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Introduction: Green-based materials have been increasingly studied to circumvent off- 
target cytotoxicity and other side-effects from conventional chemotherapy.
Materials and Methods: Here, cellulose fibers (CF) were isolated from rice straw (RS) 
waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug 
carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 
5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were 
assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal 
(CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 
460) cell lines after 72-hours of treatment.
Results:  XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with 
high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost 
fourfold increase in surface area and zeta potential of up to −33.61 mV. SEM images 
illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated 
cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug 
carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading 
encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 
1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In 
cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the 
both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/ 
mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only 
a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of 
CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal 
cells, respectively.
Discussion: This study, therefore, showed the strong potential anticancer activity of the 
novel CF/5-FU formulations, warranting their further investigation.
Keywords: rice straw, cellulose fibers, 5-fluorouracil, drug delivery, cytotoxicity assays, 
cancer treatment

Introduction
Over the years, researchers have been continuously interested in using agro-waste 
for producing eco-friendly materials to decrease environmental issues, including 
toxicity and a reduction in landfill space.1,2 For example, burning rice straw (RS), 
which represents the second highest agro-waste, causes health risks from air pollu-
tion and effects organic matter with large nutrient losses.3 It should be noted that 
similar to other plant-based resources, RS contains a high ratio of cellulose fibers 
(CF) (C6H10O5).4 CF as one of the unique and abundant organic polymers on earth, 
is becoming more and more popular for different applications. It contains a high 
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number of glucose, which is linked by β-1,4-glycosidic in 
a linear chain format. Therefore, it possesses remarkable 
structural advantages, including high porosity, pore inter-
connectivity, large surface-to-volume ratios, low density, 
and hydrophilicity with good physicochemical properties.5

Among the various methods to isolate CF, alkaline 
treatments are known as a facile and economical approach 
to remove lipids, lignin, hemicellulose, and pectin from 
plant-based materials. This treatment removes an amor-
phous region, while the crystal region is protected to 
obtain CF with high crystallinity and purity. Therefore, 
the crystallization of CF occurs at the external layer by 
the establishment of a glucan chain through the van der 
Waals and H-bonding forces.6 CF is also one of the bio- 
resource polysaccharides, which has been evaluated as 
a 5-FU carrier due to its ability to target cancer cells 
through the enhanced permeability and retention effect 
(EPR).7 Compared to commercial CF, treated CF can 
show higher thermal stability,8 while its purity and crystal-
linity may be optimized by removing a sufficient amount 
of lignin and hemicellulose, and also changing treatment 
duration and concentration of an alkaline solution.9 

Therefore, alkali-treated CF can provide various advan-
tages, such as easily reducing fiber size to the micro or 
nanoscale as well as gaining adjustability and reproduci-
bility through the modification of the alkaline solution and 
treatment time.10 Further, the alkali-treated CF can be 
dispersed well in water to obtain a uniform biopolymer 
for biomedical applications.10 However, it was stated that 
some properties (such as tensile strength) were similar 
between the commercial and alkali-treated CF.9 Above 
all, as an environmental-friendly technique, using bio- 
waste materials (such as RS) can be beneficial for produ-
cing CF with better physicochemical properties than com-
mercial CF.

Cancer statistics from over 185 countries have demon-
strated 18.1 million new cancer cases from 36 different 
types of cancers in just 2018 alone.11 Colorectal cancer 
(CRC) is one of the most diagnosed malignant diseases 
globally leading to the death of more than 600,000 patients 
every year.12 CRC is attributed to colon cancer, rectal 
cancer, and bowel cancer and is mostly developed inside 
polyps (adenoma) and formed within the bowel wall.13 

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr 
virus (EBV)-related head and neck cancer.14 NPC has 
been mostly reported in South Asia, North Africa, 
Southern China, and in countries of the Arctic.15

Different sorts of cancer and solid tumor formation are 
typically due to the disordered function inside cells as their 
chromosomes can be lost or not duplicated in such dys-
functional rearrangements.16 Conventional cancer treat-
ments (such as chemotherapy, radiation, and surgery) 
present significant drawbacks to human health.17 

Compared with such pure conventional anticancer drugs, 
nanosized conjugates may provide for better anticancer 
properties and safer drug treatments through prolonged 
circulation and targeted treatment.18 Therefore, researchers 
have designed new-targeted drug delivery systems with 
plant-based medicines19 and nanomedicines of low price, 
high efficiency, and safety for decreasing the side-effects 
from conventional cancer treatments. Such nano-drug 
delivery systems may act as suitable platforms to develop 
efficient drug delivery processes.

In this manner, different polysaccharides (including 
chitin,20 cellulose,21 and their by-products) have been 
investigated as novel polymer–anticancer drug conjugates, 
owing to the enzymatic degradation of the most polysac-
charides through colonic microbial agents.22 Further, poly-
saccharides can be used as polymeric nanoparticles (NPs) 
derived from nature with sizes between 10 nm and 1 μm.23 

Polymeric NPs have recently become popular for research-
ers in drug delivery systems, due to their optimal physi-
cochemical and biological features, and the ability for 
delivering drugs to different organs.23

Based on their preparation technique used, polymeric 
NPs may be classified into two categories: i) nanospheres 
that contain a solid support system or as a platform to be 
loaded with a dispersed drug or ii) nanocapsules that 
contain embedded drug cavities as the polymeric sub-
stance covers the cavity.24 Drug delivery systems can 
influence the microenvironment of tumors, which is 
leaky with a higher sensitivity to macromolecules com-
pared with normal cells.25 Further, the lymphatic system of 
tumors is mostly inefficient and even blocked, causing 
preservation needs in the tumor interstitial fluid.25 

Polymeric NPs can, thus, accumulate 100 times greater 
in cancer cells compared to normal cells.25

Drug accumulation in the interstitial fluid phase of 
tumors occurs due to NP extravasation from the vascula-
ture of tumors, leading to the EPR effect.26 The amount of 
NP extravasation relies on the dimension of transendothe-
lial and channels via inter-endothelial cell gaps with the 
range of 400–600 nm.27 It has been reported that NPs 
below 200 nm could be appropriately extravasated from 
the tumor microvasculature.28 Polymeric NPs (such as 
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cellulose and chitosan) have been commonly applied in 
topical drug delivery systems for controlled dosing and 
targeted drug delivery. For instance, as a platform of 
chitosan, nanocellulose and sodium alginate could suc-
cessfully control the release behavior of Levamisole 
hydrochloride and 5-fluorouracil (5-FU) drugs to provide 
a high antiproliferation behavior against HT29 colon can-
cer cells with low side-effects.29

Such NPs can easily encapsulate different drugs 
(including Bevacizumab, Camptosar, Capecitabine, 
Cetuximab, and 5-FU) approved for the chemotherapeu-
tic treatment of different cancers (such as CRC, breast 
cancer, and esophageal cancer)30 to improve cancer 
treatment. Further, for over six decades, the 5-FU- 
based chemotherapy treatment has been widely applied 
for both adjuvant and advanced therapy of different 
cancers, including CRC and NPC.15,31 This therapy 
can destroy the function of the thymidylate synthetase 
protein enzyme in CRC treatment.31 5-FU may also 
inhibit RNA and DNA damage causing cancer cell 
inhabitation.32 It has been shown to extend cancer cell 
survival for more than 6 months under the best condi-
tions of metastatic cancer.33

However, side-effects from 5-FU-based chemotherapy 
may cause different issues, including diarrhea, stomatitis, 
and gastrointestinal mucosal injury.34 The toxicity of 5-FU 
is potentially through its long chemotherapy period and 
nonspecific protective mechanisms over normal healthy 
cells.35 These disadvantages of 5-FU in cancer treatment 
can be decreased through minimizing drug dosage used in 
a targeted drug delivery platform.36 5-FU, therefore, has 
been used in different platforms or solid supports, such as 
chitosan17 and cellulose.37 In a study, acid hydrolyzed crys-
tal nanocellulose was obtained successfully from rubber 
wood for hesperidin (hydrophobic drug) delivery; however, 
cytotoxicity assays were not considered.37 In a recent sur-
vey, a lignosulfonate (LS)/mercerized cotton composite was 
fabricated and caused an acceptable elimination of human 
CRC cells HCT116, human breast cancer cells MCF-7, and 
human liver cancer cells HepG2. However, cytotoxicity 
assays on the fabricated material against normal healthy 
cells were not considered.38 A novel cellulose-based 5-FU 
was synthesized and analyzed for the elimination of human 
breast cancer (MCF-7) cells, although it was not analyzed 
for normal cells.39

Albeit, there has been no report for loading antic-
ancer drug 5-FU in CF extracted from RS for nasophar-
yngeal and colon cancer treatments, for which this study 

conducted. Specifically, in this work, CF was obtained 
by alkaline delignification and bleaching of RS. Here, 
CF demonstrated significant promise as a 5-FU carrier 
for CRC and NPC treatment. Successful CF isolation 
from RS was provided through X-ray powder diffraction 
(XRD), Fourier-transform infrared spectroscopy (FTIR), 
scanning electron microscopy (SEM) and Brunauer– 
Emmett–Teller (BET) techniques. 5-FU conjugation 
into CF was accomplished in which the drug absorbance 
and release were, respectively, evaluated through ultra-
violet–visible (UV) spectroscopy. The drug-loaded CF 
was analyzed by a zeta potential analyzer, FTIR, and 
thermogravimetric analysis (TGA). MTS in vitro cyto-
toxicity assays evaluated the cytotoxicity of CF and the 
anticancer potential of 5-FU as well as the drug-loaded 
CF against CCD112 normal colorectal and HCT116 col-
orectal cancer cells as well as NP 460 normal nasophar-
yngeal and HONE-1 nasopharyngeal cancer cell lines at 
eight different concentrations.

Materials and Methods
Materials
RS was obtained from the Malaysian Agricultural 
Research and Development Institute (MARDI). All che-
micals were of analytical grade as purchased from 
Sigma-Aldrich (St Louis, MO, USA) without further 
purification. For the bleaching process and CF isolation 
from RS, potassium hydroxide (KOH, 85%, EM 
Science), sodium chlorite (NaClO2, 80%, Fluka), and 
acetic acid glacial (CH3COOH) were used, respectively. 
The aqueous solutions were freshly prepared and dis-
tilled water with a specific conductivity of less than 1µ 
ohm/cm was used. All glassware used in this work were 
cleaned with HNO3/HCl (3:1, v/v) and double deionized 
water followed by a drying process. 5-fluorouracil, 99%, 
5-Fluoro-2,4(1H,3H)-pyrimidinedione (ACD CODE 
MFC D00006018) with a molecular weight of 130.08 
g/mol was purchased from ACROS ORGANICS, part of 
Thermo Fisher Scientific, New Jersey, USA.

Cellulose Fiber Isolation from Rice Straw
Similar to different bio-fiber resources, CF isolation 
from RS was carried out through removing and bleach-
ing the unwanted components, such as lipid and lignin. 
RS was washed several times with tap water to remove 
the dirt and dust, followed by seven days of air-drying 
at ambient temperatures. Dried RS was then ground and 
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milled through a 55 µ-mesh screen. To obtain dewaxed 
rice straw (DRS) with free-lipids, a 30 g RS powder was 
initially dewaxed to dissolve the oils, wax, lipids, and 
pigments in a 2:1, v/v toluene/ethanol (450 mL) aqueous 
solution in a soxhlet instrument for 12 hours at 70°C 
using a silicon oil bath. The pasty dark brown color 
sample was sonicated by ultrasonic frequency at 37 
kHz (Elmasonic S) and then washed with distilled 
water three times with the extra liquid decanted using 
a lab suction filtration unit equipped with Whatman 
filter-paper followed by a drying process in a 60°C 
oven for 24 hours.

To remove lignin, DRS powder was mixed with a -
1000 mL aqueous solution of sodium chloride (1.4%) by 
adding drops of acetic acid (which turned the pH to 
3.0–4.0) at 70°C with gentle magnetic stirring for 5 
hours, followed by washing and decanting of the extra 
liquid several times to obtain a light yellowish solid sam-
ple. After that, the sample was leached by applying 
a 600 mL aqueous solution of KOH (5%) at the ambient 
temperature for 12 hours, followed by pouring (10 fold) 
ice cubes immediately into the solution. The aqueous 
sample was centrifuged at 12,000 rpm and dried by 
a freeze-dryer apparatus (FreeZone 1.0 L Benchtop 

Freeze Dry System) to finally obtain a white pulpy fiber 
sample, which was named CF. The schematic process of 
this study is shown in Figure 1.

Characterization of Cellulose Fiber 
Isolation from Rice Straw
XRD (Philips, X’pert, Cu Ka) at 2θ over the range of 10–90° 
was used to evaluate the crystalline phases of the samples. 
The samples were compressed between two smooth glass 
films. XRD was performed under ambient conditions upon 
dispersion of 2 theta angles of 5°–40° with a step size of 
0.02° and a scanning rate of 2 s/step utilizing Ni-filtered Cu 
K radiation (=1.5406 Angstroms), an operating voltage of 45 
kV, and a filament current of 40 mA. Scanning electron 
microscopy (SEM) images were taken with an Electro-Scan 
SEM instrument (model JSM 7600 F SEM) attached to an 
energy dispersion X-ray spectroscopy spectrometer (EDX) to 
study the elemental compositions. Low-acceleration voltage 
(10 kV) was used to prevent the degradation of CF and DRS. 
The pressure in the chamber was 5 torr, the condenser lens 
setting was 40%, and magnification was at 500–1000 times 
the original. For BET analysis, the samples were first 
degassed at 35°C under vacuum for 24 hours and then 
through a surface area and porosity analyzer (ASAP 2020, 

Figure 1 A schematic process for cellulose fiber (CF) isolation from rice straw (RS), also showing that CF served as a drug carrier for 5-fluorouracil (5-FU), which was 
assessed using MTS in vitro cytotoxicity assays with human colorectal and nasopharyngeal cell lines.
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Micromeritics, USA), the nitrogen adsorption–desorption 
isotherms of the degassed sample were evaluated at 77 
K. The BET calculation was conducted as a relative pressure 
range from 0.06 to 0.20. The Barrett–Joyner–Halenda (BJH) 
method, with the volume absorbed under a relative pressure 
(P/Po = 0.98), was employed to measure pore size distribu-
tion as total pore capacity. The chemical and super-molecular 
structural analyses were determined by FTIR spectroscopy 
(Thermo Nicolet, USA) under ambient conditions. First, the 
sample was crushed with KBr at a ratio of 1:100 w/w and 
compressed into a transparent pellet. The spectra was eval-
uated under transmittance mode in a range between 4000 and 
400 cm−1 with a 4 cm−1 resolution and an accumulation of 
128 scans. The average zeta potential values were measured 
by Anton Paar instruments (Litesizer™ 500 and 
SurPASS™ 3) as the samples were diluted with distilled 
water to make a concentration of 5% v/v. Thermal analysis 
was carried out by TGA employing a TGA (STA F3 Jupiter) 
Q50 V20 at a 10°C/min heating rate under a nitrogen atmo-
sphere (10 mL min−1). The analysis was done at 
a temperature from 10°C to 800°C.

5-FU Loading Study
A 250 mL solution of distilled water containing 5-FU and 
CF and at a weight ratio of 1:3.5 was stirred in stoppered 
bottles at 300 rpm for 14 hours. The drug-loaded sample 
was washed with distilled water and centrifuged using 
a Tabletop Centrifuge (Kubota, Model: 2420) with 
a 15 mL centrifuge tube at 4000 rpm for 8 minutes. 
After that, the supernatant was analyzed using UV–vis 
spectrophotometry with a UV-visible spectrophotometer 
(UV-1600, Shimadzu, Japan) at 266 nm to determine the 
amount of unentrapped drug. After centrifugation, the 
sample was collected and dried in an oven at 45°C and 
named CF/5-FU. The amount of drug-loaded in CF/5-FU 
was determined by using a calibration curve generated 
from known concentrations of 5-FU and was used to 
calculate the loading capacity (LC)% and the drug encap-
sulation efficiency (EE)% according to Equations (1 and 
2), respectively.

LC% ¼

Initial drug amount
in formulation mgð Þ

�
Unentrapped
drug mgð Þ

� �

Total weight of
drug in CF=5FU

� 100% (1) 

EE% ¼

Initial drug amount
in formulation mgð Þ

�
Unentrapped
drug mgð Þ

� �

Initial drug amount
in formulation mgð Þ

� 100% (2) 

In Vitro Drug Release Studies
The release of 5-FU from CF as an anticancer drug 
carrier was studied by using a 5 mL dialysis bag (mole-
cular weight cut-off between 12,000 and 14,000 Da). 
Before the experiment, the bag was soaked for 12 
hours in the release medium of simulated colorectal 
fluid (phosphate-buffered saline (PBS) at pH 7.4). 
Then, the solution mixture of 5 mg of CF/5-FU and 
2 mL of the release medium was suspended in a 5 mL 
dialysis bag with the two ends tied. The bag was com-
pletely immersed into a 40 mL of the release media 
maintained under constant stirring of 100 rpm at 37°C 
in two different stoppered bottles. A 1 mL aliquot was 
withdrawn from the system at the selected time and then 
it was immediately replaced with the same volume of the 
fresh media. The collected sample at a different time was 
characterized by UV–vis spectrophotometry at 266 nm. 
The same study was performed in a hydrochloric acid 
(HCl) buffer at pH 1.2 for the simulated release of the 
drug in the stomach and a comparison of the differences 
in the drug release profiles estimated from the CF in 
media at different pH values. The results obtained from 
the media with two different pH values were calculated 
by the following equation and then compared:

Drug release %ð Þ ¼

Amount of drug
release time ` t'

Amount of drug
release at time ¼ 0

� 100% (3) 

The release experiment was continued until the absorbance 
of the media remained constant. All experiments were 
carried out in triplicate.

Cell Lines and Reagents
Human HCT116 CRC cells (ATCC CCL-247) and 
CCD112 normal colorectal cells (ATCC CRL-1541) were 
purchased from ATCC and cultured according to the 
ATCC’s recommendation. The NP 460 nasopharyngeal 
normal cell line40 and the HONE-1 cancer cell line derived 
from a nasopharyngeal carcinoma41,42 was a kind gift from 
Dr. Alan Khoo Soo-Beng from the Institute for Medical 
Research, Malaysia. Cell authentication for HONE-1 and 
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NP460 was performed by short tandem repeat (STR) pro-
filing. The results showed that both cell lines were authen-
tic by showing a 93.75 and 100% match with the reference 
cell lines, HONE-1 (CVCL_8706) and NP460 
(CVCL_X205), respectively, from the ExPASy database 
(Table S1). The match analysis was performed using the 
cellosaurus STR similarity search tool CLASTR 1.4.3 on 
the ExPASy website (https://web.expasy.org/cellosaurus- 
str-search/). The cell lines were maintained in Dulbecco’s 
Modified Eagle’s medium (DMEM) supplemented with 
10% fetal bovine serum (FBS) (Gibco) and 1% penicil-
lin/streptomycin (Gibco). All cell lines used for cytotoxi-
city experiments were less than a passage number of 10.

MTS In Vitro Cytotoxicity Assays
To determine the cellular killing effect from 5-FU, CF/ 
5-FU, and CF samples, cytotoxicity assays were per-
formed using a CellTiter 96 Aqueous One Solution 
(MTS reagent) (#G3582, Promega) according to the man-
ufacturer’s instructions with a slight modification as pre-
viously described.43–45 Briefly, 5000 HCT116 and 
CCD112 cells per well (100 µL/well) were seeded onto 
a 96-well plate and incubated overnight at 37°C in a 5% 
CO2, 95% humidified incubator. The next day, 2-fold 
serially diluted samples at concentrations of 0, 7.81, 
15.62, 31.25, 62.53, 125, 250 and 500 µg/mL (100 µL/ 
well) were added into the wells and the plate was incu-
bated for 72 hours at 37°C in a 5% CO2 incubator. Then, 
20 µL of the MTS reagent per well were added into the 
plate and incubated for an additional 3 hours at 37°C in 
a 5% CO2 incubator. The optical density (OD) was then 
measured at 490 nm using a multimode microplate reader 
(Tecan). The dose–response graph was plotted by calculat-
ing the percent cell viability using equation (4):

% Cell viability ¼
OD of sample well ðmeanÞ
OD of control well ðmeanÞ

� 100%

(4) 

In addition, the inhibitory concentration causing 50% 
growth inhibition (IC50) was determined using an online 
calculator (https://www.aatbio.com/tools/ic50-calculator) 
as previously described.43,44

Statistical Analysis
Independent experiments were performed three times and 
the data are expressed as the mean ± standard deviation for 
all triplicates within an individual experiment. Data were 

analyzed with a Student’s t-test using SPSS version 26.0 
where p < 0.05 was considered significant.

Results and Discussion
Reaction
The brown color of RS was gradually removed to finally 
obtain white CF. A 35% CF yield was achieved from RS 
which was almost similar to the results from different 
studies.46,47 The step-by-step process of CF isolation was 
proved by XRD and FTIR characterization.

X-Ray Powder Diffraction (XRD)
The XRD evaluation of RS, DRS, and CF is shown in 
Figure 2A–C, respectively. As can be observed from the 
figure, all of the samples indicated a similar XRD pattern, 
showing that the chemical treatment did not damage the 
cellulose structure. The samples displayed peaks at 
approximately 2θ =14.6°, 16.5°, and 22.4°, in agreement 
with the normal cellulose-I structure.48 The cellulose crys-
tals had, 110, 200, and 004 planes.49 The intensity of the 
peaks gradually increased by the treatments as unwanted 
components (such as lignin and lipids) were gradually 
removed from RS by the treatments to isolate CF with 
high purity. The main elements in the amorphous region of 
RS were lipid, hemicellulose, and lignin, which were 
peeled off and hydrolyzed during the alkaline treatment. 
Therefore, the amorphous region was gradually removed 

Figure 2 X-ray powder diffraction of (A) RS, (B) DRS and (C) CF.
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after each treatment while the crystal region was protected. 
Similar to a different report,47 the treatment possibly 
improved organization and alignment as well as crystal 
interfaces for the obtained materials.

Scanning Electron Microscope (SEM) and 
Energy Dispersive X-Ray Analyses (EDX)
SEM of DRS (Figure 3A and B), CF (Figure 3C and D), 
and CF/5-FU (Figure 3E) were respectively evaluated. 
SEM allowed for good morphological visualization of 

the swelled materials. Therefore, the SEM image showed 
the size of CF after swelling in the aqueous solution. It can 
be seen clearly in the images that CF was smaller with 
a better-organized structure compared to DRS. This was 
due to removing hemicellulose and lignin by dewaxing 
and delignification treatments. Figure 3C and D show that 
CF was mostly rod-shaped and was comprised of ordered 
aggregated cellulosic fibrils with disordered structures. In 
nature, each fiber contains up to a hundred of nano/micro-
fibers coalesced together into a cellulosic structure. 

Figure 3 Scanning electron microscope images of (A and B) DRS, (C and D) CF, and (E) CF/5-FU and (F) energy dispersive X-ray analysis of CF and CF/5-FU.
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Obviously, CF compared to DRS was not only more 
mesoporous but it also provided for a better uniform 
pore structure. From Figure 3D, some pores can be seen 
on the surface of the CF, allowing for water and also 
hydrophilic drug penetration into the fiber. The size of 
CF (Figure 3D) and CF/5-FU (Figure 3E) was similar, 
possibly because of the highly water-soluble 5-FU 
entrapped well within the porous network of CF, therefore, 
it did not change the morphological properties of the drug- 
loaded sample. Similarly, in a different study,39 SEM 
images of the cellulose-based 5-FU carrier indicated 
a smooth and uniform morphology, representing the suc-
cessful encapsulation of the drug.

Based on EDX data (Figure 3F), the CF network con-
tained 75.88 wt.% carbon and 24.12 wt.% oxygen. The RS 
treatment dissolved silica into aqueous ions and was sub-
sequently replaced by carbon, providing an improvement 
in crystallinity and surface area of the isolated CF.50 

Further results indicated that CF/5-FU comprised 53.26 
wt.% carbon, 24.31 wt.% oxygen, 12.81 wt.% fluorine 
(F), and a negligible wt.% ratio of Na. Therefore, EDX 
results of CF/5-FU confirmed the effective drug loading 
into CF via presenting an adequate amount of fluorine (F) 
from 5-FU in the drug carrier.

Brunauer–Emmett–Teller (BET) 
Measurements
Figure 4A and B show the BET evaluation of DRS and CF. 
The nitrogen adsorption–desorption approach at 77 K was 
used to measure the surface area and pore volume of DRS 
and CF with nearly reversible loops and type II isotherms, 
based on the IUPAC classification. As can be seen from 
Figure 4A, the BET surface areas of DRS and CF were 4.59 
and 18.34 m2/g, respectively. Compared to DRS, CF has an 
approximately four-time higher surface area with higher 
porosity. Figure 4A shows the adsorption–desorption of 
the samples. Based on the Le-Chatelier principle, the 
value of stress between the adsorption and desorption was 
evaluated considering the orientation changes during equili-
brium by the number of the molecular alterations.

Adsorbateþ Adsorbent Adsorption
�������!

Desorption
 ������� Adsorption 

The Langmuir adsorption isotherm can be presumed as 
a dynamic equilibrium that occurs between free and adsorbed 
gaseous molecules. The BJH cumulative pore volume was 
calculated from the adsorption branch of each isotherm. The 

pore volume was almost four-times higher for CF 
(0.022 cm3/g) than DRS (0.006 cm3/g). This could be due 
to the hydrogen bonds between CF components. During the 
alkaline treatment on DRS, the removal of silica and lignin 
was the key factor to decrease the amorphous region and 
obtain CF with a proper crystal region, causing a high surface 
area.51 According to Figure 4B, CF showed almost a twofold 
increase in the average pore diameter than DRS. Besides, the 
pore diameter for DRS and CF was approximately up to 90 
and 119 nm, respectively. Both samples showed that most of 
the pores were in the range of 2–50 nm, in which significant 
peaks appeared below 10 nm. According to these results, CF 
showed an acceptable surface area and average pore dia-
meter, a sign of a good candidate as a drug carrier for 
controlled drug absorbance and release.

Figure 4 (A) Nitrogen adsorption–desorption isotherms at 77 K for the self- 
assembled products from CF and DRS. The inset table lists the Brunauer–Emmett– 
Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) cumulative pore 
volume calculated from the adsorption branch of each isotherm and (B) average 
pore diameter of DRS and CF.
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Fourier-Transform Infrared Spectroscopy 
(FTIR)
The FTIR spectra of RS, DRS, CF, CF/5-FU, and 5-FU are 
shown in Figure 5A–E, respectively. As can be understood 
from the figure, CF was successfully isolated from RS after 
serial treatments, including de-waxing, delignification, and 
excretion of silica and hemicellulose. During the bleaching 
process, the alkali treatment on RS probably caused the 
formation of C–H aromatic hydrogen groups. The peak at 
1524 cm−1 (ie, aromatic skeletal vibrations) can be possibly 
attributed to the presence of pyranose ring skeletal C–O–C 
bonds of cellulose. Figure 5C presents leaching of the hemi-
cellulose at 1750 cm−1 (carbonyl stretching) and removal of 
silica (Si–O–Si stretching) at 760 and 491 cm−1. As is seen in 
Figure 5C, the peaks at 3352, 2891, and 1100 cm−1 could 
demonstrate the stretching vibrations of –OH groups, C–H 
stretching, and the cellulose structure, respectively.52 In the 
anomeric region (950–700 cm−1), the minor peak at 
887 cm−1 was pronounced for CF (Figure 5C), showing the 
glycosidic –C1 –O –C4 deformation property of the β- 
glycosidic bond in cellulose.53 This possibly showed the 
successful isolation process of CF. Similar to XRD, FTIR 
patterns were comparable for cellulose before and after 
delignification to indicate the high structural stability and 
no main damage to the cellulose structure.

Figure 5D and E show the FTIR spectrum for CF/5-FU 
and 5-FU, respectively. Compared to the CF spectrum, the 
CO stretching group shifted to 1625 cm−1 in the spectrum for 
CF/5-FU. Both CF/5-FU and pure 5-FU displayed similar 
FTIR patterns showing that the anticancer drug was effi-
ciently conjugated into CF. The spectrum displayed the 
representative features of drug-loaded CF of the OH–stretch-
ing at 3068 cm−1 and the methylene bands C–H at 2829 and 
2350 cm−1, while 1984 cm−1 was possibly attributed to the 
C=O stretching vibrations because of the carboxylic groups. 
The spectrum of 5-FU showed a broadband at 
2750–3300 cm−1 attributed to NH stretching groups. This 
band shifted to 2750–3500 cm−1 in the spectrum of CF/5-FU, 
due to overlapping of the OH and NH bonds of 5-FU.39 From 
the spectrum of 5-FU, C–F stretching vibrations were prob-
ably at 1271 cm−1.39 This band also shifted to 1279 cm−1 in 
the spectrum of CF/5-FU. Therefore, the main peaks of 5-FU 
were presented in CF/5-FU, without any type of incompat-
ibility between the drug and CF.

Zeta Potential
Figure 6 shows the zeta potential of CF and CF/5FU. The 
suspensions of CF and CF/5-FU had high negative zeta 
potentials of −33.61 mV and −30 mV, respectively. These 
results suggested that CF has good stability in aqueous solu-
tion with or without 5-FU.54 The colloidal suspension with 

Figure 5 Fourier-transform infrared spectroscopy of (A) RS, (B) DRS (C), CF (D) 
CF/5-FU and (E) 5-FU. Figure 6 Zeta potential of CF and CF/5-FU.
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good stability resulted from the excellent electrostatic repul-
sion that occurred among the fibers. The negative charge 
slightly decreased by adding the drug which covered the CF 
pores. This showed the successful conjugation between the 
drug and CF. The CF with the hydrogen-bonded structure 
could be adopted by 5-FU in which according to another 
report,55 pure 5-FU showed only one crystal structure which 
was crystallized through four molecules in the asymmetric 
unit, and the molecules could accept the hydrogen-bonded 
feature, while the carboxyl groups in the CF chains possibly 
caused the presence of hydrogen bonds with the amide groups 
in the 5-FU molecules to form intermolecular complexes.56 

Thus, the CF network with a high negative zeta potential 
conjugated to the anticancer drug 5-FU for potentially an 
excellent payload and ideal retention in prolonged dosing.

Thermogravimetric Analysis (TGA)
Figure 7 shows the results of the thermal stability of the 
CF, CF/5-FU, and 5-FU samples. In the TGA, the initial 
and the last weight loss are from the primary vaporization 
and final decomposition, respectively. Though, as the sam-
ples were completely dried before analysis, the initial 
weight loss did not happen which was different from 
another report.57 The main weight loss of 5-FU was 
approximately in the range of 260–360°C with a residue 
of 19 wt.%, decreasing to 1.25 wt.% at 800°C. The weight 
loss of CF/5-FU and CF was approximately in the range of 
255–353°C and 270–345°C with a residue of 33 and 61 
wt.%, respectively, while at 800°C, the residues were 
almost unchanged. The residue of CF was similar to the 
sorbents from the oil palm empty fruit bunch with con-
siderable inner porosity.58 The CF network significantly 

increased thermal stability of 5-FU as the main weight loss 
and the residue increased for CF/5-FU. This could show 
the successful binding between 5-FU and CF as a drug 
carrier. From these results, 36.33% is approximately the 
lower bound 5-FU percentage in CF/5-FU.

Encapsulation Efficiency (EE)% and 
Loading Capacity (LC)%
Using UV absorbance at various concentrations, measure-
ments for calculating LC and EE were conducted. Based on 
the UV absorbance and Equation (1), the LC was estimated at 
23 ±3.2% to indicate that the CF/5-FU sample contained 
almost 23 wt.% and 77 wt.% of the drug and CF, respec-
tively. According to the UV absorbance and Equation (2), EE 
was estimated to be 83 ±0.8%. There are several hydroxyl, 
carboxyl, and carbonyl groups as well as non-polar bonds in 
the chain structure of the CF network. These functional 
groups can form hydrogen and/or bipolar bonds with an 
electronegative atom like fluorine in 5-FU to create van der 
Waals interactions. This physical bond provided conjugation 
bonds between the molecular structures of the anticancer 
drug and CF. It is worth noting that the alkali treatment 
caused open bonds on the CF chains in which hydrophilic 
5-FU entered into the CF pores as were swelled in the 
aqueous solution during the drug loading process.59 CF as 
the drug carrier matrix with a greater number of OH groups 
was effectively bound and released hydrophilic 5-FU by 
ionic interactions.60 Further, the high EE value was due to 
mechanical entrapment of the drug in the carrier, whereas the 
CF molecules possibly changed from chains to nanogels in 
the aqueous solution during magnetic stirring for the drug 
loading process.61 The anticancer drug 5-FU is a heterocyclic 
aromatic organic compound with a high solubility and low 
molecular weight, therefore, it potentially diffused over the 
open CF pores increasing its EE value.62 Based on the values 
of LC% and EE%, the CF network is a good platform for 
5-FU loading for use as an improved drug delivery system.

In Vitro Drug Release Studies
The release of the anticancer drug 5-FU from the CF/5-FU 
sample is presented in Figure 8. Five different concentra-
tions (1.0–5.0 µg/mL) of the drug were prepared and the 
UV absorbance was measured at 266 nm in a glass cuvette 
of 1.0 cm width. The drug release behavior of CF/5-FU was 
studied by conducting in vitro release experiments in media 
of pH 1.2 and pH 7.4. The time taken to release 46% and 
only 21% of the drug from the carrier was 4 hours at a pH 
7.4 and pH 1.2, respectively. The polymeric structure of CF Figure 7 Thermogravimetric analysis of CF, CF/5-FU and 5-FU.
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with improved roughness was produced via the alkaline 
treatment and removing the amorphous region. Using CF 
in the drug delivery system possibly decreased issues from 
the pure 5-FU-based treatment, including an unstable bio-
logical half-life and immediate release dosage.63 From the 
graph, it is clear that the release (%) increased with time 
and gave a maximum 5-FU release of 79% and 46% in the 
release media at pH 7.4 and 1.2, respectively, within 24 
hours. The amount of 5-FU released at pH 7.4 was higher 
than those delivered at pH 1.2. Similar results were found 
from cellulose nanofiber aerogels which served as 
a Bendamustine hydrochloride carrier,64 and a cellulose- 
based 5-FU carrier,39 in which a higher release at pH 7.4 
within 24 hours resulted from a greater swelling index of 
the carriers in media at pH 7.4. Therefore, the drug release 
mechanism was potentially related to the swelling capacity 
of the CF network and the interaction between the drug and 
functional groups presented in the drug carrier. As CF can 
be diminished at acidic pH values (pH 1.2), the encapsu-
lated drug can be mostly secured for delivery through the 
intestine. However, after getting to the intestine, the pH of 
the surrounding medium changes to 7.4, therefore, swelling 
of the material triggers the controlled CF dosage. Similar to 
a different report,39 the controlled dosage was possibly due 
to the interaction between 5-FU and –COOH functionalities 
available in the CF as it declined by an enhanced swelling 
ratio. Because of the possible swelling, polymer relaxation 
happens along with drug release from the polymeric system 
of CF in controlled behavior. The drug delivery systems 

with CF cavities may cause an extended-release of the drug. 
In addition, the interactions between the CF cavity and drug 
were caused by van der Waals interactions between the 
hydrophobic moiety of the drug and that of the cavity, 
which could control the entrapped drug molecule release 
from the CF cavity. It is worth mentioning that the drug on 
the surface of CF was probably released in the first hour, 
while the breaking of the CF network caused prolonged 
drug release.62 The release condition in the aqueous solu-
tion medium at 37°C and the magnetic stirring possibly 
increased the hydrophilicity of CF in which the aqueous 
solution ingressed over the CF pores and disturbed CF 
integrity.62 This could minimize the surface area-to- 
volume ratio of CF and cause a burst of drug release until 
there was no drug in the carrier. CF/5-FU did not show 
a very high prolonged-release behavior probably due to the 
very low molecular weight and high hydrophilicity of 
5-FU.62 CF showed better release behavior than cellulose 
acetate fibers prepared in a different study, with 95% of the 
tetracycline drug release in the first 2 hours.65 Also, another 
survey on gelatin/carboxymethyl cellulose and nanocellu-
lose stated the release of tramadol over 8 and 12 hours, 
respectively.59 The release behavior of CF/5-FU suggests 
the potential modification of the proposed CF carrier for the 
delivery of the anticancer drug in a basic environment for 
a future clinical setting.

MTS in vitro Cytotoxicity Assays
The cytotoxic effects of 5-FU, CF, and CF/5-FU against 
the CCD112 normal colorectal cell line and the HCT116 
CRC cell line are shown in Figure 9A and B, respectively. 
It can be seen from the figures that CF alone displayed 
almost no damage to both normal and cancer cell lines. 
This may demonstrate the high biocompatibility of the CF 
network. Results further showed that 5-FU alone mostly 
killed both cancer and normal cell lines even at its lowest 
concentration of 7.81 µg/mL after a 72-hour treatment. 
This proved the drawbacks of using the pure drug in 
chemotherapy treatment without using a drug carrier sys-
tem or a drug release controller. The inhibition of CF/5FU 
is plotted in CCD112 and HCT116 (Figure 9C). Most 
importantly, the results showed that the CF/5-FU formula-
tion provided only negligible damage to the normal cell 
lines, while it displayed great antioxidant and antiproli-
feration effects against the CRC cell lines. An increasing 
concentration of CF/5-FU only slightly improved prohibit-
ing cancer cell line growth. Noticeably, a 250 µg/mL 
concentration of CF/5-FU had the highest elimination 

Figure 8 Drug release behavior of 5-FU from CF in the release media of pH 7.4 and 
pH 1.2.
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(58%) of cancer cells, although it was only less than 25% 
for the normal cells. It is worth mentioning that CF/5-FU 
still at its minimum concentration of 7.81 µg/mL 
destroyed more than 41% of the cancer cells; however, it 
destroyed only 14% of the normal cells. As was expected, 
the cancer cells were gradually killed by an increasing 
concentration of CF/5-FU, albeit, this was moderated for 
normal cells. It can be understood from Table 1 that the 
inhibitory concentration (IC50) of CF/5-FU on all tested 
cell lines was acceptable. Therefore, these results suggest 
the safety and great potential of using CF as an anticancer 

drug carrier with high antiproliferation activity against 
CRC cells and negligible effects toward the colorectal 
normal healthy cells.

The cytotoxic effects of 5-FU, CF, and CF/5-FU against 
NP 460 nasopharyngeal normal cell lines and HONE-1 can-
cer cell lines are shown in Figure 10A and B, respectively. It 
can be seen from the figures that CF alone displayed some 
damage to the normal cells while almost no damage to the 
cancer cells. Despite that, the pure 5-FU killed almost all of 
the nasopharyngeal normal and cancer cell lines at the dif-
ferent concentrations, which was a similar effect for the 
colorectal cells. The CF/5-FU formulation showed 
a gradual and great antioxidant and antiproliferation effect 
against the NPC cell lines. An increasing concentration of 
CF/5-FU improved cancer cell line death after 72 hours of 
treatment. Further, CF/5-FU at a 62.5 µg/mL concentration 
showed a 71% and 39% elimination against HONE-1 cancer 
and NP 460 normal cells, respectively. While, its lowest 
concentration (7.8 µg/mL) caused a 36% and only a 6% 
killing ratio against cancer and normal cells, respectively. 
According to the IC50 results from Table 1, the CF/5-FU 
system displayed major effects against nasopharyngeal nor-
mal cell lines. A 500 µg/mL concentration of CF/5-FU 
showed a greater elimination at 85% of cancer cells; how-
ever, it indicated major damage on the NP 460 normal cell 
line. The effects from CF/5-FU to nasopharyngeal healthy 
cells are probably due to the CF properties extracted from 
RS. It was reported in Europe that wood particles are carci-
nogens causing NPC for hardwood equipment workers.60,66 

Some issues that participate in the chemical processing of 
cellulose products have shown harmful consequences under 
different exposure.67 It is worth mentioning that normal cells 
at confluence reduced their heat-sensitivity 5–6 times than 
that for the growing situation; however, the cancer cells did 
not.68 Therefore, the normal cells possibly showed a lower 
temperature (below 37°C) than cancer cells (above 37°C). 
This slightly increasing temperature of the cancer cells could 
change the CF network to deswell and deform, thereby, 

Figure 9 Cytotoxic effects of 5-FU, CF, and CF/5-FU for 72 hours against a (A) 
CCD112 normal colorectal cell line, (B) HCT116 CRC cell line and (C) the 
inhibition of CF/5FU is plotted in CCD112 vs HCT116. Data are expressed as 
mean + standard deviation for triplicates within an individual experiment. Statistical 
significance was performed using a Student’s t test. (**p < 0.05).

Table 1 Inhibitory Concentration (IC50) of 5-FU, CF, and CF/ 
5-FU on Tested Cell Lines

Cell Line Compound (µg/mL)

5-FU CF CF/5-FU

HCT116 0.877 >500 38.1

CCD112 3.83 >500 >500
HONE-1 1.32 >500 74.16

NP 460 6.64 >500 16.25
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triggering a higher release of 5-FU molecules toward the 
cancer cells than the normal cells.69 In this manner, CF/ 
5-FU potentially conjugated and improved the selectivity 
towards the cancer cells to decrease drug leakage from the 
selected cells for protecting the drug from unwanted degra-
dation and elimination.70 Although requiring further investi-
gation and confirmation, especially during in vivo studies, it 
can be understood from the present results that CF/5FU can 
be more suitable in the treatment of CRC than NPC.

Conclusion
In this study, a facile and eco-friendly alkali treatment was 
used to isolate CF from RS waste. The anticancer drug 5-FU 
was successfully loaded onto the CF network. The in vitro 
cytotoxicity assays of the pure 5-FU drug, CF, and CF/5-FU 
samples were systematically evaluated at eight different 

concentrations using colorectal and nasopharyngeal healthy 
and cancerous cell lines in 72 hours of treatment. XRD and 
FTIR results exhibited the successful bleaching and deligni-
fication process on RS to produce CF with high purity and 
crystallinity. Successful treatments were confirmed as CF 
possessed four times higher surface area and BJH cumulative 
pore volumes greater than RS. The SEM images illustrated 
that the CF was such a rod-shaped polymer. In addition, EDX 
analysis showed that the drug-loaded sample of CF/5-FU 
contained the oxygen and carbon elements related to CF, 
along with an acceptable ratio of fluorine from 5-FU. The 
FTIR spectrum for CF/5-FU mostly followed that of 5-FU in 
determining the efficient interaction and conjugation 
between the drug and the drug carrier. The zeta potentials 
of CF and CF/5-FU samples were −33.61 mV and −30 mV, 
respectively. TGA data revealed that the CF network signifi-
cantly increased the thermal stability of 5-FU. Based on the 
UV-spectroscopy results, the anticancer drug loading onto 
the CF carrier system was estimated with an EE of 83 ±0.8%. 
Further, the LC was estimated to be 23 ±3.2%, indicating that 
the CF/5-FU sample contained almost 23 wt.% and 77 wt.% 
of the drug and CF, respectively. Drug release was evaluated 
in media of different pH values within 24 hours and gave 
a maximum 5-FU release of 79% and 46% for the release 
media of pH 7.4 and 1.2, respectively.

Most importantly, in cytotoxicity assays on human color-
ectal cells after 72 hours of treatment, CF showed high bio-
compatibility with no harmful effects against CCD112 normal 
colorectal and HCT116 CRC cells. However, the pure antic-
ancer drug 5-FU critically killed both normal and cancer cells. 
The drug-loaded sample of CF/5-FU at a 250 µg/mL concen-
tration showed higher growth inhibition (58%) in the CRC 
cells compared to the normal cells (23%). Even at 
a concentration of 7.81 µg/mL, CF/5-FU killed more than 
41% of the CRC cells and only 14% of the normal cells. In 
cytotoxicity assays on human nasopharyngeal cells after 72 
hours of treatment, the NP 460 normal and HONE-1 cancer 
cell lines were slightly damaged from CF alone and were 
mostly killed by the 5-FU pure drug. The CF/5FU formulation 
at a 62.5 µg/mL concentration demonstrated antiproliferative 
effects of 71% and 39% against the NPC and the normal cells, 
respectively. In addition, CF/5-FU at the maximum concentra-
tion (500 µg/mL) reached the highest killing ratio (85%) on 
HONE-1 cancer cells, with a noticeable damage on NP 460 
normal cell lines. Albeit, CF/5FU at the lowest concentration 
(7.8 µg/mL) showed the minimum damage (6%) on the nor-
mal cells and a 36% killing ratio against the cancer cells. This 
research showed that the potential of using the CF network as 

Figure 10 Cytotoxic effects of 5-FU, CF, and CF/5-FU for 72 hours against (A) NP 
460 nasopharyngeal normal cell lines and (B) HONE-1 cancer cell lines. Data are 
expressed as mean + standard deviation for triplicates within an individual experi-
ment. Statistical significance was performed using a Student’s t test. (**p < 0.05).
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the anticancer drug 5-FU carrier may be more effective in 
CRC treatment than NPC treatment to decrease the side- 
effects of conventional chemotherapy treatment in a green 
and environmentally safe manner.
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