy reports were in a machine-readable format. The 
first step was to convert the narrative reports to a docu-
ment format (also referred to as a corpus). A corpus is 
defined as large and unstructured text. This is required 
to convert the narrative reports into a structured format 
that is required for text mining [14, 18, 19]. Next, the 
data cleaning process involved using the NLP tokeniza-
tion, stopwords removal and stemming techniques [15, 

19]. We used tokenization to condense the streams of 
text into smaller meaningful elements (called tokens) that 
comprised of words, phrases and symbols. For example, 
the words ‘do not stop’ would result in 3 tokens (do-not-
stop). We employed stemming to create various variants 
of words into a common representation known as the 
stem. Stemming takes words or a set of words to their 
root form, e.g., root of “gleasen” is “gleason”. We also 
standardised the word Gleason, major, minor, score, etc. 
Finally, we used the NLTK toolkit stop words to filter and 
remove irrelevant words before text processing, e.g. the, 
is, at, etc. This removed all possible English stopwords. 
We also converted text to lowercase for standardisation.

Feature extraction
As part of feature extraction, we used an expert rule-
based approach. The experts manually crafted the regular 
expressions. We extracted features of interest from nar-
rative prostate biopsy reports. We used regular expres-
sions representative of the GS target feature such as 
“gleason”, “Gleason”, “GLEASON”, “Gleeson”, etc. for fea-
ture extraction. Regular expressions can be used to define 
a sequence of characters that are associated with a fea-
ture. Each of these text patterns can be used as a rule-
based approach to extract a feature. Similar approaches 
have been described by Napolitano and Spacic et  al.[9, 
20]. Next, we used N-grams as our feature extraction 
strategy to extract the major and minor Gleason scores. 
We created unigrams, bigrams, trigrams and quadgrams 
which generated these scores. N-grams is a methodol-
ogy that looks at sequences of words which are most 
occurring depending on the size of n, i.e. sequence of n 
words. N-grams are a set of co-occurring terms that were 
reported in a sentence or paragraph in the corpus [21, 
22]. For example, when n = 1 (unigram) this represents 
single words in a sentence [22]. Similarly, when n is equal 
to 2 (bigram), 3 (trigram) or 4 (quadgram) this is repre-
sented as two, three and four words in a sentence respec-
tively [22]. From the N-grams generated, we extracted the 
GS feature for each biopsy. The N-gram feature extrac-
tion output is provided for a sample of biopsies (Table 2).

Feature value representation
For feature representation, we created a document term 
matrix using term frequency. This was used to trans-
form the document into a numeric feature vector space. 
We reported the twenty most frequently occurring uni-
grams, bigrams, trigrams and quadgrams as horizontal 
bar graphs (Fig. 2).

Feature selection
For feature selection, we used pathologists (experts) 
who identified key words that could be used to identify 
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the features of interest in the narrative prostate biopsy 
reports. As part of expert driven feature selection, we 
used these key words in the algorithm to select the fol-
lowing features: (i) episode number, (ii) major score, 

(iii) minor score, (iv) total score and (v) combined score. 
Because we used expert driven feature selection, we only 
chose relevant features and reduced the feature space 
(without using dimensionality reduction). Reducing the 

Table 2  N-grams feature extraction output for a sample of biopsies

[‘major 4 minor 5’, ‘4 + 5’] [‘4 + 4’, ‘4 + 4’] [‘3 + 3’, ‘3 + 3’] [‘4 + 4’, ‘4 + 4’] [‘major 4 + minor 3’] [‘4 + 5’]

[‘major 4 minor 5’, ‘4 + 5’] [‘major 4 minor 4’] [‘4 + 4’, ‘4 + 4’] [‘4 + 4’, ‘4 + 4’] [‘major 5 minor 4’] [‘major 3 minor 5’]

[‘3 + 3’, ‘3 + 3’] [‘2 + 2’] [‘3 + 4’, ‘3 + 4’] [‘3 + 2’, ‘3 + 3’, ‘3 + 3’] [‘major 4 + minor 5’] [‘major 3 minor 4’]

[‘3 + 5’] [‘3 + 3’, ‘3 + 3’] [‘2 + 2’, ‘2 + 2’, ‘2 + 2’] [‘3 + 5’, ‘3 + 5’] [‘4 + 3’] [‘3 + 5’, ‘major 4 + minor 5’]

[‘major 4 minor 5’] [‘4 + 3’, ‘4 + 3’] [‘3 + 2’, ‘3 + 5’, ‘3 + 5’] [‘3 + 3’] [‘major 5 minor 4’] [‘major 3 minor 5’]

[‘4 + 3’] [‘2 + 3’, ‘2 + 3’] [‘2 + 2’] [‘3 + 2’, ‘3 + 2’] [‘major 5 + minor 4’] [‘major 5 + minor 4’]

[‘major 4 minor 3’] [‘3 + 3’, ‘3 + 3’] [‘4 + 4’, ‘4 + 4’] [‘3 + 4’, ‘3 + 4’] [‘major 3 minor 4’] [‘major 4 minor 5’]

[‘3 + 2’, ‘3 + 2’] [‘4 + 3’, ‘4 + 3’] [‘2 + 3’, ‘3 + 4’, ‘3 + 4’] [‘4 + 3’, ‘4 + 3’] [‘major 5 minor 5’] [‘major 3 minor 4’]

[‘major 4 + minor 3’] [‘3 + 3’, ‘3 + 3’] [‘4 + 4’, ‘4 + 4’] [‘3 + 3’, ‘3 + 3’] [‘major 5 minor 4’] [‘major 4 minor 5’]

[‘5 + 5’, ‘5 + 5’] [‘3 + 3’, ‘3 + 3’] [‘5 + 4’, ‘5 + 4’] [‘4 + 5’] [‘major 3 minor 3’] [‘major 5 minor 3’]

[‘major 3 minor 4’] [‘major 5 + minor 5’] [‘major 5 minor 4’] [‘major 3 minor 5’] [‘major 4 minor 5’]

Fig. 2  Horizontal bar graph depicting the top twenty occurring unigrams (A), bigrams (B), trigrams (C) and quadgrams (D). The number of 
occurrences is displayed on the x-axis
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number of features selected would improve the model 
performance. Even though the feature space was reduced, 
there was no loss of information [23].

Information extraction
Information extraction is used to select specific entities 
and relationships of interest [9]. For information extrac-
tion, we manipulated the N-grams output to extract the 
numerical value of the major and minor scores. This 
was an automated process where the Gleason score was 
identified from N-grams by the algorithm. This was 
achieved by splitting the major and minor scores from 
the N-grams. Next, we removed all non-numerical char-
acters to remain with only the scores. The scores were 
then converted to numbers. Next, we calculated the total 
score and reported the GS in a standardised format, e.g., 
4 + 4 = 8.

Classification
We classified biopsies into the three risk categories: (i) 
low (≤ 6), (ii) intermediate (7) and (iii) high-risk (≥ 8) 
based on local guidelines [5]. The classification process 
was automated using a rule-based approach and imple-
mented within the algorithm.

Discovered knowledge
The discovered knowledge included the episode num-
ber, major score, minor score, total score, standardised 
GS and risk category. For each biopsy, the algorithm 
extracted a single row of structured data. From the narra-
tive biopsy report depicted in Table 1, the following dis-
covered knowledge was reported: (i) ABC1234, (ii) 4, (iii) 
3, (iv) 7, (v) 4 + 3 = 7 and (vi) intermediate.

Text mining algorithm evaluation
A confusion matrix (also known as a sensitivity/specific-
ity analysis) was used to compare the text mining algo-
rithm extracted against the manually coded values [24]. 
The confusion matrix consists of four values: (i) True 
Positives (TP): correctly extracting the GS, (ii) True 
Negatives (TN): correctly extracting a biopsy without a 
GS, (iii) False Positive (FP): falsely extracting a GS and 
(iv) False Negative (FN): falsely extracting the manually 
coded GS [24]. The precision and recall are calculated 
using these four values as follows: (i) TP

TP+FP
 and (ii) TP

TP+FN
 

respectively. Precision and recall are similar to positive 
predictive value (PPV) and sensitivity respectively. The 
F-score is the harmonic mean of precision and recall and 
is calculated using the formula 2∗(Recall∗Precision)

(Recall+Precision)
 . The man-

ually coded values were assumed to be the gold standard, 
i.e. exact match. Therefore, we reported the data as ‘Exact 
Match: Yes’ and ‘Exact Match: No’ for both the predicted 
and manually coded values.

Statistical analysis
We reported the top ten GS alpha, numeric and alpha-
numeric reporting formats as a table, i.e., how they were 
captured in the narrative prostate biopsy report. We also 
reported the top five GS reported, with the remaining 
scores categorised as ‘Others’. The percentage of a top five 
GS categorised as high-risk (≥ 8) is also indicated. As we 
reported data for a multi-class problem, we reported the 
frequencies for the predicted and manually coded values 
for a low, intermediate and high-risk GS as a table. Next, 
we calculated the macro averaged F-score (F-score for 
each GS risk category added up and then divided by the 
number of measurements) [25].

Results
The random sample taken from 1000 prostate biopsies 
showed no manually coded GS misclassification errors 
for both datasets.

Text mining algorithm performance
For 1000 narrative biopsies, the text mining algorithm 
extracted the GS in a time of under 10 min for both the 
study and validation datasets. The word cloud before and 
after cleaning revealed which text was more important. 
After using trigrams and quadgrams, the algorithm had 
both extracted all the GS and exhausted the sequence of 
words. Therefore, there was no need to use more than 
four grams, i.e., we had exhausted all word combina-
tions. Our dataset was also small and logical extraction 
of n-Grams could only go up to four. With a larger cor-
pus, we would have to explore using more n-Grams, e.g., 
10. The term frequency analysis revealed that the Glea-
son score appeared as the fourth most common term 
for unigrams (n = 1754). For the bigrams, the term Glea-
son score appeared in position one (n = 942) and four 
(n = 793). Similarly, the Gleason score appeared four 
times in trigrams compared to thrice for quadgrams.

Text Mining precision and recall
The first text mining algorithm output reported an 
F-score of 0.99 (recall: 0.98 precision: 1.00) (Table 3). On 
manual inspection of the N-grams (Table  2), we identi-
fied that two different GS were reported in both the 
clinical history and pathological diagnosis for 16 biop-
sies (example ‘3 + 2’, ‘3 + 3’, ‘3 + 3’ in Table  2). The algo-
rithm was updated to report the latter GS resulting in an 
F-score of 1.00 (recall: 1.00 and precision: 1.00). The text 
mining algorithm was tested on the validation dataset 
and reported an F-score of 0.99.

Gleason score formats reported
We identified ten different GS reporting formats 
(Table 4). The variations in reporting included: (i) use of 
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both the equal sign as well as the word equals, (ii) use of 
brackets, (iii) spelling of major and minor (for example 
using the word major and pattern), (iv) use of both the 
words and symbols (plus versus +) and (v) use of colons 
and commas to separate major and minor scores.

Gleason score frequency analysis
The most commonly reported GS were 5 + 4 = 9, 
3 + 3 = 6 for 17.6% (n = 176) and 17.5% (n = 175) of biop-
sies respectively (Table 5). There were 164 biopsies with 
a 4 + 3 = 7 score (16.4%). A 3 + 4 = 7 and 4 + 4 = 8 GS 
was reported for 14.7% (n = 147) and 14.2% (n = 142) 

biopsies respectively. The remaining GS comprised 19.4% 
(n = 196) of biopsies. A high-risk GS was reported for 
31.8% of biopsies. For the validation dataset, the most 
commonly reported GS were: (i) 3 + 3 = 6 (37.7%), (ii) 
3 + 4 = 7 (19.4%), (iii) 4 + 3 = 7 (14.9%) and (iv) 4 + 4 = 8 
(10.0%) and (v) 4 + 5 = 9 (7.4%). A high-risk GS was 
reported for 17.4% of biopsies.

Gleason risk category analysis
For a low-risk GS, there were 199 predicted and 193 
manually coded values (difference of 6), with an F-score 
of 0.98 (Table  6). Similarly, for an intermediate and 

Table 3  Performance of the text mining algorithm to automate the extraction of the Gleason score from narrative prostate biopsy 
narrative reports

A contingency table was used to compare the manually coded and algorithm predicted values. We reported the precision, recall and F-score reported for the first and 
updated text mining algorithm output as well as for the validation dataset.

Manual coding

Exact Match: Yes Exact 
Match: 
No

First algorithm output

Predicted

Exact Match: Yes 984 0

Exact Match: No 16 0

Precision = 1.00

Recall = 0.98

F-score = 0.99

Manual coding

Exact Match: Yes Exact 
Match: 
No

Updated algorithm output

Predicted

Exact Match: Yes 1000 0

Exact Match: No 0 0

Precision = 1.00

Recall = 1.00

F-score = 1.00

Manual coding

Exact Match: Yes Exact 
Match: 
No

Validation dataset output

Predicted

Exact Match: Yes 988 0

Exact Match: No 12 0

Precision = 1.00

Recall = 0.988

F-score = 0.99
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high-risk GS a difference of 3 was reported for both 
groups with an F-score of 1.00 and 1.00 respectively. The 
macro-average F-score was 0.99 and macro recall and 
precision were 1.00 and 0.99 respectively.

Discussion
The objective of our study was to explore the use 
of text mining techniques to extract the GS from 
irregularly reported text-intensive narrative prostate 
biopsy reports. The first text mining algorithm output 
reported that 16/1000 biopsies GS (1.6%) was inac-
curately predicted. On inspection of the N-grams, we 
identified that these biopsies had two reported GS, 
once in clinical history and again in the biopsy report. 
We amended the text mining algorithm, resulting in all 
1000 GS accurately extracted with an F-score of 1.0. 
The attained F-score suggests that our feature engi-
neering process was effective as we managed to pull out 
discriminative features that were most representative 
of our dataset. The text mining algorithm was further 
evaluated against a validation dataset, with good overall 

accuracy and precision (F-score of 0.99). The F-score 
reported for both datasets is similar to a Perl routine 
that also used regular expressions to extract the GS 
[20]. Similar approaches using regular expressions have 
been reported by two other studies [9, 20].

Our findings reveal that despite the variability in the 
GS reporting, the text mining algorithm was able to 
extract the GS. This indicates that in settings with dif-
ferent AP reporting styles, the text mining algorithm 
would still be able to extract the required features. This 
is a promising finding that indicates that the text min-
ing algorithm can handle varying reporting formats.

We noted a difference in the top five reported GS for 
our study and the validation dataset. We reported a 
high-risk GS for 31.8% of biopsies compared to 17.4% 
for the validation dataset. This indicates that late pres-
entation differed between the public and private sector. 
This could be explained by the racial variation in medi-
cal aid coverage [26]. A limitation of this study is the 
small sample sizes.

Table 4  Different Gleason score formats reported for the study

The clean extracted score reported, and the original value reported in the 
prostate biopsy report is indicated for the study dataset

# Extracted score As reported in the biopsy report

1 5 + 4 = 9 5, 4

2 5 + 4 = 9 5 PLUS 4 EQUALS 9

3 3 + 3 = 6 3 + 3 = 6 OR 3 + 3

4 3 + 5 = 8 MAJOR PATTERN 3, MINOR PATTERN 5

5 4 + 3 = 7 MAJOR PATTERN: 4/5 MINOR PATTERN: 3/5

6 4 + 3 = 7 MAJOR 4 PLUS MINOR 3 EQUALS 7

7 5 + 3 = 8 SCORE 8 (MAJOR 5; MINOR 3)

8 3 + 4 = 7 7 (3 + 4)

9 4 + 3 = 7 (4 + 3) = 7

10 3 + 4 = 7 3 (MAJOR) + 4 (MINOR) = 7/10

Table 5  The table reported the frequency for the top five reported Gleason scores with the remaining values grouped and reported 
as “Others”

Data is reported for this study as well as for the separate dataset

GS: Gleason score

No Study dataset Validation dataset

Gleason score n =  % Gleason score n =  %

1 5 + 4 = 9 176 17.6 3 + 3 = 6 377 37.7

2 3 + 3 = 6 175 17.5 3 + 4 = 7 194 19.4

3 4 + 3 = 7 164 16.4 4 + 3 = 7 149 14.9

4 3 + 4 = 7 147 14.7 4 + 4 = 8 100 10.0

5 4 + 4 = 8 142 14.2 4 + 5 = 9 74 7.4

6 Others 196 19.6 Others 106 10.6

Total 1000 100 Total 1000 100

High-Risk GS ≥ 8 318 31.8 High-Risk GS ≥ 8 174 17.4

Table 6  Comparison of low, intermediate and high-risk Gleason 
scores for the predicted and manually coded values

The macro-average F-score is reported

GS: Gleason score
& Alpha value of 0.05 used to assess significance

GS risk category Predicted Manually 
coded

F-score

Low-risk GS (≤ 6) 199 193 0.98

Intermediate-risk GS (7) 311 314 1.00

High-risk GS (≥ 8) 490 493 1.00

p-value& 0.9439

Macro-average F-score 0.99

Macro recall 1.00

Macro precision 0.98
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As we reported data for a multi-class problem and 
compared the predicted and manually coded values 
categorised as low, intermediate and high-risk [5]. The 
analysis revealed an acceptable macro-averaged F-score 
indicating that the text mining algorithm was able to 
accurately classify the GS risk category.

Our findings indicate that the text mining algorithm 
could be used to reliably extract the GS from laboratory 
data in similar settings. Given the paucity of local PCa 
data, this algorithm would make it easier to conduct 
studies for larger sample sizes. This would be achieved 
by implementing the text mining algorithm as an API 
[27]. The text mining algorithm code can be packaged 
as an executable application that can be applied to rou-
tinely extract data from narrative laboratory reports. 
Such an approach could be used to facilitate the genera-
tion of important predictive clinical information for PCa 
using any LIS based data to derive both retrospective and 
prospective health information. This would dramatically 
improve the availability of the GS data for local studies 
and routine surveillance.

While our study was conducted for only English nar-
rative reports, this approach could be extended to 
non-English data. In an African context, it would be 
important to extend these approaches specifically to 
Arabic, French, Portuguese, Spanish and Kiswahili [28]. 
Natural language processing could be used to convert 
these narrative reports into a common English language 
as demonstrated by Delegér et al.for French [29]. As such, 
once this is done the processing using the existing text 
mining algorithm would be possible. A limitation of our 
study is that the text mining algorithm was not applied 
to all 8201 narrative reports with PCa. The objective this 
study was to pilot the use of a text mining algorithm for 
a sample of biopsies. We are looking at applying the text 
mining algorithm to national prostate biopsy narrative 
reports as the next step.

The text mining tools employed in our study could be 
used to extract clinical information for other cancers of 
public health interest. For example, breast cancer biop-
sies are graded using the modified Bloom and Richardson 
system [30]. This grading system is similar to the GS as 
it reports the cytology, tubule formation, nuclear pleo-
morphism, and the mitotic count to determine the grade 
(I, II or III) [30]. Therefore, the techniques employed in 
our study could be applied to other narrative laboratory 
data such as immunophenotyping, fluorescence in  situ 
hybridization and leukaemia reports, to extract impor-
tant clinical, diagnostic and predictive information.

Furthermore, to address the remaining 12% of biop-
sies without a SNOMED CT code, our text mining 
algorithm could be supplemented by machine learning 
(ML) to extract an adenocarcinoma histological finding 

in an automated fashion [9]. This has the potential to 
offer near real-time cancer registry type information 
removing the need for manual coding [31]. This would 
also dramatically reduce the time from reporting to 
generating surveillance data. In addition, the extraction 
of the GS would make it possible to better assess trends 
in late presentation.

In addition to ML approaches, we would also recom-
mend using deep learning approaches. Deep learning 
is composed of multiple processing layers that learn 
representations of data with multiple levels of abstrac-
tion [32]. This approach has dramatically improved AI 
approaches for visual object recognition and object 
detection [32]. Deep learning models are able to extract 
information from large datasets and will continue to 
improve the knowledge discovery as more data is gen-
erated [33]. This enables deep learning to outperform 
classical ML approaches [33]. One of the benefits is that 
deep learning can extract the feature without the need 
for supervision required by ML. A good example is 
representation learning, a deep learning approach that 
automatically discovers the representations needed for 
detection or classification from raw data [32].

Once these ML and deep learning algorithms have 
been developed, it would be possible to move the 
extraction of an adenocarcinoma histological find-
ing with the GS to a cloud service. This would make it 
possible for narrative prostate datasets to be uploaded 
using an internet connection and the extracted knowl-
edge delivered as a data extract. Similar approaches 
have been demonstrated for breast cancer [34]. This has 
the potential for cancer registries across Africa to load 
their narrative data and obtain coded data for incidence 
and late presentation surveillance activities.

Conclusion
Our study has shown that a text mining algorithm 
can be used to extract the predictive GS from narra-
tive biopsy reports. This could also be used to bet-
ter assess late presentation by extracting the GS in 
an automated fashion. These tools have the potential 
to describe PCa in an African context with a paucity 
of data. This approach is applicable to other cancers 
of public health interest. Furthermore, ML and deep 
learning approaches should be investigated to replicate 
results shown for the SNOMED CT lookup tables to 
address data gaps. These could be used to reduce the 
delays in the publication of cancer registry data. These 
algorithms could be moved to a cloud service to extend 
automated PCa surveillance data generation across 
Africa.
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