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Abstract: Mild cognitive impairment (MCI) is the early stage of Alzheimer’s disease (AD). Automatic
diagnosis of MCI by magnetic resonance imaging (MRI) images has been the focus of research in
recent years. Furthermore, deep learning models based on 2D view and 3D view have been widely
used in the diagnosis of MCI. The deep learning architecture can capture anatomical changes in the
brain from MRI scans to extract the underlying features of brain disease. In this paper, we propose
a multi-view based multi-model (MVMM) learning framework, which effectively combines the local
information of 2D images with the global information of 3D images. First, we select some 2D slices
from MRI images and extract the features representing 2D local information. Then, we combine them
with the features representing 3D global information learned from 3D images to train the MVMM
learning framework. We evaluate our model on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. The experimental results show that our proposed model can effectively recognize
MCI through MRI images (accuracy of 87.50% for MCI/HC and accuracy of 83.18% for MCI/AD).
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1. Introduction

Alzheimer’s disease (AD), a neurodegenerative brain disease caused by multiple factors, is one of
the most common chronic diseases in old age [1]. This disease usually causes progressive and disabling
impairments of cognitive function, including memory, language, understanding and attention [2].
In 2015, it was estimated that about 47 million people worldwide had AD, and the number is expected to
reach 141 million by 2050 [3]. At present, there is no practical method to cure AD [4], so early diagnosis
of AD is needed to obtain treatment time. Mild Cognitive Impairment (MCI) is an intermediate
state between normal aging and dementia [5], and one study showed that 32% of MCI converted
to AD within five years [6]. Therefore, early diagnosis and intervention of Alzheimer’s disease is
very important.

In the past few decades, neuroimaging has been widely used to study brain diseases [7–9].
Neuroimaging technology provides anatomical and functional images of the brain, such as
Positron Emission Computed Tomography (PECT), Structural Magnetic Resonance Imaging (SMRI),
Diffusion Magnetic Resonance Imaging (DMRI), Functional Magnetic Resonance Imaging (FMRI),
Electroencephalogram (EEG), and Magnetoencephalography (MEG) [10–12]. Among them, SMRI is
often used for the characterization and prediction of AD due to its relatively low cost and good imaging
quality. Previous studies have shown that the volume and thickness of the brain are closely related to
AD [13], the hippocampus region of AD patients is one third smaller than that of healthy subjects [14],
and the medial temporal lobe region is the most effective region of the brain for identifying patients
with MCI [15].
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In recent years, machine learning and deep learning technologies have demonstrated
revolutionary performance in many areas, such as action recognition, machine translation,
image segmentation, and speech recognition [16–19]. Machine learning and deep learning have
also achieved great success in the fields of medical image analysis and assisted diagnosis of brain
diseases [20–23]. Unlike traditional methods based on manual feature extraction, deep learning can
learn straightforward and low-level features from medical images, and construct complex high-level
features in a hierarchical way [24].

The methods of diagnosing AD through Magnetic Resonance Imaging (MRI) images can be
roughly divided into two categories, including 1) methods based on two-dimensional (2D) view, and
2) methods based on three-dimensional (3D) view. In most studies based on 2D view, 2D slices are
selected from each subject, and these coronal, sagittal, or axial brain images are considered as a whole
to classify. Bi et al. [25] manually selected brain images from three orthogonal panels of MRI data
and performed unsupervised learning through PCA-Net. Neffati et al. [26] extracted 2D discrete
wavelet transform texture features from coronal slices to classify AD. Jain et al. [27] selected the most
informative set of 2D slices and used models trained on natural images to classify medical images
through transfer learning. Mishra et al. [28] extracted features through complete local binary pattern
from 2D slices in three directions instead of a single direction. These methods based on 2D view have
all achieved excellent classification performance.

In addition, there are many methods based on 3D view that can also classify AD well [29–32].
Zhang et al. [33] discriminated between patients and healthy controls by using voxel-based
morphometry (VBM) parameters from 3D images. Their results reported that the effect of classification
using only 3D VBM parameters was better than the effect of classification using only 2D texture
parameters. J. Liu et al. extracted 3D texture features through different divisions of the brain regions
of interest (ROI) to construct multiple hierarchical networks [34,35]. Y. Wang et al. [36] diagnosed
AD through combining morphometric measures of 3D images and connectome measures of 3D ROI.
M. Liu et al. [37] used multivariate statistical tests to find discriminative 3D patch sets from the 3D
rain images for the subsequent analysis. Basaia et al. [38] adopted a convolutional neural network
to distinguish mild cognitive impairment who will convert to AD (c-MCI) and stable MCI (s-MCI)
through 3D MRI images with an accuracy of 75%.

Considering the excellent performance of methods based on 2D view and 3D view, researchers in
different fields have combined 2D and 3D views for study. Nanni et al. [39] combined texture features
extracted from 2D slices with voxel features from 3D images and used multiple feature selection
methods to improve the detection of early AD. In the field of action recognition and human pose
estimation, Luvizon et al. [40] used a multi-task learning framework to combine 2D still images with 3D
videos to learn features and achieved the latest results at that time. In the field of tumor segmentation,
Mlynarski et al. [41] first divided 3D images into 2D images in three directions, and then fed them
into the 2D model to generate 2D feature maps. Finally, they used 2D feature maps as the additional
inputs of the 3D model to combine 2D and 3D information to achieve better segmentation results.
The methods of combining 2D and 3D views in the different fields mentioned above have achieved
excellent results. Therefore, we propose a multi-model learning framework based on multiple views
to make full use of local and global information in this paper. We combine some 2D MRI images
with the entire 3D MRI images, and adopt different deep learning models for different views to better
distinguish AD and MCI.

The main contributions are listed as follows:

(1) We employ entropy to select 2D slices and fuse them to learn 2D local features.
(2) We propose a combination of 2D and 3D images of MRI to diagnose MCI, rather than a single view.
(3) We propose a multi-model learning framework that uses different models to train data from

different views.
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2. Materials and Methods

We propose a new method of MCI diagnosis based on multi-view based multi-model (MVMM)
framework. The MVMM framework mainly includes a 3D model for extracting global features and a
2D model for extracting local features. The 3D model we use is the Dilated Residual Network (DRN),
which adds an Efficient Space Pyramid (ESP) module. The 2D model is the Dual Attention Inception
Network (DAIN), which adds a dual attention mechanism to the Inception network. The flow of
our MVMM framework is shown in Figure 1. Firstly, the gray matter (GM) images of subjects are
divided into whole-brain gray matter images and some selected two-dimensional slices, and then they
are respectively input into the corresponding different models. Finally, the local features and global
features are concatenated together for integration training.

Figure 1. Multi-view based multi-model learning framework.

2.1. Data and Pre-Processing

2.1.1. Data Acquisition

In this work, the MRI images we use are obtained from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/) [42]. ADNI started in 2004 under the leadership
of Dr. Michael W. Weiner. ADNI is a longitudinal multicenter study with the primary goal of early
detection of AD and the use of biomarkers to track disease progression. ADNI has already begun three
phases, namely ADNI1 (2004-2009), ADNI2/GO (2010-2016) and ADNI3. At each phase of ADNI, new
participants are recruited and agreed to complete various imaging acquisitions and clinical evaluations.
Later phases include follow-up scans of some previously scanned subjects and scans of new subjects.
In this paper, we select the SMRI data acquired at 1.5 Tesla [43]. The data we use are obtained from 649
subjects, which include 175 scans of AD, 214 scans of healthy controls (HC), and 260 scans of MCI. The
demographic and clinical characteristics of all subjects are reported in Table 1.

Table 1. Demographic information for 649 subjects.

Class Subjects Gender (M/F) Age MMSE

AD 175 93/82 75.62 ± 7.38 23.01 ± 2.67
HC 214 115/99 77.09 ± 5.21 29.16 ± 0.98
MCI 260 183/77 75.90 ± 7.37 26.14 ± 3.64

2.1.2. Data Pre-Processing

There is usually much noise in the raw data, so we need to preprocess the MRI data first. In this
paper, we use the voxel-based morphological preprocessing method. Specifically, we use the CAT12

http://adni.loni.usc.edu/
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toolbox which is an extension to SPM12 [44] to provide computational anatomy. First, we register the
MRI images to the standard space through DARTEL (Diffeomorphic Anatomical Registration Through
Exponentiated Liealgebra) algorithm [45]. Second, we use the maximum a posteriori and partial
volume estimation segmentation techniques [46] to segment the image into gray matter, white matter,
and cerebrospinal fluid. Then, the Jacobian determinant is used to modulate the gray matter image
nonlinearly. Finally, the gray matter image is spatially smoothed with the 8mm Gaussian smoothing
kernel. The size of each gray matter image we get in the standard space is 121× 145× 121, then we
use scikit-image package to resample it to a size of 96× 96× 96. It is noted that gray matter loss in
the medial temporal lobe is characteristic of MCI [47], so we use gray matter images to analyze in this
paper. The MRI images before and after preprocessing are shown in Figure 2.

Figure 2. Images before and after preprocessing: The first row shows the original images, and the
second row shows the final gray matter images.

2.2. DRN Model Based on a 3D View

For the whole brain three-dimensional view, we take the preprocessed whole gray matter image
directly as input. In order to learn the 3D global information more comprehensively, we use 3D
convolutional neural networks to perform global feature extraction related to AD. The 3D gray matter
image contains the entire brain, which is very informative. Therefore, how to comprehensively learn
useful features is a challenge. Convolutional neural networks have developed rapidly. Since the birth
of AlexNet in 2012 [48], the depth of subsequent advanced convolutional neural network models has
grown deeper. But as the depth increases, the problem of gradient disappearance during training
becomes more serious. In order to avoid the problem of gradient disappearance caused by the network
being too deep, the residual network (ResNet) [49] introduces an identity shortcut connection and
skips one or more layers directly. Assuming that the layer l − 1 is connected to the layer l, the output
xl of the layer l is:

xl = Hl(xl−1) + xl−1 (1)

H(·) represents a non-linear transformation function, including batch normalization (BN), rectified
linear unit (ReLu), and convolution operation. ResNet reduces the difficulty of training deep networks
by adding shortcut connections. For AD-related information, ResNet uses linear activation to obtain
identity mapping. In contrast, ResNet uses non-linear activation for redundant information not related
to AD. Since the non-linear activation is for redundant information, less useful information is lost.
ResNet effectively solves the problem of network degradation caused by too deep depth, so that the
model can learn more powerful advanced features.
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In this paper, ResNet-18 is used as the basic model to train gray matter images from 3D view to
obtain disease characteristics related to AD. However, the traditional ResNet model only uses 3× 3× 3
convolution kernels, and the receptive field of a single convolution kernel can only reach 27. In order
to enable the convolution kernel to obtain a larger receptive field, and to allow the model to learn
3D features more comprehensively, we add the dilated convolution [50] on the basis of the ResNet
network. Assuming that the size of the convolution kernel is k and the dilation rate is r, the receptive
field (RF) of the dilated convolution is:

RF = [k + (k− 1)(r− 1)]3, r > 1 (2)

When r = 1, it is ordinary convolution, and the receptive field is k3. When r = 2, for the same 3× 3
convolution, the dilated convolution not only increases the receptive field (from 9 to 25), but also does
not increase the parameters like ordinary convolution (the weight in the dilated part is 0). Although
dilated convolutions increase the receptive field, the mesh effect is prone to occur if misused. Therefore,
we use an efficient space pyramid (ESP) [51] module to avoid the mesh effect. Specifically, a 1× 1× 1
convolution is performed on the input to obtain a feature map of n× n× n× f , and then four parallel
dilated convolutions are used. Finally, the hierarchical features are merged to obtain the same size
feature map. The structure of the ESP module is shown in Figure 3.

Figure 3. ESP module.

In the figure above, the r1, r2, r3, r4 are different dilation rates. It can be seen that the residual
operation is also used in the ESP module, and the information of different receptive fields is
concatenated before the residual operation to ensure the output quality. We replace one layer in
the original ResNet-18 network with an ESP module to learn the 3D global features of the brain
image more effectively. The overall structure of the final three-dimensional DRN model is shown in
Figure 1. The pre-processed whole-brain gray matter image contains much information. In order to
effectively learn useful information, we choose 3D deep convolutional neural network for training.
We use ResNet-18 with shortcut connections as our base model. At the same time, we also use dilated
convolution to expand the receptive field in order to learn AD-related features more comprehensively.

2.3. DAIN Model Based on 2D View

For the 2D local view, we select some slices from the preprocessed gray matter image for training.
We can select a large number of 2D slices from the 3D gray matter image. How to choose the best
training data is very important for the success of the entire method. In this paper, we select 2D images
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based on image entropy [52] and extract the most informative slices to train the network. Generally,
for a set of M gray values with probabilities p1, p2, . . . , pM, the entropy can be calculated as follows:

H = −
M

∑
i=1

pilogpi (3)

The higher the entropy, the more information the image contains. The subsequent problem is
that MRI images generally contain much noise. Blindly selecting the image with a large amount
of information may lead to the selection of some useless images with much noise. The images we
study are preprocessed by CAT12. Compared with the original MRI image, the image we use is
standardized and smoothed, and the skull of the image is removed. Therefore, we sort the slices in
descending order of entropy and select the first 32 images for training to provide robustness according
to previous research [53].

After obtaining the selected 2D slices from the 3D MR image, we use them as the inputs of 2D
model to learn AD features. Assume that the image set of each subject is xi(xi = {xi1, xi2, · · · , xim}),
the input of the two-dimensional model can be expressed as:

X = x1, x2, · · · , xn (4)

Thirty-two slices are selected from each subject through the axial brain image. In order to enhance
the representation ability of the model, we use the Inception structure [54] to obtain information on
different scales and fuse the features learned by convolution kernels of different sizes. In the 2D model,
we pay more attention to the local information as the selected pictures are comparatively informative.
How to find the local information that can distinguish MCI from other categories is the focus of our
research. The attentional mechanism solves this problem by enabling the model to think globally
and focus on more critical local information. We use a dual attention network (DAN) proposed by
Fu et al. [55] that combines channel attention and spatial attention. The spatial attention module (PAM)
in DAN first performs three 1× 1 convolutions on the feature map A to obtain three feature maps B, C,
and D of the same size (h× w× c). Moreover, these three feature maps are converted to the size of
n× c (n = h× w). Then the spatial attention map is calculated from B and C. We multiply the spatial
attention map by D, and then multiply the result by the scale coefficient α (initialized to 0). Finally, the
output of PAM is obtained by adding the original feature map A:

Attentionpam = α(so f tmax(C · BT))T · D + A (5)

The channel attention module (CAM) in DAN first converts the feature map A into Ar,
and multiplies Ar and Ar

T to obtain the channel attention map with the size of c× c. We multiply the
channel attention map by Ar and then multiply it by the scale coefficient β (initialized to 0). The result
of the product is converted to the size of h× w× c. Finally, the output of CAM is obtained by adding
to the original feature map A:

Attentioncam = β(Ar · so f tmax(Ar
T · Ar)) + A (6)

Finally, the results of the two attention modules are added together to form the output of DAN:

Attentionout = Attentionpam + Attentioncam (7)

We combine DAN with Inception to form the final two-dimensional model. The structure of our
proposed DAIN model is shown in Figure 1. The proposed DAIN model first obtains multi-scale AD
information through the Inception structure. Then, the dual attention mechanism is used to obtain
more significant local information. Finally, the important local information is combined with the fused
multi-scale information to obtain the AD features that represent the 2D view.
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2.4. Combination of 2D and 3D Views

Before constructing the multi-view model, we first integrate the output of the DAIN Model.
Because in the previous DAIN model, we selected 32 slices for each subject and treated each slice as
one subject. In this study, we use the above DAIN model as the pre-trained model of the final 2D model.
In the final 2D model, the features extracted from each of the 32 images are concatenated together for
classification. The final full connection is the MCI feature representing the local information extracted
from the 2D slices.

After integrating the 2D features, we combine the features extracted from the 2D model with the
features extracted from the 3D model. Specifically, 32 full connections of size 32 are obtained from
every MRI image after the DAIN model. Then, through the final 2D model, the 32 full connections of
the same subject are concatenated together to obtain the feature of size 32× 32. After this layer of full
connection, we add another full connection of size 32. That is, the information learned by the same
person from the DAIN model is nonlinearly integrated, and then the integrated features are taken as
the final two-dimensional AD features. The 2D model and the 3D model are trained separately. Finally,
the full connections of the 2D model and the full connections of the 3D model are concatenated together
for training. The method of combining 2D with 3D models is our proposed MVMM framework. Our
MVMM framework can learn both global information of 3D images and local information of 2D slices.

3. Results

3.1. Experimental Setup

We implement the MVMM method through the Tensorflow and compute the model on the
NVIDIA TITAN V GPU. The loss function we adopt is binary cross-entropy. We use He normal
distribution to initialize the weights of the model. The learning rate of the 2D model is 0.001, while that
of the 3D model and MVMM is 0.0001. The evaluation of the proposed method in this paper is based
on the following two tasks:

(1) T1: MCI/HC classification.
(2) T2: MCI/AD classification.

To evaluate the classification performance, we adopt the 10-fold cross-validation strategy 10 times.
We randomly select ten percent of the images from each class as the test set, and the remaining images
are further randomly divided into 10 subsets for each category. In the process of cross-validation,
each subset is taken as the validation set in turn, and the rest are used as the training set. This process
is repeated ten times to get the final result. In this paper, the accuracy (ACC), sensitivity (SEN) and
specificity (SPE) are used for evaluation. The three classification performance measures are calculated
as follows:

ACC =
TP + TN

TP + TN + FP + FN
× 100% (8)

SEN =
TP

TP + FN
× 100% (9)

SPE =
TN

TN + FP
× 100% (10)

Among them, TP represents true positive, FP represents false positive and FN represents false
negative. In addition, we use the area under the receiver operating characteristic curve (AUC) to
measure classification performance. The value with the best result for each measure is shown in bold
in all tables of experiments.
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3.2. Experimental Results

In this section, we present the respective results of the single-view and multi-view models, For the
T1 task, it can be observed from Table 2 that the classification performance of MVMM model based
on multiple views (87.50% for ACC) is better than the DRN model based on 3D view (81.67% for
ACC) and the DAIN model based on 2D view (83.96% for ACC). For the T2 task, it can be observed
from Table 3 that although the sensitivity of the MVMM is lower than that of the DAIN model, the
ACC, SPE and AUC of the MVMM model (83.18%, 70.56% and 0.8124) are higher than that of DRN
model and DAIN model. Therefore, the performance of our MVMM model is the best. In addition,
we perform Spearman’s Rank Order Correlation analysis to examine the relationship between the
misclassification rate of MVMM model and the MMSE score of subject. As shown in Figure 4, the
probability of MCI being misclassified as AD is negatively correlated with the MMSE score (r = −0.418,
p = 0.033).

Table 2. Classification performance of different views for T1 task.

Model ACC (%) SEN (%) SPE (%) AUC

DRN 81.67 ± 2.76 84.23 ± 3.53 78.64 ± 5.17 0.8143 ± 0.0311
DAIN 83.96 ± 2.32 87.31 ± 4.22 80.00 ± 3.63 0.8366 ± 0.0320

MVMM 87.50 ± 2.08 89.62 ± 3.86 84.99 ± 3.39 0.8731 ± 0.0219

Table 3. Classification performance of different views for T2 task.

Model ACC (%) SEN (%) SPE (%) AUC

DRN 80.46 ± 3.08 89.62 ± 4.43 67.22 ± 6.23 0.7842 ± 0.0341
DAIN 80.45 ± 2.91 92.31 ± 4.21 63.34 ± 7.11 0.7782 ± 0.0326

MVMM 83.18 ± 2.08 91.92 ± 4.36 70.56 ± 5.04 0.8124 ± 0.0248

Figure 4. Relationship between the score of MCI being misclassified as AD and MMSE score.

4. Discussion

In order to effectively verify the rationality of the model proposed in this article, we discuss it
from the following six aspects: (1) selection of 3D models; (2) selection of 2D models; (3) selection of
the number of 2D slices; (4) selection of combination methods; (5) performance on another dataset;
(6) comparison with the whole-brain image without segmentation; (7) comparisons with related studies.
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4.1. Selection of 3D Models

In this section, we compare the DRN 3D model used in this article with the VGGNet (VN) and
DenseNet (DN) models. As shown in Tables 4 and 5, VN and DN model perform poorly in both tasks
(T1: 76.04% and 78.33% for ACC; T2: 75.91% and 76.59% for ACC). This is because the 3D MRI images
contain a large amount of information, and direct use of the existing network structure cannot get
a good effect. The basic model we selected is the ND-DRN model that does not use dilated convolution,
which can reduce the redundancy of data by continuously adding shortcut connections in the learning
process. Therefore, the ACC obtained by ND-DRN is better than the previous two models (T1: 79.38%;
T2: 76.82%). Moreover, for more comprehensive learning, we add dilated convolution to expand the
receptive field in the DRN model. Compared with the ND-DRN model, the final DRN model improves
the accuracy rate by about 2% to 4%. The ACC, SPE and AUC of our DRN model in T1 and T2 tasks
are the highest, while SEN is the second highest. Therefore, from a comprehensive perspective, our
DRN model has the best classification performance.

Table 4. Classification performance of different 3D models for T1 task.

Model ACC (%) SEN (%) SPE (%) AUC

VN 76.04 ± 4.08 84.62 ± 5.31 65.90 ± 7.98 0.7526 ± 0.0454
DN 78.33 ± 3.75 79.23 ± 4.45 77.27 ± 5.75 0.7825 ± 0.0381

ND-DRN 79.38 ± 1.96 81.54 ± 4.69 76.82 ± 7.14 0.7918 ± 0.0270
DRN 81.67 ± 2.76 84.23 ± 3.53 78.64 ± 5.17 0.8143 ± 0.0311

Table 5. Classification performance of different 3D models for T2 task.

Model ACC (%) SEN (%) SPE (%) AUC

VN 75.91 ± 3.08 86.54 ± 3.71 60.56 ± 5.67 0.7355 ± 0.0368
DN 76.59 ± 3.05 91.92 ± 3.97 54.44 ± 7.33 0.7318 ± 0.0423

ND-DRN 76.82 ± 2.98 89.23 ± 3.04 58.89 ± 5.96 0.7406 ± 0.0309
DRN 80.46 ± 3.08 89.62 ± 4.43 67.22 ± 6.23 0.7842 ± 0.0341

4.2. Selection of 2D Models

As in Section 4.1, we compare the 2D model used in this article with the classic convolutional
network models (AlexNet (AN) and MobileNet (MN)). It can be seen from Tables 6 and 7 that the AUC
of the AN and MN models is lower than the NA-DAIN model which does not use attention mechanism.
Especially for the T2 task, the SPE of these two models are lower than 50%, which means that they
cannot learn the deep local features of the 2D slices. The dual attention mechanism combines spatial
and channel attention from a non-local perspective and makes full use of advanced brain features.
In this way, more important information can be selected from the 2D data to diagnose MCI better.
After adding the attention mechanism, the SPE of the DAIN model reaches 63.34%. At the same time,
the ACC and AUC of the DAIN model are also the highest among these models (80.45% and 77.82%).

Table 6. Classification performance of different 2D models for T1 task.

Model ACC (%) SEN (%) SPE (%) AUC

AN 74.37 ± 2.47 80.00 ± 6.84 67.73 ± 7.86 0.7388 ± 0.0243
MN 75.42 ± 4.54 77.69 ± 4.69 72.73 ± 7.34 0.7521 ± 0.0505

NA-DAIN 77.92 ± 3.39 80.00 ± 3.38 75.46 ± 4.09 0.7773 ± 0.0402
DAIN 83.96 ± 2.32 87.31 ± 4.22 80.00 ± 3.63 0.8366 ± 0.0320
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Table 7. Classification performance of different 2D models for T2 task.

Model ACC (%) SEN (%) SPE (%) AUC

AN 72.50 ± 2.95 90.38 ± 6.73 46.67 ± 9.15 0.6833 ± 0.0435
MN 69.99 ± 2.22 88.46 ± 5.95 43.33 ± 8.53 0.6593 ± 0.0262

NA-DAIN 75.46 ± 3.49 96.92 ± 4.14 44.44 ± 9.62 0.7068 ± 0.0422
DAIN 80.45 ± 2.91 92.31 ± 4.21 63.34 ± 7.11 0.7782 ± 0.0326

4.3. Selection of the Number of 2D Slices

In the two-dimensional model, we selecte 32 slices with the largest entropy from each gray matter
image. In order to verify the effect of the number of slices on the model performance, we selecte
8, 16, 24, 32, 40, 48, and 56 slices from each gray matter image for comparison. It can be seen from
Tables 8 and 9 that the ACC of the model with eight slices is the worst (T1: 73.13%; T2: 70.68%), which
means that too few 2D images cannot represent the brain information of the subject. When the number
of slices gradually increases to 32, the ACC improves continuously (T1: from 73.13% to 83.96%; T2:
from 70.68% to 80.45%). This indicates that the higher the number of 2D slices, the more disease-related
information that can be learned. Nevertheless, it is worth noting that when the number of 2D slices
exceeds 32, the ACC no longer improves. It can be inferred that the 32 slices are sufficient to represent
the subject’s local brain information, and increasing the amount of information will lead to learning
local information that is not related to the disease, resulting in a decrease in accuracy.

Table 8. Classification performance of 2D models with different numbers of 2D slices for T1 task.

Number ACC (%) SEN (%) SPE (%) AUC

56 80.79 ± 5.56 86.16 ± 5.75 72.30 ± 3.72 0.7921 ± 0.0485
48 81.88 ± 2.29 84.62 ± 7.49 78.64 ± 8.83 0.8458 ± 0.0290
40 80.00 ± 4.28 83.85 ± 5.65 75.46 ± 5.20 0.7965 ± 0.0459
32 83.96 ± 2.32 87.31 ± 4.22 80.00 ± 3.63 0.8366 ± 0.0320
24 79.17 ± 5.51 77.69 ± 7.25 80.91 ± 7.49 0.7930 ± 0.0562
16 75.83 ± 3.97 80.77 ± 8.60 70.00 ± 6.18 0.7539 ± 0.0365
8 73.13 ± 4.41 78.08 ± 7.70 67.27 ± 8.57 0.7267 ± 0.0444

Table 9. Classification performance of 2D models with different numbers of 2D slices for T2 task.

Number ACC (%) SEN (%) SPE (%) AUC

56 73.64 ± 3.08 91.54 ± 6.61 47.78 ± 6.18 0.6966 ± 0.0281
48 74.32 ± 2.69 91.15 ± 5.96 50.00 ± 8.95 0.7058 ± 0.0312
40 75.78 ± 4.72 92.16 ± 4.50 52.00 ± 9.67 0.7208 ± 0.0525
32 80.45 ± 2.91 92.31 ± 4.21 63.34 ± 7.11 0.7782 ± 0.0326
24 74.09 ± 3.96 80.38 ± 5.66 52.78 ± 8.32 0.7083 ± 0.0460
16 72.27 ± 3.34 85.39 ± 5.09 53.33 ± 9.02 0.6936 ± 0.0373
8 70.68 ± 3.43 86.15 ± 5.57 48.33 ± 5.58 0.6724 ± 0.0440

4.4. Selection of Combination Methods

After obtaining 2D local features and 3D global features, we combine DRN and DAIN for training.
Tables 10 and 11 demonstrate that the model has obtained good results, no matter if it is a combination
of sum or concatenation. The concatenation fusion method we adopt combines 2D and 3D information
from different spaces to achieve higher performance (accuracy of 87.50% for T1 and 83.18% for T2).

Table 10. Classification performance of different combination methods for T1 task.

Model ACC (%) SEN (%) SPE (%) AUC

SUM 86.46 ± 3.12 85.77 ± 4.71 87.27 ± 3.96 0.8652 ± 0.0299
CONCAT 87.50 ± 2.08 89.62 ± 3.86 84.99 ± 3.39 0.8731 ± 0.0219
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Table 11. Classification performance of different combination methods for T2 task.

Model ACC (%) SEN (%) SPE (%) AUC

SUM 82.05 ± 2.95 93.08 ± 5.10 66.11 ± 7.03 0.7959 ± 0.0333
CONCAT 83.18 ± 2.08 91.92 ± 4.36 70.56 ± 5.04 0.8124 ± 0.0248

4.5. Performance on Another Dataset

In this section, we validate the generality of our proposed MVMM model on the OASIS (Open
Access Series of Imaging Studies) dataset [56]. This dataset contains 3 or 4 individual MRI scans of
416 subjects aged 18 to 96. We use baseline MRI images of 198 subjects aged 60 or older, including 100
AD patients and 98 healthy controls. As shown in Table 12, we can also achieve good performance
using the same preprocessing method and MVMM model on OASIS dataset. In other words, the
MVMM model we proposed in this paper has potential to be used for wider research.

Table 12. Classification performance of MVMM on OASIS dataset.

Dataset ACC (%) SEN (%) SPE (%) AUC

OASIS 85.65 ± 2.67 85.90 ± 3.83 85.00 ± 3.70 0.8540 ± 0.0291

4.6. Comparison with the Whole-Brain Image without Segmentation

In this paper, the input of our model is the gray matter image after segmentation. In this section,
we compare the classification performance using the whole-brain image (without segmentation) and
using the gray matter image. It can be seen from Tables 13 and 14 that all classification measures of the
model using whole-brain images are lower than the model using gray matter images. This result is
because whole-brain images contain more information than gray matter images, and we may need
more data to learn the features associated with AD.

Table 13. Classification performance of models with different inputs for T1 task.

Input ACC (%) SEN (%) SPE (%) AUC

whole-brain 83.33 ± 2.46 84.23 ± 5.55 82.27 ± 4.57 0.8325 ± 0.0252
GM 87.50 ± 2.08 89.62 ± 3.86 84.99 ± 3.39 0.8731 ± 0.0219

Table 14. Classification performance of models with different inputs for T2 task.

Input ACC (%) SEN (%) SPE (%) AUC

whole-brain 80.91 ± 2.72 90.82 ± 4.11 66.72 ± 5.71 0.7872 ± 0.0341
GM 83.18 ± 2.08 91.92 ± 4.36 70.56 ± 5.04 0.8124 ± 0.0248

4.7. Comparisons with Related Studies

In this section, we perform experiments to compare the proposed method with other methods.
The experimental results are reported in Tables 15 and 16. Islam et al. [57] trained three 3D slices of each
participant from the 2D view through ensemble learning. H. Wang et al. and Yuan et al. [58,59] studied
the deep features of MRI from a 3D view through the novel convolutional neural network. Although
they improved the MRI classification from 2D or 3D views, the verification results using the data in this
paper are not as good as our proposed MVMM model. Our proposed MVMM model takes into account
the extraction of 2D local information as well as 3D global information, which is more comprehensive
than information extracted from a single view. Furthermore, we perform the Student’s t test on ACC
of different methods to compare the performance. As shown in Tables 15 and 16, our MVMM method
is superior to other methods for all classification tasks at P < 0.05.
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Table 15. Classification performance of different methods for T1 task.

Model ACC (%) SEN (%) SPE (%) AUC P

Islam et al. 80.21 ± 3.26 88.85 ± 3.06 70.00 ± 4.57 0.7943 ± 0.0354 <0.001
H. Wang et al. 83.56 ± 3.38 81.92 ± 6.87 84.13 ± 4.73 0.8304 ± 0.0424 =0.008

Yuan et al. 80.21 ± 2.83 82.31 ± 4.61 77.73 ± 4.49 0.8002 ± 0.0314 <0.001
proposed 87.50 ± 2.08 89.62 ± 3.86 84.99 ± 3.39 0.8731 ± 0.0219

Table 16. Classification performance of different methods for T2 task.

Model ACC (%) SEN (%) SPE (%) AUC P

Islam et al. 77.73 ± 3.34 91.16 ± 3.21 58.33 ± 6.48 0.7478 ± 0.0445 <0.001
H. Wang et al. 80.68 ± 1.83 91.92 ± 4.69 64.45 ± 7.53 0.7818 ± 0.0232 =0.014

Yuan et al. 79.32 ± 2.14 89.62 ± 6.89 64.44 ± 6.19 0.7703 ± 0.0358 <0.001
proposed 83.18 ± 2.08 91.92 ± 4.36 70.56 ± 5.04 0.8124 ± 0.0248

5. Conclusions

In summary, we develop a multi-view based multi-model learning framework for the early
diagnosis of Alzheimer’s disease. First of all, we comprehensively learn global information from
the 3D view through residual networks and dilated convolutions. Then we perform the 2D view,
which selects the most representative multiple slices through information entropy. Furthermore,
we use the Inception network and dual attention mechanism to learn more crucial local information.
Finally, we combine the models from 2D and 3D views to train for classification. In this paper, the
deep features of MCI are studied both locally and comprehensively by MVMM learning framework.
The experimental results show that the proposed method is effective and is expected to be used in
the diagnosis of MCI. However, the training of different models in this paper is conducted in parallel,
and the concatenation of features is performed at the end. In future research, more complicated
combining methods can be considered to make full use of data for MCI diagnosis, such as combining
texture features.
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