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Abstract

Dispersal and exposure to amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd)
is not confined to the aquatic habitat, but little is known about pathways that facilitate expo-
sure to wild terrestrial amphibians that do not typically enter bodies of water. We explored
the possible spread of Bd from an aquatic reservoir to terrestrial substrates by the emer-
gence of recently metamorphosed infected amphibians and potential deposition of Bd-posi-
tive residue on riparian vegetation in Cusuco National Park, Honduras (CNP). Amphibians
and their respective leaf perches were both sampled for Bd presence and the pathogen
was detected on 76.1% (35/46) of leaves where a Bd-positive frog had rested. Although the
viability of Bd detected on these leaves cannot be discerned from our quantitative PCR re-
sults, the cool air temperature, closed canopy, and high humidity of this cloud forest environ-
ment in CNP is expected to encourage pathogen persistence. High prevalence of infection
(88.5%) detected in the recently metamorphosed amphibians and frequent shedding of Bd-
positive residue on foliage demonstrates a pathway of Bd dispersal between aquatic and
terrestrial habitats. This pathway provides the opportunity for environmental transmission of
Bd among and between amphibian species without direct physical contact or exposure to
an aquatic habitat.

Introduction

Infection by the pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd)
poses a major threat to global amphibian biodiversity [1,2]. Response to infection varies con-
siderably between species; a minority of those tested generally carry Bd in the absence of
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morbidity and may serve as aclinical reservoir hosts, such as the American bullfrog, Lithobates
catesbeianus [3], and the African clawed frog, Xenopus laevis [4], whereas others are highly sus-
ceptible to chytridiomycosis and have suffered dramatic decline following introduction in wild
populations [5,6]. Variation in virulence has been observed, and exposure to certain isolates of
the highly pathogenic BAGPL clade causes mortality in amphibians more quickly than others
[7,8]. Bd demonstrates low host species specificity and as of 2012, infection had already been
reported in 516 species from 52 countries [9], and evidence suggests this pathogen is native in
some parts of its range but emerging and spreading in others [10,11]. Identified 15 years ago
[12], the geographic origin and subsequent pathways of global and local Bd dispersal remain
largely speculative, although recent studies show Bd is now commonly spread via the interna-
tional and domestic trade in live amphibians [13-16]. However, mechanisms of dispersal out-
side the amphibian host and in the absence of anthropogenic assistance are more obscure.

Direct and indirect modes of Bd dispersal and transmission within wild amphibian popula-
tions have been postulated, but few have been demonstrated. Direct contact between animals
engaged in amplexus or territorial confrontation is thought to be a common mode of transmis-
sion [17]. Contact with contaminated water is another avenue, and Bd's motile uniflagellated
zoospores can disperse through a water body either by swimming short distances or by being
carried in water currents [18]. Waterfowl might carry Bd between separate water bodies, either
on their feathers or feet [19-21]. However, the high prevalence of Bd detected in terrestrial and
arboreal amphibian species that infrequently contact each other and typically do not directly
engage with other species or enter permanent water bodies [22-25], suggests the presence of
additional avenues of Bd dispersal and environmental transmission. For example Burrowes
et al. [26] detected a high prevalence of infection (44.1%) in Eleutherodactylus coqui, a direct-
developing terrestrial anuran inhabiting leaf litter in the cloud forest in Puerto Rico and
McCracken et al. [27] found 33% of canopy-dwelling amphibians infected in a lowland Ecua-
dorian rainforest. Bd has also been detected on 62% of terrestrial soil-dwelling caecilians sam-
pled in Cameroon [28,29]. Collectively, the detection of Bd on amphibians that inhabit the
forest canopy, terrestrial leaf littler, and soil suggests a common terrestrial existence where its
dispersal and transmission are not constrained by the absence of permanent water.

The spread of Bd through Central and South America is associated with dramatic amphibian
declines and extirpations [5,6,30,31] and interestingly, affected sites include remote wilderness
areas and national parks where anthropogenic-assisted Bd spread is expected to be minimal
[31-33]. Although a wave of Bd appears to have swept southeast through Central America dur-
ing the 1980's [10,32], relatively little is known of its present distribution and ecological impact
in Honduras. Infected amphibians have been reported from two locations, Pico Bonito National
Park [34] and Cusuco National Park (CNP) [24], but the country boasts a mosaic of additional
montane cloud forests likely to be similarly affected, but not yet surveyed. It has been estimated
that nearly 50% of 111 amphibian species in Honduras have suffered declines in recent years
from a combination of factors, including chytridiomycosis, and seven endemic anuran species
were believed extinct [35], although one (Craugastor milesi) was recently rediscovered [36]. Bd
has been detected in Honduran terrestrial anurans that undergo direct metamorphosis in leaf
litter, including Craugastor aurilegulus and C. rostralis [24,34], and the source of pathogen expo-
sure to these species remains enigmatic. Similarly, Bd-positive terrestrial frogs have been de-
tected in Costa Rica (Oophaga pumilio and Craugastor fitzingeri), prompting the authors to
suggest that Bd can survive on the moist forest floor where transmission might occur [32].

Since Bd occurs in the superficial skin of infected metamorphosed amphibians, there ap-
pears to be potential for infectious zoospores and sporangia within shedding skin to contami-
nate environmental substrates. Newly post-metamorphic anurans, in particular, often exhibit
both elevated Bd prevalence and zoospore loads [24,37-39], so their emergence from water
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might represent a considerable pathway of Bd dispersal into the terrestrial zone. To explore
this potential avenue of terrestrial Bd spread we investigated whether terrestrial vegetation be-
comes contaminated with Bd following contact with recently metamorphosed amphibians
under natural field conditions.

Materials and Methods
Ethics

Amphibian sampling in CNP adhered to established protocols [40] and were authorized by the
Instituto Nacional de Conservacion y Desarollo Forestal Areas Protegidas y Vida Silvestre
(ICF) of Honduras as part of the long-term Biodiversity Monitoring Programme performed by
Operation Wallacea. Permission to export samples was granted by Honduran permit #'s 44735
and 19987.

Study Site

This investigation was performed from 9 July to 6 August 2013 in Cusuco National Park
(CNP), a montane rainforest located in the Sierra de Omoa of northwestern Honduras. The al-
titude of CNP ranges from 550 m to 2200 m and fieldwork was performed between 1300 m
and 1600 m at three different river sites (Rio Cusuco, N 15.495, W 88.213, elev. 1600 m; Rio
Cortecito, N 15.523, W 88.288, elev. 1350 m; and Rio Danto, N 15.530, W 88.277, elev. 1545
m). Previous work identified widespread distribution and high prevalence of Bd in CNP at
these locations [24] and its presence in the region for approximately two decades or greater
[41]. Recently metamorphosed individuals of four tree frog species susceptible to Bd were tar-
geted for sampling (Duellmanohyla soralia, Plectrohyla dasypus, Plectrohyla exquisita, and Pty-
chohyla hypomykter). Of these species, P. dasypus, previously demonstrated the highest
prevalence of infection both at the species level (78%) and among recently metamorphosed in-
dividuals (94%) [24]. Most sampling was performed at night when animals were more active
and likely to be encountered on riparian vegetation, although some opportunistic sampling oc-
curred in the day. Most frogs were encountered within 5 m of the water's edge, but some were
found up to 50 m from the river. Sampling was restricted to frogs resting on leaves, and not
those perched on stalks or branches.

Leaf and Amphibian Sampling

Recently metamorphosed amphibians were removed from leaves by inverting them above a
new plastic bag, into which the amphibian either jumped or was guided by a gentle tap on the
underside of the leaf. Care was taken not to exert pressure between the frog and leaf, to prevent
increased potential Bd shedding. Vegetation was sampled first, and then the corresponding am-
phibian was sampled. Nitrile gloves were worn and changed between every swab collected to
reduce the risk of sample cross contamination. Leaves and frogs were each sampled with sterile
fine-tipped rayon swabs (Medical Wire & Equipment Co., #MW113). For leaves, each swab
was drawn across the leaf surface 20 times, where the amphibian was perched and in most in-
stances, had left a small film of moisture visible on the leaf's surface, approximately 0.5 cm in
diameter, marking the amphibians' location (Fig 1). For amphibians, the hands, feet, and pelvic
patch were swabbed five times each following protocols established by Hyatt et al. [40]. Swab
buds were snapped off into 2 mL microcentrifuge tubes filled with 1 mL 70% ethanol as a pre-
servative. After sampling was completed, each amphibian was replaced to its original position
in the vegetation.
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Fig 1. Recently metamorphosed Plectrohyla dasypus on terrestrial vegetation in Cusuco National
Park, Honduras. (A) Amphibian as encountered on vegetation. (B) Bd-positive residue remaining on the leaf
after amphibian removal.

doi:10.1371/journal.pone.0125386.g001

Temperature

Immediately upon encountering an amphibian perched on vegetation, the amphibian's dorsal
body surface, the vegetation surface, and the air temperature were measured to characterize the
environmental conditions Bd would be exposed to, if present. Temperatures were measured
using a Raytek ST81 Non-contact Infrared Thermometer (RAYST81, emissivity set to 0.95),
from a distance of 0.5 m or less. Accuracy of the thermometer is + 1% of reading or + 1°C,
whichever is greater. This technique obtains amphibian body temperature readings within
0.5°C of cloacal temperatures [42]. Air temperature was measured with the attachable RTD
temperature probe.

Water Sampling

Water samples from rivers at the three sites were collected and filtered for Bd detection. These
samples were processed for Bd testing following established protocols [43], with the exception
that a peristaltic pump was used to increase the efficiency of sampling efforts by maximizing
the volume of water filtered. We used sterile silicone rubber peristaltic pump tubing and re-
placed a new length for the collection of each sample. Water was pumped through Sterivex fil-
ter capsules (0.22 micron pore size) until the flow rate greatly diminished. Then the volume
filtered was measured and recorded. The content of each filter capsule was rinsed with 50 mL
phosphate buffered saline solution and then pumped dry. A bead of clay sealant was used to
plug the outlet spout of the capsule before being preserved by adding 0.9 mL of Qiagen ATL tis-
sue lysis buffer with a sterile 1 mL syringe. Luer-Lok screw caps sealed the inlet spout of the
capsules and a bead of quick-drying epoxy was applied behind each clay plug in the outlet
spout to provide the seal with reinforcement during transit. Fresh pairs of Nitrile gloves were
worn each time a water sample was collected. All water sampling was performed during
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daytime hours. Water temperature was measured at the time of sampling using the attachable
RTD temperature probe of the Raytek ST81 Non-contact Infrared Thermometer.

Real-Time PCR Analysis

Samples were processed via a sensitive quantitative PCR assay (qQPCR) specific to Bd following
the established protocol [44] and with the addition of BSA to the gPCR master mix as per Gar-
land et al. (2010) [45]. Samples were extracted with 100 pl Prepman Ultra (Applied Biosystems,
California, USA), with a final 20 pl of supernatant removed for downstream use. An aliquot of
this supernatant was diluted 1:10 in DNase-free water for qPCR. The qPCR protocol used Sensi-
Mix IT Low Rox (Bioline, Massachusetts, USA) as the qPCR master mix [46]. For each sample,

5 ul of 1:10 dilution of swab DNA was added to each well for a final total gPCR volume of 20 ul.
Samples and controls were run in triplicate with three positive, standard control samples (100,
10, and 1 zoospore/well, made from JAMS81 pure culture; see Boyle et al. 2004 for standard con-
trol construction) and one non-template control (DNase free, molecular-grade water). When the
qPCR assay failed to detect Bd in all three wells, the sample was deemed negative for Bd. Samples
that produced a positive signal for Bd in either two or three wells on the first run were considered
positive for Bd. When only one of three replicates detected Bd, the sample was rerun (in triplicate
again) in a subsequent plate. For rerun samples that had at least a cumulative total of two of six
replicates positive for Bd (from at least two separate plates), the sample was deemed positive for
Bd. All zoospore loads described in this report have not been converted and reflect the actual
zoospore loads present in 5 ul DNA (1:10 dilution), placed into 20 pl reaction volumes.

Data Analysis

We applied Chi-square test on a 2x2 contingency table to determine whether row and column
marginal frequencies were equal. The values in the matrix included: number of Bd-negative
frogs associated with Bd-negative leaves (5), number of Bd-negative frogs associated with Bd-
positive leaves (1), number of Bd-positive frogs associated with Bd-negative leaves (11), number
of Bd-positive frogs associated with Bd-positive leaves (35). Analysis was performed in R (R De-
velopment Core Team 2013 version 3.0.11 using package STATS (Chisq.test; version 3.0.3).

Results
Amphibian Swab Bd Results

Bd was detected on 46 of 52 (88.5%) amphibians and from all four species (Table 1). The aver-
age Bd zoospore equivalent load detected on Bd-positive amphibians was 103.94 and ranged
from 0.06-1,574.62.

Leaf Swab Bd Results

Bd was detected on 36 of 52 (69.2%) leaves, 97.2% of which had a Bd-positive recently meta-
morphosed amphibian on them (35/36) (statistical significance of the association, df = 1,
chi-squared = 6.23, p-value = 0.013) (Table 1). Only one Bd-positive leaf had an amphibian
that tested Bd-negative. The average Bd zoospore equivalent load detected on Bd-positive
leaves was 40.48 and ranged from 0.12-1,040.45.

River Water Filter Bd Results

The presence of Bd was detected in all three river water samples (Table 2). The average Bd zoo-
spore equivalent load per liter of river water was 0.23 and ranged from 0.03-0.57. Daytime
water temperature averaged 17.0°C and ranged from 16.3-17.5°C.
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Table 1. Presence of Batrachochytrium dendrobatidis (Bd) detected on amphibians and vegetation sampled in Cusuco National Park, Honduras.

Date Sample# Species Site Frog gPCR Leaf qPCR Frog ZSE Leaf ZSE
Jul 9 2013 HN13BD107 Plectrohyla dasypus CO + - 0.45 n/a
Jul 92013 HN13BD109 Ptychohyla hypomykter CO + - 0.54 n/a
Jul 92013 HN13BD110 Plectrohyla dasypus CO + + 24.39 17.81
Jul 9 2013 HN13BD111 Plectrohyla dasypus CO + - 2.38 n/a
Jul 9 2013 HN13BD112 Plectrohyla dasypus CcO + + 29.19 12.25
Jul 92013 HN13BD114 Plectrohyla dasypus CO + + 2.38 16.11
Jul 92013 HN13BD115 Plectrohyla dasypus CcO + + 3.04 14.57
Jul 9 2013 HN13BD116 Plectrohyla dasypus CcO + + 2.10 0.81
Jul 92013 HN13BD117 Plectrohyla dasypus CO + + 93.05 4.70
Jul 92013 HN13BD118 Plectrohyla exquisita CO + + 53.94 1040.45
Jul 92013 HN13BD120 Plectrohyla dasypus CcO + + 0.39 1.52
Jul 10 2013 HN13BD121 Duellmanohyla soralia CO + - 16.75 n/a
Jul 10 2013 HN13BD122 Plectrohyla dasypus CcO + - 0.35 n/a
Jul 10 2013 HN13BD123 Duellmanohyla soralia CO - - n/a n/a
Jul 10 2013 HN13BD124 Plectrohyla dasypus CO - - n/a n/a
Jul 10 2013 HN13BD125 Duellmanohyla soralia CO + + 0.64 0.34
Jul 10 2013 HN13BD128 Plectrohyla dasypus CO + - 3.00 n/a
Jul 10 2013 HN13BD129 Duellmanohyla soralia CcO - - n/a n/a
Jul 10 2013 HN13BD130 Plectrohyla dasypus CO - + n/a 0.12
Jul 10 2013 HN13BD131 Plectrohyla dasypus CcO + + 2.00 0.64
Jul 10 2013 HN13BD132 Ptychohyla hypomykter CO + + 28.77 8.39
Jul 10 2013 HN13BD133 Plectrohyla dasypus CcO + + 13.79 1.97
Jul 10 2013 HN13BD134 Plectrohyla dasypus CcO + + 23.76 0.93
Jul 10 2013 HN13BD135 Plectrohyla dasypus CO + + 33.18 1.68
Jul 10 2013 HN13BD136 Plectrohyla dasypus CO + - 2.11 n/a
Jul 10 2013 HN13BD137 Duellmanohyla soralia CO + + 22.42 23.06
Jul 11 2013 HN13BD144 Plectrohyla dasypus CO + + 11.82 1.07
Jul 11 2013 HN13BD145 Plectrohyla dasypus CcO + + 1085.68 43.30
Jul 14 2013 HN13BD161 Duellmanohyla soralia CO + - 0.06* n/a
Jul 14 2013 HN13BD164 Ptychohyla hypomykter CcO + + 660.54 49.09
Jul 152013 HN13BD166 Plectrohyla dasypus CcO - - n/a n/a
Jul 152013 HN13BD170 Plectrohyla dasypus CO + + 236.29 139.30
Jul 152013 HN13BD171 Duellmanohyla soralia CcO + + 1.20 0.47
Jul 152013 HN13BD172 Plectrohyla dasypus CcO + + 58.50 0.79
Jul 152013 HN13BD173 Plectrohyla dasypus CcO + + 57.69 4.38
Jul 152013 HN13BD174 Plectrohyla dasypus CO + + 17.44 40.30
Jul 152013 HN13BD175 Plectrohyla exquisita CO + + 38.66 1.00
Jul 152013 HN13BD177 Plectrohyla dasypus CO + + 18.10 0.32
Jul 152013 HN13BD178 Plectrohyla exquisita CO + + 281.79 10.93
Jul 152013 HN13BD179 Ptychohyla hypomykter CO + + 0.64 0.25
Jul 152013 HN13BD180 Ptychohyla hypomykter CcO + - 1.37 n/a
Jul 152013 HN13BD181 Duellmanohyla soralia CO + + 4.06 3.36
Jul 16 2013 HN13BD183 Plectrohyla dasypus CcO + + 1574.62 3.90
Jul 16 2013 HN13BD249 Ptychohyla hypomykter CO + + 39.07 0.23
Jul 18 2013 HN13BD261 Plectrohyla dasypus DA + + 147.26 7.84
Jul 14 2013 HN13BD323 Plectrohyla dasypus DA - - n/a n/a
Aug 5 2013 HN13BD389 Plectrohyla exquisita CuU + - 27.10 n/a
(Continued)
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Table 1. (Continued)

Date

Aug 5 2013
Aug 5 2013
Aug 6 2013
Aug 6 2013
Aug 6 2013

Samplei#

HN13BD390
HN13BD391
HN13BD407
HN13BD408
HN13BD409

Species Site Frog qPCR Leaf gPCR Frog ZSE Leaf ZSE
Plectrohyla exquisita Cu + + 34.02 0.44
Plectrohyla exquisita Cu + + 48.13 1.97
Plectrohyla dasypus CuU + + 25.23 0.29
Plectrohyla exquisita CuU + + 1.03 2.63
Plectrohyla exquisita CuU + - 52.55 n/a

Survey sites include Rio Cortecito (CO), Rio Danto (DA), and Rio Cusuco (CU). Average zoospore equivalent (ZSE) per gPCR reaction is reflected for all
Bd-positive samples. Asterisk denotes the single sample that produced a positive reaction in 2/6 wells; all other samples produced Bd-positive reactions in
2/3, 3/3, or 3/6 wells.

doi:10.1371/journal.pone.0125386.t001

Amphibian and Vegetation Temperatures

Most animals were sampled during nocturnal surveys, from 20:00-2:00 hrs (n = 45), although
some were occasionally encountered and sampled during the day, from 10:45-15:00 hrs

(n =7). Night temperatures of the frogs' dorsal surfaces, leaf surfaces, and air averaged 17.0°C,
17.1°C, and 16.9°C and ranged from 15.2-18.9°C, 15.8-19.1°C, and 15.3-17.8°C, respectively,
whereas day temperatures averaged 20.8°C, 21.0°C, and 20.2°C and ranged from 18.4-26.6°C,
18.8-7.0°C, and 19.4-21.9°C, respectively.

Discussion

We frequently detected Bd on leaf surfaces after removal of recently metamorphosed Bd-posi-
tive frogs, indicating their emergence does contribute towards the spread of Bd from aquatic
into terrestrial locations. Average zoospore loads detected on leaf surfaces were comparable to
those from corresponding amphibian skin swabs, and sometimes greater. The presence of Bd
on riparian vegetation allows exposure to occur in the absence of direct physical contact with
Bd-positive animals or contaminated water. Accordingly, this pathway of Bd dispersal and ter-
restrial exposure provides one possible explanation for the source of infection previously de-
tected in amphibians that do not demonstrate a strong association with water.

This pathway of Bd spread may occasionally facilitate transmission between aquatic and ter-
restrial species and from juvenile to adult frogs, if foliage maintains infectious Bd loads. On 11
July 2013, both a recently metamorphosed and adult Plectrohyla dasypus were observed
perched together on the same plant at the same time, approximately 5 cm apart (Fig 2). The
skin swab sample collected from this juvenile frog (HN13BD145) exhibited a considerable zoo-
spore load (1,085.68), as did the leaf swab (43.30), demonstrating a high risk of exposure to the

Table 2. Presence of Batrachochytrium dendrobatidis (Bd) detected in water filter samples collected
from amphibian survey sites in Cusuco National Park, Honduras.

Sample# Site Vol (ml) T(°C) ZSE/L
HN13W01 co 11000 175 0.08
HN13W02 DA 2700 17.1 0.03
HN13W03 cu 4600 16.3 0.57

Survey sites include Rio Cortecito (CO), Rio Danto (DA), and Rio Cusuco (CU). Volume of water filtered,
water temperature, and average Bd zoospore equivalent (ZSE) per liter of river water is reflected for
all samples.

doi:10.1371/journal.pone.0125386.t002
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Fig 2. Adult and recently metamorphosed Plectrohyla dasypus resting in close proximity in Cusuco
National Park, Honduras. The skin swab collected from this juvenile (HN13BD145) tested positive for Bd
infection and exhibited a considerable zoospore load (1,085.68 ZSE), as did the leaf swab (43.30 ZSE),
demonstrating the risk of exposure to the nearby Bd-negative adult through contact with

contaminated vegetation.

doi:10.1371/journal.pone.0125386.g002

nearby adult which tested Bd-negative at the time of sampling. Following metamorphosis, this
species leaves the aquatic habitat and moves into arboreal vegetation, reducing the likelihood
of subsequent Bd exposure from contaminated river water. The high prevalence of infection in
P. dasypus juveniles detected in this and previous surveys [24] suggests that their seasonal
emergence en masse may release a substantial quantity of Bd into the riparian zone shared with
amphibians that approach the water's edge, but do not typically enter it.

Although we identified a potential mechanism of pathogen exposure to terrestrial amphibi-
ans, the role of contaminated vegetation in Bd transmission remains in question. Detection of
Bd via qPCR indicates DNA presence, but does not reveal condition at the time of sampling. A
lack of experimental work to evaluate the persistence and detectability of Bd DNA following
cell death makes it difficult to discern whether we likely detected viable Bd or instead DNA
fragments from expired cells that continued to react with Bd qPCR primers. This interpretation
limitation is not exclusive to environmental Bd swab samples, but likewise applies to amphibi-
an skin swabs; a positive QPCR result does not independently demonstrate the viability of Bd
on that animal. Still, environmental conditions observed at all sampling localities in CNP were
similar to those in the laboratory where Bd survived outside a host [19] and may aid persistence
of Bd on leaf surfaces. Temperatures recorded in the field were all within or near the range for
optimal in vitro growth of Bd (17-25°C) and well below its thermal maximum of 28°C [47], al-
though optimal temperature regimes may vary between Bd isolates [48] and none from Hon-
duras have yet been characterized. Desiccation poses the other well-defined abitoic limitation
to Bd survival [19,49] but the presence of both high relative humidity and a dense forest canopy
preventing direct sun exposure is correlated with higher Bd prevalence and infection loads
[50]. These conditions are typical of CNP, a montane cloud forest, and expected to prolong
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drying. Lastly, laboratory experiments have shown that when maintained under suitable tem-
perature and moisture levels (and without bacteria), Bd can survive in the absence of a host for
at least two months in water or moist sand [19]. Thus, additional laboratory work is needed to
test the survival times of cultured Bd on leaf surfaces to identify the potential duration of this
form of environmental persistence and evaluate the average Bd loads needed to cause successful
transmission under naturalistic conditions.

Previous efforts to illustrate environmental Bd transmission have mainly focused on expo-
sure to permanent water bodies inhabited by Bd-infected amphibians [18,19]. Laboratory trials
demonstrated transmission of Bd between experimentally-infected and uninfected tadpoles of
Rana muscosa and also from tadpoles to post-metamorphic animals, when occupying a shared
water source [18]. Successful transmission required a 2-3 week duration of exposure, likely im-
peded by dilution of the pathogen in a naturalistic environment, similar to the low densities of
Bd detected in the water samples collected at our survey sites in CNP (Table 2). To encourage
transmission after short-term exposure, laboratory experiments have often employed highly
concentrated inoculates of approximately 100 million Bd zoospores delivered in less than 100
mL of water [51-53] whereas the highest concentration detected in a natural body of water
has been 3 million zoospores L* and less than 100 zoospores L™ is common [54]. In this con-
text, the concentrated Bd loads we detected on leaf surfaces in CNP relative to the adjacent
Bd-positive river water suggests that contact with affected foliage might pose a greater threat
of exposure and transmission to terrestrial amphibians than would a splash of water from
these rivers.

We detected the presence of Bd on vegetation in the understory, but periods of heavy rain are
expected to also flush Bd into the soil and leaf litter below. Surveys in CNP have identified the
presence of live aquatic crustaceans (copepods and ostracods) inhabiting terrestrial water films
on forest floor leaf litter [55,56], suggesting moisture persistence in this limnoterrestrial habitat.
The persistence of these water films in humid rainforest environments would help protect Bd
from desiccation in a seemingly terrestrial habitat, and also allow exposure to amphibians that
occupy leaf litter and burrow into the ground. Accordingly, this mode of Bd dispersal and indi-
rect exposure may explain the origins of infection documented in species of soil-dwelling sala-
manders [22,23,25] and caecilians [28,29].

Numerous biologic and abiotic factors are expected to influence the frequency of Bd dispers-
al from aquatic into terrestrial habitats and potential consequences. The prevalence and inten-
sity of Bd detected in amphibian populations often demonstrates fluctuations due to seasonal
changes in environmental conditions and these factors will affect the amount of zoospores
available to be shed into the terrestrial environment [49,54,57]. Rowley et al. [58] investigated
the presence of Bd in terrestrial retreat sites of two aquatic stream frog species (Litoria lesueuri
and L. nannotis), and did not detect Bd in 122 environmental swab samples. As suggested by
the authors, the observed Bd absence may have been influenced by the low prevalence and in-
fection loads concurrently detected in the adult amphibians sampled at these locations. Our re-
sults show that in a locality where both Bd prevalence and infection loads are high, it is
common for Bd to be shed into terrestrial locations, including amphibian retreat sites.

The presence of Bd in terrestrial habitats should be considered when identifying potential
threats to amphibian species of concern. Although it has been suggested that Bd poses the great-
est risk of infection to amphibians breeding in permanent streams [59], we caution against this
generalization and encourage additional surveillance in terrestrial and arboreal amphibian habi-
tats where animals continue to test positive for Bd, despite pathways of exposure being more
obscure. The frequency of Bd exposure from terrestrial substrates is unknown but may be con-
siderable where optimal environmental conditions are present, especially if it can survive as a
saprobe as previously suggested [12]. An improved understanding of Bd dispersal and
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persistence in the natural environment is essential to better explain and predict the continued
spread of this pathogen in regions where the anthropogenic-assisted exposure to Bd-positive
amphibians or substrates is unlikely.
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