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ABSTRACT Bacteria are often found living in aggregated multicellular communities
known as biofilms. Biofilms are three-dimensional structures that confer distinct
physical and biological properties to the collective of cells living within them. We
used agent-based modeling to explore whether local cellular interactions were
sufficient to give rise to global structural features of biofilms. Specifically, we asked
whether chemorepulsion from a self-produced quorum-sensing molecule, autoinducer-2
(AI-2), was sufficient to recapitulate biofilm growth and cellular organization observed
for biofilms of Helicobacter pylori, a common bacterial resident of human stomachs.
To carry out this modeling, we modified an existing platform, Individual-based
Dynamics of Microbial Communities Simulator (iDynoMiCS), to incorporate three-
dimensional chemotaxis, planktonic cells that could join or leave the biofilm struc-
ture, and cellular production of AI-2. We simulated biofilm growth of previously
characterized H. pylori strains with various AI-2 production and sensing capacities.
Using biologically plausible parameters, we were able to recapitulate both the varia-
tion in biofilm mass and cellular distributions observed with these strains. Specifi-
cally, the strains that were competent to chemotax away from AI-2 produced smaller
and more heterogeneously spaced biofilms, whereas the AI-2 chemotaxis-defective
strains produced larger and more homogeneously spaced biofilms. The model also
provided new insights into the cellular demographics contributing to the biofilm
patterning of each strain. Our analysis supports the idea that cellular interactions at
small spatial and temporal scales are sufficient to give rise to larger-scale emergent
properties of biofilms.

IMPORTANCE Most bacteria exist in aggregated, three-dimensional structures called
biofilms. Although biofilms play important ecological roles in natural and engineered
settings, they can also pose societal problems, for example, when they grow in
plumbing systems or on medical implants. Understanding the processes that pro-
mote the growth and disassembly of biofilms could lead to better strategies to man-
age these structures. We had previously shown that Helicobacter pylori bacteria are
repulsed by high concentrations of a self-produced molecule, AI-2, and that H. pylori
mutants deficient in AI-2 sensing form larger and more homogeneously spaced bio-
films. Here, we used computer simulations of biofilm formation to show that local H.
pylori behavior of repulsion from high AI-2 could explain the overall architecture of
H. pylori biofilms. Our findings demonstrate that it is possible to change global bio-
film organization by manipulating local cell behaviors, which suggests that simple
strategies targeting cells at local scales could be useful for controlling biofilms in in-
dustrial and medical settings.
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Bacteria often exist in aggregated, adherent communities called biofilms in which
the cells are encased in a self-produced matrix. Bacteria residing in biofilms can

exhibit resistance to environmental stressors such as antibiotics, changes in pH, and
host immune defenses (1–3). Biofilms often adopt distinctive three-dimensional archi-
tectures with heterogeneous cell spacing that give rise to networks of channels. Biofilm
architecture varies across bacteria, and while there is not yet a consensus on what
function biofilm architecture plays, it has been shown that biofilm channels allow for
the flow of oxygen, nutrients, and waste products into and out of the cell aggregates
(2, 4–10). Biofilm architecture has also been implicated in conferring protection from
bacteriophages, as well as being an important factor in mediating cooperative and
competitive interactions among bacterial cells residing in the biofilm (11, 12). Biofilms
play important ecological roles, ranging from supplying plant roots with nitrogen to
removing biological matter from wastewater (2, 13–15). In certain contexts, biofilms
create commercial and biomedical problems for society, from biofouling of municipal
waterworks to life-threatening infections by pathogens harbored on medical implants
or the lungs of cystic fibrosis patients (1, 16, 17). Therefore, being able to understand
and ultimately manipulate biofilm assembly and disassembly would help address
several major industrial, agricultural, and biomedical challenges through promoting
assembly of beneficial biofilms and inhibiting formation of biofilms in harmful settings.

Biofilm assembly has been described alternatively as a developmental program
controlled by stage-specific gene expression, similar to the development of a multicel-
lular organism, or as the outcome of local adaptations of individual cells (3, 18–20).
Distinguishing these two alternative possibilities is challenging because it can be
difficult to discern whether biofilm phenotypes are achieved by optimizing group or
individual fitness. For example, genes identified through forward genetic screens as
being required for normal biofilm structures could be interpreted alternatively as being
part of a biofilm genetic program or as controlling certain cellular behaviors that
contribute to the self-assembly of biofilm structures (19, 20).

A distinguishing feature of the biofilm lifestyle is that cells in close proximity can
produce and respond to secreted molecular signals on small spatial and temporal
scales. One such example of a secreted signal is the class of quorum-sensing molecules
that serve as density-dependent forms of communication to influence group behaviors.
These can include molecules such as acylated homoserine lactones (AHLs) made by
Gram-negative bacteria, the production of and response to which can vary considerably
across different bacterial species. Another example of a quorum-sensing molecule is the
tetrahydroxy furan molecule autoinducer-2 (AI-2), which is produced by many bacteria
through a common metabolic pathway but elicits different responses through species-
specific receptors. Quorum-sensing molecules often regulate gene expression, includ-
ing genes involved in biofilm growth and dissolution, by acting through canonical
signal transduction pathways (21–24). In this context, quorum-sensing molecules can
be viewed as master regulators of biofilm developmental programs. AI-2 specifically has
been shown to influence the overall structure of bacterial biofilms in diverse organisms
such as Bacillus, Streptococcus, Aggregatibacter, Pseudomonas, Escherichia, Vibrio, and
Helicobacter (25–32). In addition to regulating gene expression, AI-2 can elicit more
immediate and local behaviors in bacteria through chemotaxis signal transduction that
directs bacterial movement relative to a chemical gradient (26, 33–37). In the case of
Helicobacter pylori, we showed that AI-2 is perceived as a chemorepellent (38), whereas
Escherichia coli perceives AI-2 as a chemoattractant (35).

Previous experimental work from our group showed that both H. pylori biofilm mass
and structural patterning are influenced by AI-2 chemotaxis. To determine the role of
AI-2 in H. pylori biofilm formation, we constructed strains that were defective for AI-2
production (luxS deleted), AI-2 chemoreception (cheA, tlpB, aibA, and aibB deleted), or
overproduced AI-2 (luxS overproducer). We measured the biomass of the resulting
biofilms using a crystal violet assay. We also measured the structural heterogeneity of
the resulting biofilms by imaging them with fluorescence microscopy and quantifying
a lacunarity metric that captures morphological features such as roughness of biofilm
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edges and patchiness of surface coverage. We observed that both AI-2 sensing and
production mutants formed larger biofilms with more homogenous organization,
whereas the strain that overproduced AI-2 formed smaller, more heterogeneously
structured biofilms (26).

Our experimental observations are consistent with a role for AI-2 chemorepulsion in
shaping biofilm structure. For example, bacterial cells that chemotax away from AI-2
would be motivated to leave or deterred from joining a biofilm that is a concentrated
source of AI-2. Our experimental results, however, could not rule out the possibility that
additional functions of AI-2 signaling, such as regulation of global gene expression
programs, contribute to the overall architecture of H. pylori biofilms.

As a complement to experimental studies, computational modeling has played an
important role in the study of biofilm assembly because it provides researchers with the
opportunity to test and refine their understanding of the minimal set of parameters
that can give rise to biofilm structures observed in nature (12, 39, 40). Agent-based
models that treat each cell in the biofilm as independent agents are particularly well
suited for exploring how individual cellular behaviors give rise to emergent properties
of the biofilm. Here, we used agent-based modeling to ask whether individual cellular
behaviors of AI-2 production and chemotaxis are sufficient to produce global features
of biofilm structures observed experimentally.

For our agent-based modeling of AI-2 chemotaxis in biofilms, we used a well-
established biofilm modeling platform, Individual-based Dynamics of Microbial Com-
munities Simulator (iDynoMiCS) (41), which simulates behaviors of individual bacterial
cells to understand larger, community behaviors. iDynoMiCS is an open-source plat-
form and accessible for modifications and collaboration. We implemented several
critical modifications to iDynoMiCS in order to explore whether AI-2 chemotactic
responses could recapitulate our experimentally observed biofilm phenotypes. First,
we expanded the models to include three-dimensional chemotaxis. We next in-
cluded a population of planktonic (free-swimming) cells that were continually
introduced into the bulk medium and could join the biofilm. Additionally, cells from
the biofilm could leave and become part of the planktonic population. Finally, we
introduced AI-2 as a chemorepellent compound that was produced by individual
cells as a function of their metabolic capacity and that diffused through the
three-dimensional space.

With the addition of AI-2 production and chemoreception to our modeling
platform, we recapitulated our previous experimental data showing that biofilms of
strains lacking the ability to produce or sense AI-2 were larger than wild-type (wt)
biofilms. In addition, the architecture of the biofilms, including spacing of cell
groups within the biofilms, matched well between the experimental and modeled
biofilms. Finally, our modeling of biofilms contributed new insight into the demo-
graphics dictating biofilm size, suggesting that cell dispersal as a result of chemore-
pulsion is a major contributor to the reduced biofilm mass of AI-2-responsive versus
nonresponsive cells. These results indicate the utility of our modified iDynoMiCS
platform for studying chemotaxis in biofilm dynamics and provide support for the
view that local cellular behaviors of AI-2 chemotaxis can explain global features of
biofilm formation and patterning.

(This article was submitted to an online preprint archive [42].)

RESULTS
Addition of chemotaxis and AI-2 production to agent-based modeling of

biofilm formation. Agent-based models are useful tools for exploring how simple
interactions between cells contribute to the overall properties of bacterial communities,
such as biofilms. iDynoMiCS simulates biofilm formation by taking into account bio-
logically relevant parameters, such as nutrient concentrations, nutrient diffusion rates,
and cell division and spacing (see Table S1 in the supplemental material for parameters
used in the simulation [41]). To investigate the role of AI-2-mediated chemotaxis in
biofilm architecture, we extended the iDynoMiCS model by introducing several prop-

Modeling Shows Chemotaxis Shapes Biofilm Architecture

May/June 2019 Volume 4 Issue 3 e00285-19 msphere.asm.org 3

https://msphere.asm.org


erties, including three-dimensional chemotaxis, planktonic (free-swimming) cells, cells
joining and leaving the biofilm, and AI-2 production. These new iDynoMiCS additions
were critical for exploring how chemoreception of AI-2 shapes H. pylori biofilms. In
addition, these developments necessitated a new visualization tool that aided in data
interpretation (see Materials and Methods).

Our extended model starts with 100 bacterial cells randomly placed on the two-
dimensional surface at the bottom of a container that is continually supplied with fresh,
nutrient-containing medium. These cells expand and proliferate according to the
iDynoMiCS growth and spacing algorithms. We allowed new planktonic cells (250
cells/h) to enter the container throughout each 24-h simulation (Fig. 1A and movies in
the supplemental material). The planktonic cells moved through the space according to
a chemotaxis algorithm (see Materials and Methods). Planktonic cells would join the
simulated biofilm if they swam close enough to the biofilm surface and if the concen-
tration of a chemorepellant was below the set chemoeffector threshold. In addition,
cells at the biofilm edge could leave and enter into the planktonic pool. In our
simulations, we chose the AI-2 chemoeffector threshold to be that at which planktonic
cells contributed to the population of the biofilm to the extent that was defined as
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FIG 1 Time steps and AI-2 gradients of example wild-type iDynoMiCS-modeled H. pylori biofilm. (A) Wild-type biofilm after 2, 16, and 24 h of growth. Each
sphere represents a modeled bacterial cell with colors corresponding to different cell behaviors. Note there is a mix of cells leaving, cells dividing from the
original founding population, and cells joining the biofilm. Each grouping of pink cells represents a clonal population. (B) Shown are corresponding AI-2
concentration graphics below each time point shown in panel A. The AI-2 concentration is a representative vertical slice through the center of the
three-dimensional modeled biofilm (gray dashed lines in panel A), with darker color representing higher concentrations of AI-2.
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halfway between cells never joining the biofilm and cells always joining the biofilm
(Fig. S1).

After testing several models of AI-2 production, we chose a model that tied AI-2
production directly to the growth and metabolism of each cell or agent. This model is
reasonable because AI-2 is produced as a by-product of the activated methyl cycle (24).
We also incorporated into the model a constant cellular uptake of AI-2, which is
common in bacteria (43). We do not yet know whether H. pylori has an active AI-2
uptake mechanism, but incorporating a constant uptake parameter best recapitulated
our experimental measurements of AI-2 (26, 33). In the iDynoMiCS simulations, cells
near the surface of the modeled biofilms have more access to fresh nutrients and
therefore divide and produce AI-2 (environmental AI-2 concentrations shown in gray)
at a higher rate than cells in the middle or bottom of the biofilm (Fig. 1B). The constant
cellular uptake of AI-2 in the model resulted in a lower concentration of AI-2 in the
volume at the bottom of the biofilm (Fig. 1B).

Modeling recapitulates biofilm mass as a function of AI-2 chemorepulsion.
Using the model, we tested whether we could recapitulate the outcomes of our
previous experiments demonstrating an important role for AI-2 production and
chemorepulsion in H. pylori biofilm mass and patterning (26). To simulate these
experiments, we modeled the strains and conditions used in this experimental work.
The strains included wild-type cells (wt), cells unable to chemotax (no chemo), cells
unable to produce AI-2 (no AI-2), and cells that overproduce AI-2 (AI-2 over). For each
of these genotypes we ran 30 individual iterations and compared the number of cells
in our simulated H. pylori biofilms to those of experimental work (Fig. 2). Wild-type cells
produced moderately sized biofilms in both the model and the experimental setup,
while cells that could not produce AI-2 or chemotax away from AI-2 produced larger
biofilms. Finally, both experimental and modeling results revealed that the AI-2 over-
producer made smaller biofilms. These data support our conclusion that our modeling
platform could recapitulate experimental results.

Modeling recapitulates the impact of AI-2 chemorepulsion on biofilm spatial
organization. We used modeling to confirm that AI-2 shapes H. pylori biofilm archi-
tecture. We had shown previously that we could quantify the heterogeneity of biofilms
using a lacunarity metric, which measures spacing between patterns and boundary
smoothness. Lacunarity measurements have been used across disciplines and size
scales to compare not only how much space is filled by objects but also specifically how
the space is filled (44, 45). To quantify space filling by biofilm cells using lacunarity,
experimental biofilms were grown on glass slides, fixed, and stained with 4=,6-
diamidino-2-phenylindole (DAPI) and visualized with epifluorescence. The cellular com-
ponent of the biofilm was defined using an intensity threshold, and the resulting
images were analyzed using an ImageJ plugin, FracLac, to quantify lacunarity (Fig. 3)
(44–47). To compare these experimental results with our model outputs, we performed
a similar analysis of the top layer of 10 simulated biofilms for each genotype (Fig. 3A).
Visually, the simulated biofilm structures (Fig. 3B) resembled the experimental data
(Fig. 3C). The wild-type and AI-2-overexpressing strains produced biofilms with marked
spacing between cell patches, whereas the nonchemotactic and non-AI-2-producing
strains formed much more homogeneous structures. Although the experimental and
modeled biofilms were analyzed on different size scales, plotting the resulting lacu-
narity scores revealed a striking similarity between experimental and modeling data
(Fig. 3D and E).

Modeling predicts subcellular populations that contribute to biofilm mass. The
model afforded us the opportunity to examine the cellular demographics contributing
to biofilm mass, which would be difficult to do experimentally. We modeled biofilm
formation for 24 h in 30 parallel simulations and tallied the individual leaving events
and joining events. Wild-type biofilms showed equivalent numbers of joining and
leaving cells (Fig. 4). As expected, biofilms of nonchemotactic and non-AI-2-producing
cells had no leaving events, since AI-2 chemorepulsion was the only leaving mechanism
in the model. The AI-2 overproducer strain had a dramatic increase of leaving events,
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which was expected given the higher concentration of AI-2 near the surface of the
biofilm (Fig. 2B), that would drive cells to chemotax away from the biofilm. Interest-
ingly, both the nonchemotactic and non-AI-2 producers had a reduction in the number
of joining events compared to the wild-type population despite not experiencing
chemorepulsion from the biofilm. Also counterintuitively, there were more overall
joining events in the AI-2 overproducer strain biofilm than in the wild-type population.
As discussed below, the number of joiners could be explained by the differences in
architectures and specifically surface areas and joining opportunities afforded by the
growing biofilms of the different strains. Overall, our modeling supports the idea that
AI-2 chemorepulsion promotes a balance of leaving and joining events that influences
global biofilm growth.

FIG 2 Modeling confirms AI-2 chemotaxis and production alter overall biofilm size. (A) Representative images of 24-h biofilms for each of the four strains in
grayscale to show contours. To simplify, only the founding population, their progeny, and joiners are shown. Planktonic cells have been removed for simplicity.
(B) The associated AI-2 gradients for panel A. (C) Total number of cells attached to the modeled biofilms at the 24-h time point (n � 30). (D) The sizes of the
experimental biofilms from Anderson et al. (26) are graphed according to the percentage of cells in the biofilm (compared to planktonic cells). Asterisks indicate
a significant difference from the wild type. Statistics for panels C and D were determined using a one-way analysis of variance (P � 0.05). Data in panel D are
from Anderson et al. (26).
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DISCUSSION

In this study, we used agent-based modeling to explore the extent to which local cell
chemotactic responses to a self-produced molecule could explain biofilm growth and
patterning properties. By extending the iDynoMiCS modeling platform to include three-

FIG 3 Modeling confirms AI-2 chemotaxis and production influence biofilm organization. (A) Lacunarity analysis pipeline for
the modeled biofilm images. The bottom 98 �m was removed from each 24-h biofilm across all genotypes (see Materials and
Methods). The top-down view is used to for comparisons to the experimental images in panel C. Using ImageJ, each image
was thresholded and then analyzed with FracLac to determine the lacunarity score. More details can be found in Materials and
Methods. (B) Example images of all four modeled genotypes from the top down. Bar, 40 �m. (C) Example images of
experimental H. pylori biofilms grown on glass slides, from Anderson et al. (26). Bar, 100 �m. (D) Lacunarity scores graphed for
modeled biofilms (n � 8 to 10). (E) Lacunarity scores graphed for each experimental biofilm for each genotype from Anderson
et al. (26). Asterisks in panels D and E indicate a significant difference from the wild type. Results were determined using a
one-way analysis of variance (P � 0.05). Data in panel E are from Anderson et al. (26).
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dimensional chemotaxis, cell joining and leaving events, and AI-2 production, we were able
to recapitulate our experimental observations of H. pylori biofilm formation with a collec-
tion of strains with different AI-2 production and perception properties (26). We showed
that cells unable to make or chemotax away from AI-2 produced larger biofilms than
wild-type cells. These biofilms also differed in their organization, with more homogenous
cell spacing and smaller gaps between cell clusters. Overproduction of AI-2 resulted in
smaller and more heterogeneously spaced biofilms. Biofilms are complex structures with
towers and channels that facilitate fluid flow for efficient oxygen and nutrient permeation,
waste excretion, and cell turnover (2, 4–6). We found that by modeling local chemotactic
responses to a self-produced molecule, we could simulate the assembly of biofilms with the
global property of high lacunarity, characteristic of biofilms with extensive channels (Fig. 3).
The agreement between our simulations and experimental results supports the idea that
local cellular behaviors, such as production and chemoavoidance of AI-2, can explain global
architectural features of bacterial biofilms.

One notable discrepancy between the model and the experiments is that iDynoM-
iCS simulates biofilms under a constant supply of nutrients, whereas the experimental
biofilms were grown under static conditions, as batch cultures (26). This discrepancy
could account for certain differences between the modeled and experimental results.
For example, the model simulated additional planktonic cells introduced from the bulk
medium at each time step and resulted in greater biofilm mass over the 24-h period
than observed experimentally. However, because our investigation focused on the
effects of an endogenously produced cellular product that was supplied almost exclu-
sively by the static biofilm as opposed to the bulk medium, we feel that the model has
utility for understanding the role of AI-2 chemotaxis in biofilm growth.

Our modeling approach allowed us to dissect the demographics of biofilm assembly in
a way that would be difficult to do experimentally without sophisticated genetic tools for
marking cell lineages. As expected in our model, cells left the biofilm when they were
programmed to chemotax away from AI-2, and they left in greater numbers when the
biofilm cells produced more AI-2. We did not initially expect the wild-type and AI-2
overproducer populations to have more cells join the biofilms than the populations without
chemotaxis or AI-2 production. However, inspection of the biofilm structures assembled in
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these different models showed that the wild-type and overproducer biofilms had many
more gaps and edges, creating more extensive surface area that planktonic cells could
stochastically encounter and then join at a certain probability. This difference in surface area
and joining opportunities could explain the higher numbers of joiners in the populations
of cells engaging in AI-2 chemorepulsion. In addition, the heterogeneous architectures of
these biofilms would create local minima in AI-2 concentrations and opportunities for
joining even in the context of AI-2 chemorepulsion. Differences in the local AI-2 concen-
tration landscapes could explain the higher number of joiners seen with the AI-2 overpro-
ducer versus wild-type cell populations.

Biofilms can have detrimental impacts on humans when formed on medical devices
or at sites of infection. Our modeling shows how structural features of biofilms, such as
extensive surface area or channels, are affected by the concentration of endogenously
produced molecules. In the case of H. pylori, endogenously produced AI-2 is a chemore-
pellent and promotes biofilm dispersal (26). Manipulation of AI-2 has been proposed as
a strategy for managing pathogen infections, for example, to disperse deleterious
biofilms (48). Our modeling, however, suggests that this strategy results in unantici-
pated consequences. For example, for bacteria that chemotax away from AI-2, like H.
pylori, increasing AI-2 levels could create more biofilm surface area and result in
increased incidence of new bacteria joining the biofilm. This would be especially
problematic in a scenario of ecological succession in which antibiotic-resistant or more
virulent strains were available to join.

Although our model recapitulated several features of AI-2-dependent biofilm as-
sembly observed experimentally, it is based on certain assumptions about AI-2 fluxes
that are likely to be oversimplifications. In our current model, AI-2 production is linked
to metabolic activity and uptake is constant. When examined experimentally, param-
eters of AI-2 production, uptake, and sensing are known to vary greatly between
bacterial species and depending on cells’ metabolic states (49–52). Using deterministic
simulations of AI-2 production from a system of ordinary differential equations, Quan
and colleagues showed that variability in AI-2 uptake within a modeled biofilm can lead
to desynchronization of autoinduction across the community (53), highlighting the
importance of considering heterogeneities in AI-2 fluxes. In addition, AI-2 could be
produced from sources other than the bacterial constituents of a biofilm. For example,
mammalian host tissues were recently shown to synthesize an AI-2 mimic that is sensed
by bacterial AI-2 receptors (54). Future iterations of the model could incorporate more
detailed parameters of AI-2 fluxes, but these would need to be tailored to the specific
bacterial species and environments being modeled.

Most bacteria exist not in monocultures but rather in multispecies consortia (55).
AI-2 is known to contribute to the organization of such consortia, for example, in
biofilms that assemble on the enamel surfaces of teeth (56, 57). Recently, Laganenka
and Sourjik showed that in a simple two-member biofilm community of Enterococcus
faecalis and Escherichia coli cells, AI-2 chemotaxis plays an important role in biofilm
growth and patterning. In this model community, both species produce AI-2 but only
E. coli chemotaxes toward it (37). Importantly, the spatial arrangement of different
species within a biofilm can strongly influence cooperative and competitive interac-
tions occurring between neighboring cells, and this in turn can affect overall biofilm
fitness and, in the case of pathogens, alter virulence (58). Therefore, an appealing
direction for our work is to apply our modeling approach to multispecies communities
composed of members with known AI-2 properties. By assigning simple AI-2 produc-
tion, chemoattraction, and chemorepulsion behaviors to different members, one could
explore the extent to which local AI-2 chemotactic responses could explain global
spatial patterning observed in multispecies communities.

MATERIALS AND METHODS
Computational modeling of biofilms. The simulation of the growth of biofilms was accomplished

using the agent-based modeling package iDynoMiCS (version 1.1, January 2013). Individual cells are
represented as discrete spherical agents with programmable behaviors that are subject to influence from
other agents and their surrounding environments. The model consists of an evenly spaced grid of three
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dimensions with three regions: the biofilm (region I), the boundary (region II), and the bulk (region III)
(41). The bulk compartment at the top represents well-mixed bulk solutes that interface with the
bacterial compartment at the bottom through a diffusion boundary layer. Solutes are represented by
concentration fields changing due to diffusion and from uptake by the cells in the bacterial compartment
that provides a surface for initial seed cells to attach. As the cells take up solutes, they can grow and
divide or die above or below certain set size thresholds. These processes of growth and division lead to
mechanical stress between the cells, which is relieved through a shoving algorithm. This shoving and the
simulation of other physical forces on the biofilm dictate the formation of the biofilm’s structure.

To represent a bacterial population with both biofilm-attached cells and planktonic cells and to
simulate the dynamics of cells joining and leaving a biofilm, we extended iDynoMiCs to include new
agents with attributes and behaviors specific to planktonic cells. This version is available at https://
github.com/alexwweston/iDynoMiCS. Cells can be either biofilm associated or planktonic cells capable of
movement in two or three dimensions. At each 1-h time step, a set number of planktonic cells are initially
placed at random x and z coordinates just below the bulk compartment with an initial angle aimed
downwards away from the bulk so that they do not immediately leave the system. Subsequently each
individual planktonic cell will move at a random distance between 0 and its maximum distance at a
random angle. All random numbers were generated from a uniform distribution. If a planktonic cell
leaves the boundaries of the bacterial compartment, it is removed from the simulation. If a planktonic
cell ends its movement within a certain distance from a biofilm-associated cell, it will then switch from
planktonic to biofilm-associated behaviors. The maximum distance to move and the threshold distance
for joining a biofilm are simulation parameters.

Planktonic cells are also given behaviors to simulate chemotaxis responses. Here, the goal was not
to model how bacterial cells sense chemoeffectors (which involves detecting chemicals across a temporal
gradient) but rather to model the consequence of chemosensing in terms of bacterial cell spatial
distributions. In the model, a chemotaxing planktonic cell has attributes it identifies from the solute as
a chemoeffector, whether or not it exhibits an attractive or repellent response to this chemoeffector, and
the threshold for recognizing this chemoeffector, termed the chemoeffector threshold. Before moving,
a planktonic cell will detect the concentration of its chemoeffector at its current location. If it is above
its chemoeffector threshold, it will detect the gradient of the chemoeffector directly and move at an
angle toward or away from this gradient depending on its response.

The attributes and behaviors of biofilm-associated cells are additionally extended to simulate
biofilm-associated cells leaving the biofilm and becoming planktonic. A biofilm-associated cell has
attributes for its chemoeffector, a threshold for recognizing this chemoeffector, or the chemoeffector
threshold and a probability for leaving the biofilm if this threshold is surpassed. At the end of each
interval in the simulation, cells on the periphery of the biofilm will check the local concentrations of their
chemoeffector. If the concentration is above its chemoeffector threshold, that cell has a chance of leaving
the biofilm at a frequency equal to its leaving probability. Upon leaving the biofilm, that cell becomes
a planktonic cell and moves from the biofilm at a random angle away from the chemoeffector gradient.
The chosen chemoeffector threshold (70 nM) corresponds to the concentration of AI-2 at which plank-
tonic cells contribute to the population of the biofilm at the midpoint between cells never joining the
biofilm and cells always joining the biofilm, with all other parameters held constant (see Fig. S1 in the
supplemental material).

After trying several modes of AI-2 production, we chose to model AI-2 production as dependent
on the growth reaction (e.g., AI-2 production is proportional to growth rate), with continuous uptake
by the cells. AI-2 is produced only as cells grow, while uptake is constant, whether the cell is growing
or not.

Diffusion parameters for AI-2 were also incorporated into the model. The parameters we used
were the default diffusivity parameters of iDynoMiCS. In this model, diffusion and uptake of AI-2
occur at a much higher rate than the rate of cell growth; therefore, the assumption is that AI-2
concentration fields reach a pseudo-steady state, and at the end of each time step a steady-state
solver is used (41, 59).

Setting up and running simulations. We simulated the movement of bacteria through a 280- by
280- by 280-�m space for a period of 24 h. The space was modeled as a 33 by 33 by 33 grid. Fluid
movement was simulated using a major time step size of 1.0 h, and bacterial behaviors (movement,
joining, and leaving) were updated at minor time steps of 0.05 h (3 min). These time steps allowed
appropriate monitoring of the behaviors of the agents during the simulation (division, chemotaxis,
joining, and leaving of the biofilm). Each simulation was seeded with 100 bacterial cells randomly placed
on the bottom layer of the simulated grid, and 250 planktonic cells were added per hour from the bulk
medium. Outputs for visualization were recorded at the end of every major time step. Other parameters
for concentration and diffusivity of solutes and the cell attributes of agents were taken from measure-
ments of E. coli biofilms used in other simulations under iDynoMiCS (41). Erosion and sloughing
processes that can be modeled in iDynoMiCS were turned off for these simulations in order to focus on
leaving events that are directly tied to AI-2. A full list of these parameters that were default iDynoMiCS
parameters and were static in our simulations is provided in Table S1.

We tested a wide range of values for the new chemoeffector threshold parameter introduced in our
model (Fig. S1). The value we chose of 70 nM AI-2 lies within a physiologically reasonable range between
the minimum concentration of AI-2 that elicits dispersal of H. pylori biofilms experimentally (37 nM) and
the maximum concentration of AI-2 measured in H. pylori cultures (0.1 mM) (26, 33, 38). Bacterial growth
kinetics were modeled using the Monod growth equation with an additional term representing the
production of AI-2. The values for these parameters and equations for the wild-type strain used in the
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simulations are found on Table S2. Mutant strains used in the simulations use minor modifications of
these values, which are highlighted in Table S3. The mutant chemotaxis strain is given an infinite value
for its chemoeffector threshold, causing it to never detect its chemoeffector. The mutant overproducer
strain is given a larger AI-2 yield coefficient. Because we have observed experimentally that H. pylori luxS
mutants have a growth rate similar to that of wild-type H. pylori (33), in our model we had the mutant
strain defective in AI-2 production synthesize an arbitrary alternative product in its growth reaction, such
that it experienced a biosynthetic burden similar to that of the wild-type strain.

Visualizing the biofilms. The visualization of the agent-based simulation of bacterial biofilms was
created using custom-built codes developed in C��, using OpenGL for the graphics and Qt for the user
interface. The simulations are run within iDynoMiCS, which exports the entirety of the simulation in XML.
Each bacterium is displayed as a sphere that has a radius dictated by the simulation and a color based
on the bacterial type and, in some scenarios, modified based on family, genealogy, generation, or
birthday. Each founding cell is labeled in a different shade of pink, and the daughter cells remain the
same color as the original founding cell to allow for recognition of clones. The code is open source and
can be downloaded at https://bitbucket.org/kpotter/vizr.

The visualization of the AI-2 gradients via contours was done using the R library filled.contours. To
create these images, the data are loaded into R, a single slice of the data volume is extracted at a
specified time point, and these data are used as the input to the contours function. The R code is
provided in the supplemental material.

Calculating lacunarity. The simulated biofilms grew more rapidly than the experimental biofilms,
such that when viewed from the top, they appeared 100% confluent by 24 h; however, the spatial
packing of the cells was not uniform. To compare the spatial organization of the simulated and
experimental biofilms, we restricted our analysis to the top portion of the simulated biofilms corre-
sponding to the volume with the most cell dynamics. To decide the extent of the bottom portion of the
biofilm to exclude from our spatial analysis, we calculated the percentage of surface area covered by cells
across all experimental wild-type images using ImageJ and determined this value to be approximately
43% percent coverage. We next determined that removing the bottom volume of height of 98 �m from
the simulated biofilms resulted in 43% coverage for a representative set of wild-type biofilms, viewed
from the top down (Fig. 3A). Therefore, the bottom volume of height of 98 �m was removed from all
simulated biofilms and lacunarity was determined. To determine the lacunarity score, we opened the
experimental or trimmed simulated biofilm images in ImageJ, converted them to grayscale, adjusted the
threshold to a set cutoff to differentiate cells from noncells (black and white only), and analyzed the
resultant images using the FracLac plugin (46).

Data availability. We have updated version 1.1 of iDynoMiCS to include several new parameters,
including AI-2 production and uptake. The new associated source code and documentation for running
the software is available in Weston and Nishida (60).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00285-19.
VIDEO S1, MOV file, 5.6 MB.
VIDEO S2, MOV file, 9 MB.
VIDEO S3, MOV file, 9.6 MB.
VIDEO S4, MOV file, 6.5 MB.
TEXT S1, PDF file, 0.04 MB.
FIG S1, PDF file, 0.03 MB.
TABLE S1, PDF file, 0.1 MB.
TABLE S2, PDF file, 0.1 MB.
TABLE S3, PDF file, 0.04 MB.
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